
Indiscrete Affairs
Volume I — Reflection and Computing

Brian Cantwell Smith*

 © Brian Cantwell Smith 2010 Faculty of Information
Last edited: 17 January 2010 45 Willcocks St, Toronto
Please do not copy or cite Ontario M5S 1C7 Canada
Draft only (version 0.80 brian.cantwell.smith@utoronto.ca

ii Indiscrete Affairs · I

— Were this page blank, that would have been unintentional —

 i

 Table of Contents

A · Distillation
 1 Foundations of Computation 3

B · Reflection
 2 Reflection and Semantics in a Procedural Language
 a Abstracts, Preface, and Prologue 45
 b Chapter One 69
 3 Reflection and Semantics in Lisp 173
 4 Implementation of Procedurally Reflective Languages 229
 5 Varieties of Self-Reference 283

C · Computing
 6 Limits of Correctness 331
 7 One Hundred Billion Lines of C++ 357
 8 Semantics of Clocks 373

D · Semantics
 9 Linguistic and Computational Semantics 409
 10 The Correspondence Continuum 433

Epilogue 499

ii Indiscrete Affairs · I

— Were this page blank, that would have been unintentional —

 iii

Prior Publication Details (3 in books; 4 in conferences, 3
never published)

1. Foundations of Computation: In Matthias Scheutz (ed), Computation-
alism: New Directions, MIT Press, 2002.

2. Reflection and Semantics in a Procedural Language: Never pub-
lished as such; doctoral dissertation, printed as Technical Report 272 of
the MIT Laboratory of Computer Science, 1982.

3. Reflection and Semantics in Lisp: Conference: the Conference Record
of the Eleventh Annual ACM Symposium on Principles of Programming
Languages (POPL), Salt Lake City, Utah, Jan. 1984, pp. 23–35.

4. Implementation of Procedurally Reflective Languages: Conference:
Proceedings of the 1984 ACM Symposium on LISP and Functional Pro-
gramming.

5. Varieties of Self-Reference: Conference; Joseph Y. Halpern (ed.),
Theoretical Aspects of Reasoning about Knowledge: Proceedings of the 1986
Conference, Monterey, California, March 19–22. Los Altos, California:
Morgan Kaufmann: 1986.

6. Limits of Correctness: In D. Johnson & H. Nissenbaum (eds.), Com-
puters, Ethics & Social Values, Englewood Cliffs, NJ: Prentice Hall, 456–
69; (iii) in Colburn, T. R., Fetzer, J. H., & Rankin T. L. (eds.), Program
Verification, Kluwer Academic Publishers, Dordrecht/Boston/London,
1993, pp. 275–93; and (iv) in Kling, R. (ed.), Computerization and Contro-
versy: Value Conflicts and Social Choices (2nd Ed.), San Diego: Academic
Press, pp. 810–25

7. One Hundred Billion Lines of C++: Never published. An early sketch
appeared in the newsletter of the Cognitive Science Program at Lehigh
University in 1997.

8. Semantics of Clocks: In James H. Fetzer (ed.), Aspects of Artificial Intel-
ligence, Kluwer 1998, pp. 3–31.

9. Linguistic and Computational Semantics: Conference: Proceedings of
the 20th Annual Meeting of the Association for Computational Linguistics,
Toronto, Ontario, June 1982, pp. 9–15

10. The Correspondence Continuum: Never published.

iv Indiscrete Affairs · I

— Were this page blank, that would have been unintentional —

 1

A · Introduction

2 Indiscrete Affairs · I

— Were this page been blank, that would have been unintentional —

 3

1 — The Foundations of Computing†

 1 Introduction
Will computers ever be conscious? Is it appropriate—illumin-
ating, correct, ethical—to understand people in computational
terms? Will quantum, DNA, or nanocomputers require radical ad-
justments to our theories of computation? How will computing af-
fect science, the arts, intellectual history?

For most of my life I have been unable to answer these ques-
tions, because I have not known what computation is. More than
thirty years ago, this uncertainty led me to undertake a long-term
investigation of the foundations of computer science. That study
is now largely complete. My aim in this chapter is to summarise a
few of its major results.

 2 Project
The overall goal has been to develop a comprehensive theory of
computing. Since the outset, I have assumed that such an account
must meet three criteria:

1. Empirical: It must do justice to—by explaining, or at least
supplying the wherewithal with which to explain—the full
range of computational practice;

†Originally published in Matthias Scheutz (ed), Computationalism: New Di-
rections, MIT Press, 2002. The paper is distilled from, and is intended to
serve as an introduction to, a series of books that collectively report, in de-
tail, on the investigation identified in §2. The study of computing will be
published as The Age of Significance (Smith, forthcoming—henceforth
AOS); the metaphysical territory to which that study leads is introduced in
On the Origin of Objects (Smith 1996).

4 Indiscrete Affairs · I

2. Conceptual: As far as possible, it must discharge, and at a
minimum own up to, its intellectual debts (e.g., to seman-
tics), so that we can understand what it says, where it
comes from, and what it “costs”; and

3. Cognitive: It must provide an intelligible foundation for
the computational theory of mind: the thesis, often known
as computationalism,1 that underlies traditional artificial
intelligence and cognitive science.

The first, “empirical” requirement, of doing justice to practice,
helps to keep the analysis grounded in real-world examples. By
being comprehensive in scope, it stands guard against the ten-
dency of narrowly-defined candidates to claim dominion over the
whole subject matter.2 And it is humbling, since the computer
revolution so reliably adapts, expands, dodges expectations, and
in general outstrips our theoretical grasp. But the criterion’s pri-
mary advantage is to provide a vantage point from which to ques-
tion the legitimacy of all extant theoretical perspectives. For I take
it as a tenet that what Silicon Valley treats as computational is
computational; to deny that would be considered sufficient
grounds for rejection. But no such a priori commitment is given to
any story about computation—including the widely-held recur-
sion- or Turing-theoretic conception of computability, taught in
computer science departments around the world, that currently
lays claim to the title “The Theory of Computation.”3 I also reject

1The same thesis is sometimes referred to as cognitivism, though strictly
speaking the term “cognitivism” denotes a more specific thesis, which takes
mentation to consist in rational deliberation based on patterns of concep-
tualist (i.e., “cognitive”) inference, reminiscent of formal logic, and usually
thought to be computationally implemented (see Haugeland 1978).

2As explained in AOS, the aim is to include not only the machines, devices,
implementations, architectures, programs, processes, algorithms, lan-
guages, networks, interactions, behaviours, interfaces, etc., that constitute
computing, but also the design, implementation, maintenance, and even use
of such systems (such as Microsoft Word). Not, of course, that a theory
will explain any particular architecture, language, etc. Rather, the point is
that a foundational theory should explain what an architecture is, what con-
straints architectures must meet, etc.

3Indeed, I ultimately argue that that theory—trafficking in Turing ma-
chines, notions of “effective computability”, and the like—fails as a theory
of computing, in spite of its name and its popularity. It is simultaneously

 1 · Foundations of Computing

 5

all proposals that assume that computation can be defined. By my
lights, that is, computer science should be viewed as an empirical
endeavor.4 An adequate theory must make a substantive empirical
claim about what I call computation in the wild:5 that eruptive
body of practices, techniques, networks, machines, and behaviour
that has so palpably revolutionised late twentieth- and early
twenty-first-century life.

The second, “conceptual” criterion, that a theory own up to—
and as far as possible repay— its intellectual debts, is in a way no
more than standard theoretical hygiene. But it is important to
highlight, in the computational case, for two intertwined reasons.
First, it turns out that several candidate theories of computing (in-
cluding the official “Theory of Computation” mentioned above),
as well as many of the reigning but largely tacit ideas about com-
puting held in surrounding disciplines, implicitly rely, without
explanation, on such substantial, recalcitrant notions as interpre-
tation,6 representation, and semantics.7 Second, which only makes
matters worse, there is a widespread tendency in the surrounding
intellectual terrain to point to computation as a possible theory of
those very recalcitrant notions. Unless we ferret out all such de-

too broad, in applying to more things than computers, and too narrow, in
that it fails to apply to some things that are computers. More seriously,
what it is a theory of, is not computing. See §5.2.

4Methodological issues arise, owing to the fact that we (at least seem to)
make up the evidence. Although this ultimately has metaphysical as well as
methodological implications, it undermines the empirical character of
computer science no more than it does in, say, sociology or linguistics.

5Adapted from Hutchins’ Cognition in the Wild (1995).
6‘Interpretation’ is a technical notion in computing; how it relates to the use
of the term in ordinary language, or to what ‘interpretation’ is thought to
signify in literary or critical discussions, is typical of the sort of question to
be addressed in the full analysis.

7A notable example of such a far-from-innocent assumption is the wide-
spread theoretical tendency to distinguish (i) an abstract and presumptively
fundamental notion of “computation” from (ii) a concrete but derivative
notion of a “computer”—the latter simply being taken to be any physical
device able to carry out a computation. It turns out, on inspection, that this
assumption builds in a residually dualist stance towards what is essentially
the mind/body problem—a stance I eventually want to argue against, and
at any rate not a thesis that should be built into a theory of computing as a
presumptive but inexplicit premise.

6 Indiscrete Affairs · I

pendencies, and lay them in plain view, we run at least two serious
risks: (i) of endorsing accounts that are either based on, or give
rise to, vicious conceptual circularity; and (ii) of promulgating
and legitimating various unwarranted preconceptions or paro-
chial (e.g., modernist) biases— such as of a strict mind-body du-
alism.

The third “cognitive” criterion—that an adequate theory of
computation provide an intelligible foundation for a theory of
mind—is of a somewhat different character. Like the second, it is
more a metatheoretic requirement on the form of a theory than a
constraint on its substantive content. But its elevation to a primary
criterion is non-standard, and needs explaining.

Its inclusion is not simply based on the fact that the computa-
tional theory of mind (the idea that we, too, might be computers) is
one of the most provocative and ramifying ideas in intellectual
history, underwriting artificial intelligence, cognitive psychology,
and contemporary philosophy of mind. Several other ideas about
computing are just as sweeping in scope (such as proposals to
unify the foundations of quantum mechanics with the founda-
tions of information), but have not spawned their own methodo-
logical criteria. Rather, what distinguishes the computational the-
ory of mind, in the present context, has to do with the epistemo-
logical consequences that would follow, if it were true.

Theorizing is undeniably a cognitive endeavor. If the computa-
tional theory of mind were correct, therefore, a theory of computa-
tion would be reflexive—applying not only (at the object-level) to
computing in general, but also (at the meta-level) to the process of
theorizing. That is, the theory’s claims about the nature of com-
puting would apply to the theory itself. On pain of contradiction,
therefore, unless one determines the reflexive implications of any
candidate theory (of computing) on the form that the theory itself
should take, and assesses the theory from such a reflexively con-
sistent position, one will not be able to judge whether it is correct.8

8For example, it would be inconsistent simultaneously to claim the follow-
ing three things: (i) as many do, that scientific theories should be expressed
from an entirely third-person, non-subjective point of view; (ii) as an in-
trinsic fact about all computational processes, that genuine reference is
possible only from a first-person, subjective vantage point (“first-person”
from the perspective of the machine, that is); and (iii) that the computa-

 1 · Foundations of Computing

 7

More specifically, suppose that mind is in fact computational,
and that we were to judge a candidate (object-level) theory of com-
puting from the perspective of an implicit meta-theory inconsistent
with that candidate theory. And then suppose that, when judged
from that perspective, the candidate theory is determined to be
good or bad. There would be no reason to trust such a conclusion.
For the conclusion might be due not to the empirical adequacy or
failings of the theory under consideration, but rather to the con-
ceptual inadequacy of the presumed meta-theory.9

In sum, the plausibility of the computational theory of mind re-
quires that a proper analysis of a candidate theory of computing
must consider: (i) what computational theory of mind would be
generated, in its terms; (ii) what form theories in general would
take, on such a model of mind; (iii) what the candidate theory of
computing in question would look like, when framed as such a
theory; (iv) whether the resulting theory (of computing), so
framed, would hold true of computation-in-the-wild; and (v)
whether, if it did turn out to be true (i.e., empirically), mentation
and theorizing would, by those lights, also be computational. All
this is required, for reflexive integrity. To do these things, we need
to understand whether—and how—the theory could underwrite
a theory of mind. Hence the cognitive criterion.

It is essential to understand, however, that the cognitive crite-
rion requires only that we understand what form a computational
theory of mind would take; it does not reflect any commitment to
accept such a theory. In committing myself to honor the criterion,
that is, I make no advance commitment to computationalism’s be-
ing true or false. I just want to know what it says.

None of this is to say that the content of the computational the-
ory of mind is left open. Computationalism’s fundamental the-
sis—that the mind is computational—is given substance by the
first, empirical criterion. Computationalism, that is—at least as I

tional theory of mind is true. If one were to believe in the ineliminably first-
person character of computational reference, and that human reference is
a species of computational reference, then consistency would demand that
such a theory be stated from a first-person point of view—since, by hypothe-
sis, no other way of presenting the theory would refer.

9Note that the situation is symmetric; reflexive inconsistencies can generate
both false negatives and false positives.

8 Indiscrete Affairs · I

read it—is not a theory-laden or “opaque” proposal, in the sense of
framing or resting on a specific hypothesis about what computers
are. Rather, it has more an ostensive or “transparent” character: it
claims that people (i.e., us) are computers in whatever way that
computers (i.e., those things over there) are computers, or at least
in whatever way some of those things are computers.10

It follows that specific theoretical formulations of computation-
alism (whether pro or con) are doubly contingent. Thus consider,
on the positive side, Newell and Simon’s popular (1976) “physical
symbol system hypothesis,” according to which human intelli-
gence is claimed to consist of physical symbol manipulation; or
Fodor’s (1975, 1980) claim that thinking consists of formal sym-
bol manipulation; or Dreyfus’ (1992) assertion that computation-
alism (as opposed to connectionism) requires the explicit manipu-
lation of explicit symbols; or—on the critical side—van Gelder’s
(1996) claim that computationalism is both false and misleading,
deserving to be replaced by dynamical alternatives. Not only do all
these writers make hypothetical statements about people, that they
are or are not physical, formal, or explicit symbol manipulators,
respectively; they do so by making (hypothetical) statements about
computers, that they are in some essential or illuminating way
characterizable in the same way. Because I take the latter claims to
be as subservient to empirical adequacy as the former, there are two
ways in which these writers could be wrong. In claiming that peo-
ple are formal symbol manipulators, for example, Fodor would
naturally be wrong if computers were formal symbol manipulators
and people were not. But he would also be wrong, while the compu-
tational theory of mind itself might still be true, if computers were
not formal symbol manipulators, either. Similarly, van Gelder’s
brief against computational theories of mind is vulnerable to his
understanding of what computing is actually like. If, as I believe,
computation-in-the-wild is not as he characterises it, then the
sting of his critique is entirely eliminated.

10The computational theory of mind does not claim that minds and com-
puters are equivalent (in the sense that anything that is a mind is a com-
puter, and vice versa). Rather, the idea is that minds are (at least) a kind of
computer, and furthermore that the kind is itself computationally character-
ised (i.e., that the characteristic predicate on the restricted class of comput-
ers that are minds is itself to be framed in computational terms).

 1 · Foundations of Computing

 9

In sum, computational cognitive science is, like computer sci-
ence, hostage to the foundational project:11 of formulating a com-
prehensive, true, and intellectually satisfying theory of computing
that honors all three criteria.

Not one of them is easy to meet.

 3 Seven Construals of Computing
Some will argue that we already know what computation is. That
in turn breaks into two questions: (i) is there a story—an account
that people think answers the question of what computing is (what
computers are); and (ii) is that story right?

Regarding the first question, the answer is not no, but it is not a
simple yes, either. More than one idea is at play in current theoretic
discourse. Over the years, I have found it convenient to distin-
guish seven primary construals of computation, each requiring its
own analysis:

1. Formal Symbol Manipulation (FSM): the idea, derivative
from a century’s work in formal logic and metamathemat-
ics, of a machine manipulating symbolic or (at least poten-
tially) meaningful expressions without regard to their in-
terpretation or semantic content;

2. Effective Computability (EC): what can be done, and how
hard it is to do it, mechanically, as it were, by an abstract
analogue of a “mere machine”;

3. Execution of an algorithm (ALG) or rule-following (RF):
what is involved, and what behaviour is thereby produced,

11Foundationalism is widely decried, these days—especially in social and
critical discourses. Attempting a foundational reconstruction of the sort I
am attempting here may therefore be discredited, by some, in advance. As
suggested in Smith (1996), however, I do not believe that any of the argu-
ments that have been raised against foundationalism (particularly: against
the valorization of a small set of types or categories as holding an unques-
tioned and/or uniquely privileged status) amounts to an argument against
rigorously plumbing the depths of an intellectual subject matter. In this
paper, my use of the term ‘foundational’ should be taken as informal and,
to an extent, lay (I am as committed as anyone to the fallacies and even
dangers of master narratives, ideological inscription, and/or uniquely privi-
leging any category or type).

10 Indiscrete Affairs · I

in following a set of rules or instructions, such as when
making dessert;

4. Calculation of a Function (FUN): the behaviour, when
given as input an argument to a mathematical function, of
producing as output the value of that function applied to
that argument;

5. Digital State Machine (DSM): the idea of an automaton
with a finite, disjoint set of internally homogeneous ma-
chine states—as parodied in the “clunk, clunk, clunk” gait
of a 1950’s cartoon robot;

6. Information Processing (IP): what is involved in storing,
manipulating, displaying, and otherwise trafficking in in-
formation, whatever information might be; and

7. Physical Symbol Systems (PSS): the idea, made famous
by Newell and Simon (1976), that, somehow or other, com-
puters interact with, and perhaps also are made of, symbols
in a way that depends on their mutual physical embodi-
ment.

These seven construals have formed the core of our thinking about
computation over the last fifty years, but no claim is made that this
list is exhaustive.12 At least to date, however, it is these seven that
have shouldered the lion’s share of responsibility for framing the
intellectual debate.

By far the most important step in getting to the heart of the
foundational question, I believe, is to recognise that these seven
construals are all conceptually distinct. In part because of their
great familiarity (we have long since lost our innocence), and in
part because “real” computers seem to exemplify more than one of
them—including those often-imagined but seldom-seen Turing
machines, complete with controllers, read-write heads, and in-
definitely long tapes—it is sometimes uncritically thought that all
seven can be viewed as rough synonyms, as if they were different
ways of getting at the same thing. Indeed, this conflationary ten-
dency is rampant in the literature, much of which moves around
among them as if doing so were intellectually free. But that is a

12See the sidebar at the top of the next page.

 1 · Foundations of Computing

 11

mistake. The supposition that any two of these construals amount
to the same thing, let alone that all seven do, is simply false.

For example, consider the formal symbol manipulation con-
strual (FSM). It explicitly characterises computing in terms of a
semantic or intentional aspect, if for no other reason than that
without some such intentional character there would be no war-
rant in calling it symbol manipulation.13 In contrast, the digital
state machine construal (DSM) makes no such reference to inten-
tional properties. If a Lincoln-log contraption were digital but not
symbolic, and a system manipulating continuous symbols were
formal but not digital, they would be differentially counted as
computational by the two construals. Not only do FSM and DSM
mean different things, in other words; they (at least plausibly)
have overlapping but distinct extensions.

The effective computability (EC) and algorithm execution (ALG)
construals similarly differ on the crucial issue of semantics.
Whereas the effective computability construal, at least in the
hands of computer scientists, seems free of intentional connota-
tion,14 the idea of algorithm execution, at least as I have character-
ised it, seems not only to involve rules or recipes, which presuma-
bly do mean something, but also (pace Wittgenstein) to require
some sort of understanding on the part of the agent producing the
behaviour.

Semantics is not the only open issue; there is also an issue of
abstractness versus concreteness. For example, it is unclear
whether the notions of “machine” and “taking an effective step” in-
ternal to the EC construal make fundamental reference to causal
powers, material realization, or other concrete physical properties,
or whether, as most current theoretical discussions suggest, effec-
tive computability should be taken as an entirely abstract mathe-
matical notion. Again, if we do not understand this crucial aspect
of the “mind-body problem for machines,” how can we expect com-
putational metaphors to help us in the case of people?

13See footnote 22.
14At least some logicians and philosophers, in contrast, do read the effective
computability construal semantically. This difference is exactly the sort of
question that needs to be disentangled and explained in the full analysis.

12 Indiscrete Affairs · I

There are still other differences among construals. They differ
on whether they inherently focus on internal structure or external
input/output, for example—that is, on whether: (i) they treat
computation as fundamentally a way of being structured or consti-
tuted, so that surface or externally observable behaviour is deriva-
tive; or whether (ii) the having of a particular behaviour is the es-
sential locus of being computational, with questions about how
that is achieved left unspecified and uncared about. The formal
symbol manipulation and digital state machine construals are of
the former, structurally constitutional sort; effective computability
is of the latter, behavioural variety; algorithm execution appears to
lie somewhere in the middle.

The construals also differ in the degree of attention and alle-
giance they have garnered in different disciplines. Formal symbol
manipulation (FSM) has for many years been the conception of
computing that is privileged in artificial intelligence and philoso-
phy of mind, but it receives almost no attention in computer sci-
ence. Theoretical computer science focuses primarily on the effec-
tive computability (EC) and algorithm (ALG) construals, whereas
mathematicians, logicians, and most philosophers of logic and
mathematics pay primary allegiance to the functional conception
(FUN). Publicly, in contrast, it is surely the information processing

Additional Construals

Especially as the boundaries between computer science and surrounding intellectual
territory erode (itself a development predicted by this analysis; see section 8), several
ideas that originated in other fields are making their way into the center of compu-
tational theorizing as alternative conceptions of computing. At least three are im-
portant enough to be seen as construals in their own right (though the first is not
usually assumed to have any direct connection with computing, and the latter two
are not normally assumed to be quite as “low-level” or foundational as the primary
seven):

8. Dynamics (DYN): the notion of a dynamical system, linear or non-linear, as
popularized in discussions of attractors, turbulence, criticality, emergence,
etc.;

9. Interactive Agents (IA): active agents enmeshed in an embedding envi-
ronment, interacting and communicating with other agents (and perhaps
also with people); and

 1 · Foundations of Computing

 13

(IP) construal that receives the major focus—being by far the most
likely characterization of computation to appear in the Wall Street
Journal, and the idea responsible for such popular slogans as “the
information age” and “the information highway.”

Not only must the seven construals be distinguished one from
another; additional distinctions must be made within each one.
Thus the idea of information processing (IP) needs to be broken
down, in turn, into at least three sub-readings, depending on how
‘information’ is understood: (i) as a lay notion, dating from per-
haps the nineteenth-century, of something like an abstract, pub-
licly-accessible commodity, carrying a certain degree of autono-
mous authority; (ii) so-called “information theory,” an at least
seemingly semantics-free notion that originated with Shannon
and Weaver (1949), spread out through much of cybernetics and
communication theory, is implicated in Kolmogorov, Chaitin, and
similar complexity measures, and has more recently been tied to
notions of energy and, particularly, entropy; and (iii) the seman-
tical notion of information advocated by Dretske (1981), Barwise
and Perry (1983), Halpern (1987), and others, which in contrast
to the second deals explicitly with semantic content and veridical-
ity.

Clarifying all these issues, bringing the salient assumptions to

10. Self-organizing or Complex Adaptive Systems (CAS): a notion—often associated

with the Santa Fe Institute—of self-organizing systems that respond to their envi-
ronment by adjusting their organization or structure, so as to survive and (perhaps
even) prosper.

Additional construals may need to be added, over time. Moreover, there are even those who
deny that computation has any ontologically distinct identity. Thus Agre (1997b), for exam-
ple, claims that computation should instead be methodologically individuated (note that this
eviscerates the computational theory of mind).

11.Physical Implementation (PHY): a methodological hypothesis that computation is
not ontologically distinct, but rather that computational practice is human expertise
in the physical or material implementation of (apparently arbitrary) systems.

14 Indiscrete Affairs · I

the fore, showing where they agree and where they differ, tracing
the roles they have played in the last fifty years—questions like
this must be part of any foundational reconstruction. But in a
sense these issues are all secondary. For none has the bite of the
second question raised at the beginning of the section: of whether
any of the enumerated accounts is right.

Naturally, one has to say just what this question means—has
to answer the question “Right of what?”—in order to avoid the su-
perficial response: “Of course such and such a construal is right;
that’s how computation is defined!” This is where the empirical cri-
terion takes hold. More seriously, I am prepared to argue for a
much more radical conclusion, which we can dub as the first ma-
jor result:15

C1. When subjected to the empirical demands of practice and
the (reflexively mandated) conceptual demands of cognitive
science, all seven primary construals fail—for deep, overlap-
ping, but distinct, reasons.

 4 Diagnosis I: General
What is the problem? Why do these theories all fail?

The answers come at many levels. In the next section I discuss
some construal-specific problems. But a general thing can be said
first. Throughout, the most profound difficulties have to do with
semantics. It is widely (if tacitly) recognised that computation is
in one way or another a symbolic or representational or informa-
tion-based or semantical—that is, as philosophers would say, an
intentional—phenomenon.16 Somehow or other, though in ways

15This numbering system (C1–C9) is used only for purposes of this paper; it
will not necessarily be used in AOS.

16Although the term ‘intentional’ is primarily philosophical, there are many
philosophers, to say nothing of some computer and cognitive scientists,
who would deny that computation is an intentional phenomenon. Reasons
vary, but the most common goes something like this: (i) that computation
is both syntactic and formal, where ‘formal’ means “independent of seman-
tics”; and (ii) that intentionality has fundamentally to do with semantics;
and therefore (iii) that computation is thereby not intentional. I believe this
is wrong, both empirically (that computation is purely syntactic) and con-
ceptually (that being syntactic is a way of not being intentional); I also dis-
agree that being intentional has only to do with semantics, which the denial
requires. See footnote 22.

 1 · Foundations of Computing

 15

we do not yet understand, the states of a computer can model or
simulate or represent or stand for or carry information about or
signify other states in the world (or at least can be taken by people
to do so). This semantical or intentional character of computation
is betrayed by such phrases as symbol manipulation, information
processing, programming languages, knowledge representation, data-
bases, and so on. Indeed, if computing were not intentional, it
would be spectacular that so many intentional words of English
systematically serve as technical terms in computer science.17 Fur-
thermore—and this is important to understand—it is the inten-
tionality of the computational that motivates the cognitivist hy-
pothesis. The only compelling reason to suppose that we (or
minds or intelligence) might be computers stems from the fact that
we, too, deal with representations, symbols, meaning, information,
and the like.19

For someone with cognitivist leanings, therefore—as opposed,
say, to an eliminativist materialist, or to some types of
connectionist—it is natural to expect that a comprehensive theory
of computation will have to focus on its semantical aspects. This
raises problems enough. Consider just the issue of representation.
To meet the first criterion, of empirical adequacy, a successful
candidate will have to make sense of the myriad kinds of represen-
tation that saturate real-world systems— from bit maps and im-
ages to knowledge representations and databases; from high-
speed caches to long-term backup tapes; from low-level finite-
element models used in simulation to high-level analytic descrip-
tions supporting reasoning and inference; from text to graphics to
audio to video to virtual reality. As well as being vast in scope, it
will also have to combine decisive theoretical bite with exquisite
resolution, in order to distinguish: models from implementations;
analyses from simulations; and virtual machines at one level of
abstraction from virtual machines at another level of abstraction,
in terms of which the former may be implemented.18

17Thus computer science’s use of (the English words) ‘language,’ ‘represen-
tation,’ ‘data,’ etc. is analogous to physics’ use of ‘work,’ ‘force,’ ‘energy,’
etc.—as opposed to its use of ‘charm.’ That is, it reflects a commitment to
do scientific justice to the center of gravity of the word’s natural meaning,
rather than being mere whimsical fancy.

18Physically, we and (at least contemporary) computers are not very much

16 Indiscrete Affairs · I

To meet the second, conceptual criterion, moreover, any account
of this profusion of representational practice must be grounded
on, or at least defined in terms of, a theory of semantics or content,
partly in order for the concomitant psychological theory to avoid
vacuity or circularity, and partly so that even the computational
part of the theory meet a minimal kind of naturalistic criterion:
that we understand how computation is part of the natural world.
This is made all the more difficult by the fact that the word ‘se-
mantics’ is used in an incredible variety of senses across the range
of the intentional sciences. Indeed, in my experience it is virtually
impossible, from any one location within that range, to under-
stand the full significance of the term, so disparate is that practice
in toto.19

Genuine theories of content, moreover—of what it is that makes
a given symbol or structure or patch of the world be about or ori-
ented towards some other entity or structure or patch—are notori-
ously hard to come by.20 Some putatively foundational construals
of computation are implicitly defined in terms of just such a back-
ground theory of semantics, but neither explain what semantics is,
nor admit that semantical dependence—and thus fail the second,
conceptual criterion. This includes the first, formal symbol ma-
nipulation construal so favored (and disparaged!) in the cognitive

alike—though it must be said that one of the appeals, to some people at
least, of the self-organizing or complex-adaptive-system construal (CAS) is
its prospect of providing a naturalistically palatable and non-intentional but
nevertheless specific way of discriminating people-cum-computers (and
perhaps higher animals) from arbitrary physical devices.

19In computer science, to take a salient example, the term “the semantics of
α”, where α is an expression or construct in a programming language,
means approximately the following: the topological (as opposed to geomet-
rical) temporal profile of the behaviour to which execution of this program
fragment gives rise. By ‘topological’ I mean that the overall temporal order
of events is dictated, but that their absolute or metric time-structure (e.g.,
exactly how fast the program runs) is not. As a result, a program can usu-
ally be sped up, either by adjusting the code or running it on a faster proc-
essor, without, as is said, “changing the semantics.”

20Best known are Dretske’s semantic theory of information (1981), which
has more generally given rise to what is known as “indicator semantics”;
Fodor’s “asymmetrical-dependence” theory (1987); and Millikan’s “teleo-
semantics” or “biosemantics” (1984, 1989). For comparison among these
alternatives see, e.g., Fodor (1984) and Millikan (1990).

 1 · Foundations of Computing

 17

sciences, in spite of its superficial formulation as being “independ-
ent of semantics.”21 Other construals, such as those that view com-
putation as the behaviour of discrete automata—and also, I will
argue below, even if this is far from immediately evident, the recur-
sion-theoretic one that describes such behaviour as the calculation
of effective functions—fail to deal with computation’s semantical
aspect at all, in spite of sometimes using semantical vocabulary,
and so fail the first, empirical criterion. In the end, one is inexora-
bly driven to a second major conclusion:

C2. In spite of the advance press, especially from cognitivist quar-
ters, computer science, far from supplying the answers to
fundamental intentional mysteries, must, like cognitive sci-
ence, await the development of a satisfying theory of seman-
tics and intentionality.22

21Because formal symbol manipulation is usually defined as “manipulation
of symbols independent of their interpretation”, some people believe that
the formal symbol manipulation construal of computation does not rest
on a theory of semantics. But that is simply an elementary, though appar-
ently common, conceptual mistake. As discussed further in section 5, the
“independence of semantics” postulated as essential to the formal symbol
construal is independence at the level of the phenomenon; it is a claim
about how symbol manipulation works. Or so at least I believe, based on
many years of investigating what practitioners are actually committed to
(whether it is true—i.e., holds of computation-in-the-wild—is a separate
issue). The intuition is simple enough: that semantic properties, such as
referring to the Sphinx, or being true, are not of the right sort to do effec-
tive work—so they cannot be the sort of property in virtue of the manifes-
tation of which computers run. At issue in the present discussion, in con-
trast, is a more logical form of independence, at the level of the theory (or,
perhaps, to put it more ontologically and less epistemically, independence
at the level of the types). Here the formal symbol manipulation construal is
as dependent on semantics as it is possible to be: it is defined in terms of it.
And (as the parent of any teenager knows) defining yourself in opposition
to something is not ultimately a successful way of achieving independence.
Symbols must have a semantics, in other words (have an actual interpreta-
tion, or be interpretable, or whatever), in order for there to be something
substantive for their formal manipulation to proceed independently of.
Without a semantic character to be kept crucially in the wings, the formal
symbol manipulation construal would collapse in vacuity—would degener-
ate into something like “the manipulation of structure” or, as I put it in
AOS, “stuff manipulation”—i.e., materialism.

22As suggested in the preceding footnote, philosophers are less likely than

18 Indiscrete Affairs · I

 5 Diagnosis II: Specific
So none of the seven construals provides an account of semantics.
Since I take computation to be semantic (not just by assumption,
but as an unavoidable lesson from empirical investigation), that
means they fail as theories of computation, as well (i.e., C2 implies
C1). And that is just the beginning of the problems. All seven also
fail for detailed structural reasons—different reasons per con-
strual, but reasons that add up, overall, to a remarkably coherent
overall picture.

In this section I summarise just a few of the problems, to convey
a flavor of what is going on. In each case, to put this in context,
these results emerge from a general effort, in the main investiga-
tion, to explicate, for each construal:

1. What the construal says or comes to—what claim it makes
about what it is to be a computer;

2. Where it derives from, historically;
3. Why it has been held;
4. What’s right about it—what insights it gets at;
5. What is wrong with it, conceptually, empirically, and

explanatorily;
6. Why it must ultimately be replaced; and
7. What about it should nevertheless be retained in a “succes-

sor,” more adequate account.

 5a Formal Symbol Manipulation
The FSM construal has a distinctly antisemantical flavor, owing to
its claim that computation is the “manipulation of symbols inde-
pendent of their semantics.” On analysis, it turns out to be moti-
vated by two entirely different, ultimately incompatible, independ-

computer scientists to expect a theory of computation to be, or to supply,
a theory of intentionality. That is, they would not expect the metatheoretic
structure to be as expected by most computer scientists and artificial intel-
ligence researchers—namely, to have a theory of intentionality rest on a
theory of computation. But that does not mean they would necessarily
agree with the opposite, which I am arguing here: that a theory of compu-
tation will have to rest on a theory of intentionality. Many philosophers
seem to think that a theory of computation can be independently of a the-
ory of intentionality. Clearly, I do not believe this is correct.

 1 · Foundations of Computing

 19

ence intuitions. The first motivation is at the level of the theory,
and is reminiscent of a reductionist desire for a “semantics-free”
account. It takes the FSM thesis to be a claim that computation can
be described or analysed in a semantics-free way. If that were true,
so the argument goes, that would go some distance towards natu-
ralizing intentionality.23

There is a second motivating intuition, different in character,
that holds at the level of the phenomenon. Here the idea is simply
the familiar observation that intentional phenomena, such as rea-
soning, hoping, or dreaming, carry on in relative independence of
their subject matters or referents. Reference and truth, it is recog-
nised, are just not the sorts of properties that can play a causal role
in engendering behaviour—essentially because they involve some
sort of relational coordination with things that are too far away
(in some relevant respect) to make a difference. This relational
characteristic of intentionality—something I call semantic discon-
nection—is such a deep aspect of intentional phenomena that it is
hard to imagine its being false. Without it, falsity would cease to
exist, but so too would hypotheticals; fantasy lives would be meta-
physically banned; you would not be able to think about conti-
nental drift without bringing the tectonic plates along with you.

For discussion, I label the two readings of the formal symbol
manipulation construal conceptual and ontological, respectively.24
The ontological reading is natural, familiar, and based on a deep
insight. But it is too narrow. Many counterexamples can be cited
against it, though space does not permit rehearsing them here.25
Instead, to get to the heart of the matter, it helps to highlight a dis-
tinction between two kinds of “boundary” thought to be relevant or
essential—indeed, often assumed a priori—in the analysis of
computers and other intentional systems:

1. Physical: A physical boundary between the system and its
surrounding environment—between “inside” and “out-

23As Haugeland says “... if you take care of the syntax, the semantics will
take care of itself” (1981a, 23); see also Haugeland (1985).

24It can be tempting to think of the two readings as corresponding to inten-
sional and extensional readings of the phrase “independent of semantics”—
but that isn’t strictly correct. See AOS.

25See AOS Volume II.

20 Indiscrete Affairs · I

side”; and

2. Semantic: A semantic “boundary” between symbols and
their referents.

In terms of these two distinctions, the ontological reading of the
FSM construal can be understood as presuming the following two
theses:

1. Alignment: That the physical and semantic boundaries
line up, with all the symbols inside, all the referents out-
side; and

2. Isolation: That this allegedly aligned boundary is a bar-
rier or gulf across which various forms of dependence
(causal, logical, explanatory) do not reach.

The fundamental idea underlying the FSM thesis, that is, is that a
barrier of this double allegedly-aligned sort can be drawn around
a computer, separating a pristine inner world of symbols—a pri-
vate kingdom of ratiocination or thought, as it were—understood
both to work (ontologically) and to be analyzable (theoretically)
in isolation, without distracting influence from the messy, unpre-
dictable exterior.

It turns out, in a way that is ultimately not surprising, that the
traditional examples motivating the FSM construal, such as theo-
rem proving in formal logic, meet this complex pair of conditions.
First, they involve internal symbols designating external situa-
tions, thereby satisfying ALIGNMENT (internal) databases repre-
senting (external) employee salaries, (internal) differential equa-
tions modeling the (external) perihelion of Mercury, (internal)
first-order axioms designating (external) Platonic numbers or
purely abstract sets, and so on. Second, especially in the paradig-
matic examples of formal axiomatizations of arithmetic and proof
systems of first-order logic (and, even more especially, when those
systems are understood in classical, especially model-theoretic,
guise), the system is assumed to exhibit the requisite lack of inter-
action between the (internal) syntactic proof system and the (ex-
ternal, perhaps model-theoretic) interpretation, satisfying
ISOLATION. In conjunction, the two assumptions allow the famil-
iar two-part picture of a formal system to be held: a locally con-

 1 · Foundations of Computing

 21

tained syntactic system, on the one hand, consisting of symbols or
formulae in close causal intimacy with a proof-theoretic inference
regimen; and a remote realm of numbers or sets or “ur-elements,”
in which the symbols or formulae are interpreted, on the other. It
is because the formality condition relies on both theses together
that the classical picture takes computation to consist exclusively
of symbol-symbol transformations, carried on entirely within the
confines of a machine.

The first—and easier—challenge to the antisemantical thesis
comes when one retains the first ALIGNMENT assumption, of coin-
cident boundaries, but relaxes the second ISOLATION claim, of no
interaction. This is the classical realm of input/ output, home of
the familiar notion of a transducer. And it is here that one en-
counters the most familiar challenges to the FSM construal, such as
the “robotic” and “system” replies to Searle’s (1980) Chinese room
argument, and Harnad’s (1990) “Total Turing Test” as a meas-
ure of intelligence. Thus imagine a traditional perception sys-
tem—for example, one that on encounter with a mountain lion
constructs a symbolic representation of the form MOUNTAIN-LION-
043. There is interaction (and dependence) from external world to
internal representation. By the same token, an actuator system,
such as one that would allow a robot to respond to a symbol of the
form CROSS-THE-STREET by moving from one side of the road to
the other, violates the independence assumption in the other direc-
tion, from internal representation to external world.

Note, in spite of this interaction, and the consequent violation
of ISOLATION, that ALIGNMENT is preserved in both cases: the
transducer is imagined to mediate between an internal symbol
and an external referent. Nevertheless, the violation of ISOLATION

is already enough to defeat the formality condition. This is why
transducers and computation are widely recognised to be uneasy
bedfellows, at least when formality is at issue. It is also why, if one
rests the critique at this point, defenders of the antisemantical con-
strual are tempted to wonder, given that the operations of trans-
ducers violate formality, whether they should perhaps be counted
as not being computational.26 Given the increasing role of environ-

26Thus Devitt (1991) restricts the computational thesis to what he calls
“thought-thought” (t-t) transactions; for him output (t–o) and input (i–t)

22 Indiscrete Affairs · I

mental interaction within computational practice, it is not at all
clear that this would be possible, without violating the condition
of empirical adequacy embraced at the outset. For our purposes it
doesn’t ultimately matter, however, because the critique is only
halfway done.

More devastating to the FSM construal are examples that chal-
lenge the ALIGNMENT thesis. It turns out, on analysis, that far
from lining up on top of each other, real-world computer systems’
physical and semantic boundaries cross-cut, in rich and productive
interplay. It is not just that computers are involved in an engaged,
participatory way with external subject matters, in other words, as
suggested by some recent “situated” theorists. They are participa-
torily engaged in the world as a whole—in a world that indis-
criminately includes themselves, their own internal states and
processes. This integrated participatory involvement, blind to any
a priori subject-world distinction, and concomitantly intention-
ally directed towards both internally and externally exemplified
states of affairs, is not only architecturally essential, but is also
critical, when the time comes, in establishing and grounding a
system’s intentional capacities.

From a purely structural point of view, four types of case are re-
quired to demonstrate this non-alignment of boundaries: (i)
where a symbol and referent are both internal; (ii) where a symbol
is internal and its referent external; (iii) where symbol and refer-
ent are both external; and (iv) where symbol is external and refer-
ent internal. The first is exemplified in cases of quotation, meta-
structural designation, window systems, e-mail, compilers, load-
ers, network routers, and at least arguably all programs (as op-
posed, say, to databases). The second, of internal symbols with ex-
ternal referents, can be considered as something of a theoretical
(though not necessarily empirical) default, as for example when
one reflects on the sun’s setting over Georgian Bay (to use a hu-
man example), or when a computer database represents the usage
pattern of a set of university classrooms. The third and fourth are
neither more nor less than a description of ordinary written text,
public writing, etc.—to say nothing of pictures, sketches, conversa-
tions, and the whole panoply of other forms of external representa-

transactions count as non-computational.

 1 · Foundations of Computing

 23

tion. Relative to any particular system, they are distinguished by
whether the subject matters of those external representations are
similarly external, or are internal. The familiar red skull-and-
cross-bones signifying radioactivity is external to both man and
machine, and also denotes something external to man and ma-
chine, and thus belongs to the third category. To a computer or
person involved, on the other hand, an account of how they work
(psychoanalysis of person or machine, as it were, to say nothing of
logic diagrams, instruction manuals, etc.) is an example of the
fourth.

By itself, violating ALIGNMENT is not enough to defeat formal-
ity. What it does accomplish, however, is to radically undermine
ISOLATION’s plausibility. In particular, the antisemantical thesis
constitutive of the FSM construal is challenged not only because
these examples show that the physical and semantic boundaries
cross-cut, thereby undermining the ALIGNMENT assumption, but
because they illustrate the presence, indeed the prevalence, of effec-
tive traffic across both boundaries—between and among all the
various categories in question—thereby negating ISOLATION.

And this negation of ISOLATION, in turn, shows up, for what it
is, the common suggestion that transducers, because of violating
the antisemantical thesis, should be ruled “out of court”— i.e.,
should be taken as non-computational, à la Devitt (1991).27 It
should be clear that this maneuver is ill-advised; even a bit of a
cop-out. For consider what a proponent of such a move must face
up to, when confronted with boundary non-alignment. The notion
of a transducer must be split in two. In order to retain an antise-
mantical (FSM) construal of computing, someone interested in
transducers would have to distinguish:

1. Physical transducers, for operations or modules that
cross or mediate between the inside and outside of a sys-
tem; and

2. Semantic transducers, for operations or modules that
mediate or “cross” between symbols and their referents.

And it is this bifurcation, finally, that irrevocably defeats the an-
tisemantical formalists’ claim. For the only remotely plausible no-

27See the preceding footnote.

24 Indiscrete Affairs · I

tion of transducer, in practice, is the physical one. That is what we
think of when we imagine vision, touch, smell, articulation,
wheels, muscles, and the like: systems that mediate between the in-
ternals of a system and the “outside” world. Transducers, that is,
at least in informal imagination of practitioners, are for connect-
ing systems to their (physical) environments.28 What poses a
challenge to the formal (antisemantical) symbol manipulation
construal of computation, on the other hand, are semantic trans-
ducers: those aspects of a system that involve trading between oc-
current states of affairs, on the one hand, and representations of
them, on the other. Antisemantics is challenged as much by dis-
quotation as by driving around.

As a result, the only way to retain the ontological version of the
FSM construal is to disallow (i.e., count as non-computational) the
operations of semantic transducers. But that is absurd! It makes it
clear, ultimately, that distinguishing that subset of computation
which satisfies the ontological version of the antisemantical claim
is not only unmotivated, solving the problem by fiat (making it
uninteresting), but is a spectacularly infeasible way to draw and
quarter any actual, real-life system. For no one who has ever built
a computational system has ever found any reason to bracket ref-
erence-crossing operations, or to treat them as a distinct type. Not
only that; think of how many different kinds of examples of se-
mantic transducer one can imagine: counting, array indexing, e-
mail, disquotation, error-correction circuits, linkers, loaders, sim-
ple instructions, database access routines, pointers, reflection prin-
ciples in logic, index operations into matrices, most Lisp primitives,
and the like. Furthermore, to define a species of transducer in this
semantical way, and then to remove them from consideration as
not being genuinely computational, would make computation
(minus the transducers) antisemantical tautologically. It would no
longer be an interesting claim on the world that computation was
antisemantical—an insight into how things are. Instead, the
word ‘computation’ would simply be shorthand for antisemanti-

28This statement must be understood within the context of computer sci-
ence, cognitive science, and the philosophy of mind. It is telling that the
term ‘transducer’ is used completely differently in engineering and biology
(its natural home), to signify mechanisms that mediate changes in medium,
not that cross either the inside/outside or the symbol/referent boundary.

 1 · Foundations of Computing

 25

cal symbol manipulation. The question would be whether any-
thing interesting was in this named class—and, in particular,
whether this conception of computation captured the essential
regularities underlying practice. And we have already seen the
answer to that: it is no.

In sum, introducing a notion of a semantical transducer solves
the problem tautologically, cuts the subject matter at an unnatural
joint, and fails to reconstruct practice. That is quite a lot to have
going against it.

Furthermore, to up the ante on the whole investigation, not only
are these cases of “semantic transduction” all perfectly well-
behaved; they even seem, intuitively, to be as “formal” as any other
kind of operation. If that is so, then those systems either are not
formal, after all, or else the word ‘formal’ has never meant independ-
ence of syntax and semantics in the way that the FSM construal
claims. Either way, the ontological construal does not survive.

Though it has been framed negatively, we can summarise this
result in positive terms:

C3. Rather than consisting of an internal world of symbols sepa-
rated from an external realm of referents, as imagined in the
FSM construal, real-world computational processes are
participatory, in the following sense: they involve complex
paths of causal interaction between and among symbols and
referents, both internal and external, cross-coupled in
complex configurations.

 5b Effective Computability
Although different in detail, the arguments against the other ma-
jor construals have a certain similarity in style. In each case, the
strategy in the main investigation has been to develop a staged se-
ries of counterexamples, not simply to show that the construal is
false, but to serve as strong enough intuition pumps on which to
base a positive alternative. In other words, the point is not critique,
but deconstruction en route to reconstruction. Space permits a few
words about just one other construal: effective computability—the
idea that underwrites recursion theory, complexity theory, and, as
I have said, the official (mathematical) “Theory of Computation.”

Note, for starters—as mentioned earlier—that whereas the

26 Indiscrete Affairs · I

first, FSM construal is predominant in artificial intelligence, cogni-
tive science, and philosophy of mind, it is the second, effective com-
putability (EC) construal, in contrast, that underlies most theoreti-
cal and practical computer science.

Fundamentally, it is widely agreed, the theory of effective com-
putability focuses on “what can be done by a mechanism.” But two
conceptual problems have clouded its proper appreciation. First, in
spite of its subject matter, it is almost always characterised ab-
stractly, as if it were a branch of mathematics. Second, it is imag-
ined to be a theory defined over (for example) the numbers. Spe-
cifically, the marks on the tape of the paradigmatic Turing ma-
chine are viewed as representations— representations, in general,
or at least in the first instance, of numbers, functions, or other
Turing machines.

In almost exact contrast to the received view, I argue two things.
First, I claim that the theory of effective computability is funda-
mentally a theory about the physical nature of patches of the world.
In underlying character, I believe, it is no more “mathematical”
than anything else in physics— even if we use mathematical
structures to model that physical reality. Second—and this is sure
to be contentious—I argue that recursion theory is fundamentally
a theory of marks. More specifically, rather than taking the marks
on the tape to be representations of numbers, as has universally
been assumed in the theoretical tradition, I defend the following
claim:

C4. The representation relation for Turing machines, alleged to
run from marks to numbers, in fact runs the other way, from
numbers to marks. The truth is 180° off what we have all
been led to believe.

In the detailed analysis various kinds of evidence are cited in de-
fense of this non-standard claim. For example:

1. Unless one understands it this way, one can solve the halt-
ing problem;29

2. An analysis of history, through Turing’s paper and subse-
quent work, especially including the development of the

29See AOS: Volume III.

 1 · Foundations of Computing

 27

universal Turing machine, shows how and why the repre-
sentation relation was inadvertently turned upside down
in this way;

3. The analysis makes sense of a number of otherwise-
inexplicable practices, including, among other examples:
(i) the use of the word “semantics” in practicing computer
science to signify the behaviour engendered by running a
program,30 (ii) the rising popularity of such conceptual
tools as Girard’s linear logic, and (iii) the close association
between theoretical computer science and constructive
mathematics.

It follows from this analysis that all use of semantical vocabulary
in the “official” Theory of Computation is metatheoretic. As a re-
sult, the so-called (mathematical) “Theory of Computation” is not a
theory of intentional phenomena—in the sense that it is not a theory
that deals with its subject matter as an intentional phenomena.

In this way the layers of irony multiply. Whereas the FSM con-
strual fails to meet its own criterion, of being “defined independent
of semantics,” this second construal does meet (at least the concep-
tual reading of) that first-construal condition. Exactly in achiev-
ing that success, however, the recursion-theoretic tradition thereby
fails. For computation, as was said above, and as I am prepared to
argue, is (empirically) an intentional phenomenon. So the EC con-
strual achieves naturalistic palatability at the expense of being
about the wrong subject matter.

We are thus led inexorably to the following very strong conclu-
sion: what goes by the name “Theory of Computation” fails not be-
cause it makes false claims about computation, but because it is not
a theory of computation at all.31, 32

30See footnote 20.
31The fact that it is not a theory of computing does not entail that it does
not apply to computers, of course. All it means is that, in that application, it
is not a theory of them as computers.

32That the so-called theory of computation fails as a theory of computation
because it does not deal with computation’s intentionality is a result that
should be agreed even by someone (e.g., Searle) who believes that compu-
tation’s intentionality is inherently derivative. I myself do not believe that
computation’s intentionality is inherently derivative, as it happens, but even
those who think it is must admit that it is still an intentional phenomenon

28 Indiscrete Affairs · I

In sum, the longer analysis ultimately leads to a recommenda-
tion that we redraw a substantial portion of our intellectual map.
What has been (indeed, by most people still is) called a “Theory of
Computation” is in fact a general theory of the physical world—
specifically, a theory of how hard it is, and what is required, for
patches of the world in one physical configuration to change into
another physical configuration. It applies to all physical entities,
not just to computers. It is no more mathematical than the rest of
physics, in using (abstract) mathematical structures to model
(concrete) physical phenomena. Ultimately, therefore, it should be
joined with physics—because in a sense it is physics.

We can put this result more positively. Though falsely (and
misleadingly) labeled, the mathematical Theory of Computation
has been a spectacular achievement, of which the twentieth-
century should be proud. Indeed, this is important enough that
we can label it as the fifth major result:

C5. Though not yet so recognised, the mathematical theory
based on recursion theory, Turing machines, complexity
analyses, and the like—widely known as the “Theory of
Computation”—is neither more nor less than a mathematical
theory of causality.

 6 Method
Similarly strong conclusions can be arrived at by pursuing each of
the other construals. Indeed, the conclusion from the analysis of
the digital state machine construal (DSM)—that computation-in-
the-wild is not digital—is, if anything, even more consequential
than the results derived from either the FSM or the EC critiques.
Rather than go into more construals here, however, I instead want
to say a word about method—specifically, about formality. For a
potent theme underlies all seven critiques: that part of what has
blinded us to the true nature of computation has to do with the of-
ten pretheoretic assumption that computation and/or computers are
formal.

In one way or another, no matter what construal they pledge al-

of some sort. For derivative does not mean fake or false. If “derivatively in-
tentional” is not taken to be a substantive constraint, then we are owed
(e.g., by Searle) an account of what does characterise computation.

 1 · Foundations of Computing

 29

legiance to, just about everyone thinks that computers are for-
mal—that they manipulate symbols formally, that programs
(formally) specify formal procedures, that data structures are a
kind of formalism, that computational phenomena are uniquely
suited for analysis by formal methods—and so on. In fact the
computer is often viewed as the crowning achievement of an entire
“formal tradition”—an intellectual orientation, reaching back
through Galileo to Plato, that was epitomised in the twentieth
century in the logic and metamathematics of Frege, Russell,
Whitehead, Carnap, and Turing, among others.

This history would suggest that formality is an essential aspect
of computation. But since the outset, I have not believed that this is
necessarily right. For one thing, it has never been clear what the
allegiance to formality is an allegiance to. It is not as if “formal” is
a technical or theory-internal predicate, after all. People may be-
lieve that developing an idea means formalizing it, and that pro-
gramming languages are formal languages, and that theorem
provers operate on formal axioms— but few write “FORMAL(X)” in
their daily equations. Moreover, a raft of different meanings and
connotations of this problematic term lies just below the surface.
Far from hurting, this apparent ambiguity has helped to cement
popular consensus. Freed of the need to be strictly defined (‘formal’
is not a formal predicate), formality has been able to serve as a
lightning rod for a cluster of ontological assumptions, methodo-
logical commitments, and social and historical biases.

Because it remains tacit, cuts deep, has important historical
roots, and permeates practice, formality has been an ideal foil, over
the years, with which to investigate computation.

Almost a dozen different readings of “formal” can be gleaned
from informal usage: precise, abstract, syntactic, mathematical, ex-
plicit, digital, a-contextual, non-semantic, among others.33 They are
alike in foisting recalcitrant theoretical issues onto center stage.

33At one stage I asked a large number of people what they thought “formal”
meant—not just computer scientists, but also mathematicians, physicists,
sociologists, etc. It was clear from the replies that the term has very differ-
ent connotations in different fields. Some mathematicians and logicians,
for example, take it to be pejorative, in contrast to the majority of theoreti-
cal computer scientists, for whom it has an almost diametrically opposed
positive connotation.

30 Indiscrete Affairs · I

Consider explicitness, for example, of the sort that might explain
such a sentence as “for theoretical purposes we should lay out our
tacit assumptions in a formal representation.” Not only have im-
plicitness and explicitness stubbornly resisted theoretical analysis,
but both notions are parasitic on something else we do not under-
stand: general representation.34 Or consider “a-contextual.”
Where is an overall theory of context in terms of which to under-
stand what it would be to say of something (a logical representa-
tion, say) that it was not contextually dependent?

Considerations like this suggest that particular readings of
formality can be most helpfully pursued within the context of the
general theoretical edifices that have been constructed (more or
less explicitly) in their terms. Five are particularly important:

1. The antisemantical reading mentioned above: the idea that
a symbolic structure (representation, language, program,
symbol system, etc.) is formal just in case it is manipulated
independent of its semantics. Paradigmatic cases include so-
called formal logic, in which it is assumed that a theo-
rem—such as MORTAL(SOCRATES)— is derived by an
automatic inference regimen without regard to the refer-
ence, truth, or even meaning of any of its premises.

2. A closely allied grammatical or syntactic reading, illus-
trated in such a sentence as “inference rules are defined in
terms of the formal properties of expressions.” (Note that
whereas the antisemantical reading is negatively character-
ised, this syntactic one has a positive sense.)

3. A reading meaning something like determinate or well-
defined—that is, as ruling out all ambiguity and vague-
ness. This construal turns out to be related to a variant of
the computationally familiar notion of digitality or dis-
creteness.

34On its own, an eggplant cannot be either formal or explicit, at least not in
its ordinary culinary role, since in that role it is not a representation at all.
In fact the only way to make sense of calling something non-
representational explicit is as short-hand for saying that it is explicitly rep-
resented (e.g., calling eggplant an explicit ingredient of moussaka as a way of
saying that the recipe for moussaka mentions eggplant explicitly).

 1 · Foundations of Computing

 31

4. A construal of “formal” as essentially equivalent to mathe-
matical.

5. A reading that cross-cuts the other four: formality as ap-
plied to analyses or methods, perhaps with a derivative onto-
logical implication that some subject matters (including
computation?) are uniquely suited to such analytic tech-
niques.

The first two (antisemantical and syntactic) are often treated as
conceptually equivalent, but to do that is to assume that a system’s
syntactic and semantic properties are necessarily disjoint—which is
almost certainly false. The relationship between the third (deter-
minate) reading and digitality does not have so much to do with
what Haugeland (1982) calls “first-order digitality”: the ordinary
assumption that a system’s states can be partitioned into a deter-
minate set, such as that its future behaviour or essence stems solely
from membership in one element of that set, without any ambigu-
ity or matter of degree. Rather, vagueness and indefiniteness (as
opposed to simple continuity) are excluded by a second-order form
of digitality—digitality at the level of concepts or types, in the
sense of there being a binary “yes/no” fact of the matter about
whether any given situation falls under (or is correctly classified
in terms of) the given concept. And finally, the fourth view—that
to be formal has something to do with being mathematical, or at
least with being mathematically characterizable—occupies some-
thing of an ontological middle-realm between the subject-matter
orientation of the first three and the methodological orientation of
the fifth.

The ultimate moral for computer and cognitive science, I argue,
is similar to the claim made earlier about the seven construals: not
one of these readings of ‘formal’ correctly applies to the computational
case. It can never be absolutely proved that computation is not for-
mal, of course, given that the notion of formality is not determi-
nately tied down. What I am prepared to argue (and do argue in
the full analysis) is the following: no standard construal of for-
mality, including any of those enumerated above, is both (i) sub-
stantive and (ii) true of extant computational practice. Some read-
ings reduce to vacuity, or to no more than physical realizability;
others break down in internal contradiction; others survive the

32 Indiscrete Affairs · I

test of being substantial, but are demonstrably false of current sys-
tems. In the end, one is forced to a sixth major conclusion:

C6. Computation is not formal.

It is an incredible historical irony: the computer, darling child of
the formal tradition, has outstripped the bounds of the very tradi-
tion that gave rise to it.

 7 The Ontological Wall
Where does all this leave us? It begins to change the character of
the project. It is perhaps best described in personal terms. Over
time, investigations of the sort described above, and consideration
of the conclusions reached through them, convinced me that none
of the reigning theories or construals of computation, nor any of
the reigning methodological attitudes towards computation, will
ever lead to an analysis strong enough to meet the three criteria
laid down at the outset.

It wasn’t always that way. For the first twenty years of the inves-
tigation I remained:

1. In awe of the depth, texture, scope, pluck, and impact of
computational practice;

2. Critical of the inadequate state of the current theoretical
art;

3. Convinced that a formal methodological stance stood in
the way of getting to the heart of the computational ques-
tion; and

4. Sure in my belief that what was needed, above all else, was a
non-formal—i.e., situated, embodied, embedded, indexical,
critical, reflexive, all sorts of other things (it changed, over
the years)—theory of representation and semantics, in
terms of which to reconstruct an adequate conception of
computing.

In line with this metatheoretic attitude, as the discussion this far
will have suggested, I kept semantical and representational issues
in primary theoretical focus. Since, as indicated in the last section,
the official “Theory of Computation,” derived from recursion and

 1 · Foundations of Computing

 33

complexity theory, pays no attention to such intentional problems,
to strike even this much of a semantical stance was to part com-
pany with the center of gravity of the received theoretical tradition.

You might think that this would be conclusion enough. And
yet, in spite of the importance and magnitude of these intentional
difficulties, and in spite of the detailed conclusions suggested
above, I have gradually come to believe something much more so-
bering: a conclusion that, although not as precisely stated as the
foregoing, is if anything even more consequential:

C7. The most serious problems standing in the way of develop-
ing an adequate theory of computation are as much ontologi-
cal as semantical.

It is not that computation’s semantic problems go away; they re-
main as challenging as ever. It is just that they are joined—on cen-
ter stage, as it were— by even more demanding problems of ontol-
ogy.

Except that to say “joined” is misleading, as if it were a matter of
simple addition—as if now there were two problems on the table,
whereas before there had been just one. No such luck. The two is-
sues (representation and ontology) are inextricably entangled—a
fact of obstinate theoretical and metatheoretical consequence.

A methodological consequence will illustrate the problem. Es-
pecially within the analytic tradition (by which I mean to include
not just analytic philosophy, e.g., of language and mind, but most
of modern science as well, complete with its formal/mathematical
methods), it is traditional to analyse semantical or intentional
systems, such as computers or people, under the following presup-
position: (i) that one can parse or register the relevant theoretical
situation in advance into a set of objects, properties, types, rela-
tions, equivalence classes, and so on (e.g., into people, heads, sen-
tences, data structures, real-world referents, etc.)—as if this were
theoretically innocuous—and then (ii), with that ontological
parse in hand, go on to proclaim this or that or the other thing as
an empirically justified result. Thus for example one might de-
scribe a mail-delivering robot by first describing an environment
of offices, hallways, people, staircases, litter, and the like, through
which the robot is supposed to navigate, and then, taking this
characterization of its context as given, ask how or whether the

34 Indiscrete Affairs · I

creature represents routes, say, or offices, or the location of mail
delivery stations.

If one adopts a reflexively critical point of view, however, as I
have systematically been led to do (and as is mandated by the
cognitive criterion), one is led inexorably to the following conclu-
sion: that, in that allegedly innocent pretheoretical “set-up” stage,
one is liable, even if unwittingly, to project so many presupposi-
tions, biases, and advance “clues” about the “answer,” and in gen-
eral to so thoroughly prefigure the target situation, without either
apparent or genuine justification, that one cannot, or at least should
not, take any of the subsequent “analysis” terribly seriously. It is a
general problem that I have elsewhere labelled preemptive registra-
tion.35 It is problematic not just because it rejects standard analy-
ses, but because it seems to shut all inquiry down. What else can
one do, after all? How can one not parse the situation in advance
(since it will hardly do to merely whistle and walk away)? And if,
undaunted, one were to go ahead and parse it anyway, what kind
of story could possibly serve as a justification? It seems that any
conceivable form of defense would devolve into another instance of
the same problem.

In sum, the experience is less one of facing an ontological chal-
lenge than of running up against a seemingly insuperable onto-
logical wall. Perhaps not of slamming into it, at least in my own
case; recognition dawned slowly. But neither is the encounter ex-
actly gentle. It is difficult to exaggerate the sense of frustration that
can come, once the conceptual fog begins to clear, from seeing one’s
theoretical progress blocked by what seems for all the world to be
an insurmountable metaphysical obstacle.

Like many of the prior claims I have made, such as that all ex-
tant theories of computation are inadequate to reconstruct prac-
tice, or that no adequate conception of computing is formal, this
last claim, that theoretical progress is stymied for lack of an ade-
quate theory of ontology, is a strong statement, in need of corre-
spondingly strong defense. Providing that defense is one of the
main goals of AOS. In my judgment, to make it perfectly plain, de-
spite the progress that has been made so far, and despite the rec-
ommended adjustments reached in the course of the seven specific

35Smith (in press).

 1 · Foundations of Computing

 35

analyses enumerated above, we are not going to get to the heart of
computation, representation, cognition, information, semantics, or
intentionality, until the ontological wall is scaled, penetrated,
dismantled, or in some other way defused.

One reaction to the wall might be depression. Fortunately,
however, the prospects are not so bleak. For starters, there is some
solace in company. It is perfectly evident, once one raises one’s
head from the specifically computational situation and looks
around, that computer scientists, cognitive scientists, and artificial
intelligence researchers are not the only ones running up against
severe ontological challenges. Similar conclusions are being re-
ported from many other quarters. The words are different, and the
perspectives complementary, but the underlying phenomena are
the same.

Perhaps the most obvious fellow travelers are literary critics, an-
thropologists, and other social theorists, vexed by what analytic
categories to use in understanding people or cultures that, by such
writers’ own admission, comprehend and constitute the world us-
ing concepts alien to the theorists’ own. What makes the problem
particularly obvious, in these cases, is the potential for conceptual
clash between theorist’s and subject’s world view—a clash that can
easily seem paralyzing. One’s own categories are hard to justify,
and reek of imperialism; it is at best presumptuous, and at worst
impossible, to try to adopt the categories of one’s subjects; and it is
manifestly impossible to work with no concepts at all. So it is un-
clear how, or even whether, to proceed.

But conceptual clash, at least outright conceptual clash, is not
the only form in which the ontological problem presents itself.
Consider the burgeoning interest in self-organizing and complex
systems mentioned earlier, currently coalescing in a somewhat
renegade subdiscipline at the intersection of dynamics, theoretical
biology, and artificial life. This community debates the “emer-
gence of organization,” the units on which selection operates, the
structure of self-organizing systems, the smoothness or roughness
of fitness landscapes, and the like. In spite of being disciplinarily
constituting, however, these discussions are conducted in the ab-
sence of adequate theories of what organization is, of what a “unit”
consist in, of how “entities” arise (as opposed to how they survive),
of how it is determined what predicates should figure in charac-

36 Indiscrete Affairs · I

terizing a fitness landscape as rough or smooth, and so on. The
ontological lack is to some extent recognised in increasingly vocal
calls for “theories of organization.”36 But the calls have not yet
been answered.

Ontological problems have also plagued physics for years, at
least since foundational issues of interpretation were thrown into
relief by the developments of relativity and quantum mechanics
(including the perplexing wave-particle duality, and the distinc-
tion between “classical” and “quantum” world-views). They face
connectionist psychologists, who, proud of having developed ar-
chitectures that do not rely on the manipulation of formal symbol
structures encoding high-level concepts, and thus of having
thereby rejected propositional content, are nevertheless at a loss as
to say what their architectures do represent. And then of course
there are communities that tackle ontological questions directly:
not just philosophy, but fields as far-flung as poetry and art,
where attempts to get in, around, and under objects have been pur-
sued for centuries.

So there are fellow-travelers. But no one, so far as I know, has
developed an alternative ontological/metaphysical proposal in
sufficient detail and depth to serve as a practicable foundational
for a revitalised scientific practice. Unlike some arguments for re-
alism or irrealism, unlike some briefs pro or con this or that phi-
losophy of science, and unlike as well the deliberations of science
studies and other anthropological and sociological and historical
treatises about science, the task I have in mind is not the increas-
ingly common meta-metaphysical one—of arguing for or against
a way of proceeding, if one were ever to proceed, or arguing that
science proceeds in this or that way. Rather, the concrete demand
is for a detailed, worked-out account—an account that “goes the
distance,” in terms of which accounts of particular systems can be
formulated, and real-world construction proceed.

For this purpose, with respect to the job of developing an alter-
native metaphysics, the computational realm has unparalleled ad-
vantage. Midway between matter and mind, computation stands
in excellent stead as a supply of concrete cases of middling com-
plexity—what in computer science is called an appropriate “vali-

36A theory of organization is simply metaphysics with a business plan.

 1 · Foundations of Computing

 37

dation suite”—against which to test the mettle of specific meta-
physical hypotheses. “Middling” in the sense of neither being so
simple as to invite caricature, nor so complex as to defy compre-
hension. It is the development of a laboratory of this middling
sort, half-way between the frictionless pucks and inclined planes
of classical mechanics and the full-blooded richness of the human
condition, that makes computing such an incredibly important
stepping-stone in intellectual history.

Crucially, too, computational examples are examples with
which we are as much practically as theoretically familiar (we
build systems better than we understand them). Indeed—and by
no means insignificantly—there are many famous divides with
respect to which computing sits squarely in the middle.

 8 Summary
Thus the ante is upped one more time. Not only must an adequate
account of computation (any account that meets the three criteria
with which we started) include a theory of semantics; it must also
include a theory of ontology. Not just intentionality is at stake, in
other words; so is metaphysics. But still we are not done. For on
top of the foregoing strong conclusions lies an eighth one—if any-
thing even stronger:

C8. Computation is not a subject matter

In spite of everything I said about a comprehensive, empirical, con-
ceptually founded “theory of computing,” that is, and in spite of
everything I myself have thought for decades, I no longer believe
that there is a distinct ontological category of computing or com-
putation, one that will be the subject matter of a deep and explana-
tory and intellectually satisfying theory. Close and sustained
analysis, that is, suggests that the things that Silicon Valley calls
computers, the things that perforce are computers, do not form a
coherent intellectually delimited class. Computers turn out in the
end to be rather like cars: objects of inestimable social and political
and economic and personal importance, but not in and of them-
selves, qua themselves, the focus of enduring scientific or intellec-
tual inquiry—not, as philosophers would say, a natural kind.

Needless to say, this is another extremely strong claim—one
over which some readers may be tempted to rise up in arms. At the

38 Indiscrete Affairs · I

very least, it is easy to feel massively let down, after all this work.
For if I am right, it is not just that we currently have no satisfying
intellectually productive theory of computing, of the sort I initially
set out to find. Nor is it just that, through this whole analysis, I
have failed to provide one. It is the even stronger conclusion that
such projects will always fail; we will never have such a theory. So
all the previous conclusions must be revised. It is not just that a
theory of computation will not supply a theory of semantics, for ex-
ample, as Newell has suggested; or that it will not replace a theory
of semantics; or even that it will not depend or rest on a theory of
semantics, as intimated at the end of section 4. It will do none of
these things because there will be no theory of computation at all.

Given the weight that has been rested on the notion of computa-
tion—not just by me, or by computer science, or even by cognitive
science, but by the vast majority of the surrounding intellectual
landscape—this (like the previous conclusion about ontology)
might seem like a negative result. (Among other things, you might
conclude I had spent these thirty years in vain.) But in fact there is
no cause for grief; for the negativity of the judgment is only super-
ficial, and in fact almost wholly misleading. In fact I believe some-
thing almost wholly opposite, which we can label as a (final) con-
clusion in its own right:

C9. The superficially negative conclusion (that computing is not
a subject matter) makes the twentieth-century arrival of com-
putation onto the intellectual scene a vastly more interesting
and important phenomenon than it would otherwise have been.

On reflection, it emerges that the fact that neither computing nor
computation will sustain the development of a theory is by far the
most exciting and triumphal conclusion that the computer and
cognitive sciences could possibly hope for.

Why so? Because I am not saying that computation-in-the-
wild is intrinsically a-theoretical— and thus that there will be no
theory of these machines, at all, when day is done. Rather, the
claim is that such theory as there is—and I take it that there re-
mains a good chance of such a thing, as much as in any domain of
human activity—will not be a theory of computation or computing.
It will not be a theory of computation because computers per se, as I
have said, do not constitute a distinct, delineated subject matter.

 1 · Foundations of Computing

 39

Rather, what computers are, I now believe—and what the consid-
erable and impressive body of practice associated with them
amounts to—is neither more nor less than the full-fledged social
construction37 and development of intentional artifacts. That means
that the range of experience and skills and theories and results
that have been developed within computer science—astoundingly
complex and far-reaching, if still inadequately articulated—is
best understood as practical, synthetic, raw material for no less
than full theories of causation, semantics, and ontology—that is,
for metaphysics full bore.

Where does that leave things? Substantively, it leads inexora-
bly to the conclusion that metaphysics, ontology, epistemology,
and intentionality are the only integral intellectual subject matters
in the vicinity of either computer or cognitive science. Methodol-
ogically, it means that our experience with constructing computa-
tional (i.e., intentional) systems may open a window onto some-
thing to which we would not otherwise have any access: the
chance to witness, with our own eyes, how intentional capacities
can arise in a “merely” physical mechanism.

It is sobering, in retrospect, to realise that our preoccupation with
the fact that computers are computational has been the major theo-
retical block in the way of our understanding how important
computers are. They are computational, of course; that much is
tautological. But only when we let go of the conceit that that fact is
theoretically important—only when we let go of the “c-word”—will
we finally be able to see, without distraction, and thereby, perhaps,
at least partially to understand, how a structured lump of clay can
sit up and think.

And so that, for a decade or so, has been my project: to take,
from the ashes of computational critique, enough positive morals
to serve as the inspiration, basis, and testing ground for an en-
tirely new metaphysics. A story of subjects, a story of objects, a
story of reference, a story of history.

For sheer ambition, physics does not hold a candle to computer
or cognitive—or rather, as we should now call it, in order to rec-
ognise that we are dealing with something on the scale of natural
science—epistemic or intentional science. Hawking (1988) and
Weinberg (1994) are wrong. It is we, not the physicists, who must
develop a theory of everything.

40 Indiscrete Affairs · I

 References
Agre, Philip E. (1996), Computation and Human Experience, Cambridge

University Press.
Barwise, Jon & Perry, John (1983): Situations and Attitudes. Cambridge,

Mass.: MIT Press.37
Devitt, Michael (1991), “Why Fodor Can’t Have It Both Ways,” in Loewer,

Barry and Rey, Georges (eds.), Meaning in Mind: Fodor and His Critics,
Oxford: Basil Blackwell, pp. 95–118.

Dretske, Fred I. (1981): Knowledge and the Flow of Information, Cambridge,
Mass.: MIT Press.

Dreyfus, Herbert (1992), What Computers Still Can’t Do Cambridge,
Mass.: MIT Press.

Fodor, Jerry A. (1975), The Language of Thought, Cambridge, Mass.: Har-
vard University Press.

——— (1980), “Methodological Solipsism Considered as a Research Strat-
egy in Cognitive Psychology,” Behavioral and Brain Sciences, Vol. 3, No. 1;
March 1980, 63–73. Reprinted in Fodor, Jerry: Representations, Cam-
bridge, ma.: MIT Press, 1981.

——— (1984), “Semantics, Wisconsin Style,” Synthese, Vol. 59, pp. 231–
250.

——— (1987), Psychosemantics, Cambridge: MIT Press.
Halpern, Joe (1987): “Using Reasoning about Knowledge to Analyze Dis-

tributed Systems,” Annual Review of Computer Science, Vol. 2, pp. 37–68.
Harnad, Stevan, (1990) “The Symbol Grounding Problem,” Physica D Vol.

42, pp. 335–346.
——— (1991), “Other Bodies, Other Minds: A Machine Reincarnation of

an Old Philosophical Problem,” Minds and Machines 1, pp. 43–54.
Haugeland, J. (1978), “The Nature and Plausibility of Cognitivism.” Behav-

ioral and Brain Sciences 1:215–26.
——— (1982), “Analog and Analog,” Philosophical Topics (Spring 1981);

reprinted in J. I. Biro & Robert W. Shahan, eds., Mind, Brain, and Func-
tion: Essays in the Philosophy of Mind, Norman, Oklahoma: University of
Oklahoma Press (1982), pp. 213–225.

Hawking, Stephen W. (1988) A Brief History of Time, Toronto: Bantam
Books.

Hutchins, Ed (1995), Cognition in the Wild, Cambridge, Mass: MIT Press.
Millikan, Ruth (1984), Language, Thought, and Other Biological Categories,

Cambridge, Mass.: MIT Press.
——— (1989), “Biosemantics,” Journal of Philosophy lxxxvi:6, June 1989

pp. 281–297.
——— (1990), “Compare and Contrast Dretske, Fodor, and Millikan on

Teleosemantics,” Philosophical Topics 18:2, Fall 1990, pp. 151–161.

37Social construction not as the label for a metaphysical stance, but in the
literal sense that we build them.

 1 · Foundations of Computing

 41

Newell, Alan and Simon, Herbert A. (1976): “Computer Science as Empiri-
cal Inquiry: Symbols and Search,” Communications of the Association for
Computing Machinery, vol. 19 (March 1976), No. 3, pp. 113–126. Re-
printed in John Haugeland, ed., Mind Design, Cambridge, Mass: MIT
Press (1981), pp. 35–66.

Searle, John (1980): “Minds, Brains, and Programs,” Behavioral and Brain
Sciences, Vol. 3, No. 3, Sept. 1980, pp. 417–458.

Shannon, Claude E. & Weaver, Warren (1949), The Mathematical Theory
of Communication, Urbana, Illinois: The University of Illinois Press.

Smith, Brian Cantwell (1996), On the Origin of Objects, Cambridge, Mass:
MIT Press.

——— (in press), Reply to Dan Dennett. Hugh Clapin (ed.), Philosophers of
Mental Representation, Oxford University Press, forthcoming 2002.

——— (forthcoming), The Age of Significance: Volumes i–vii.
van Gelder, T. (1996), Dynamics and Cognition, in John Haugeland (ed.

1996), 421–450. Loosely based on “What Might Cognition Be, if not
Computation?” Journal of Philosophy, 91, 345–381

Weinberg, S. (1994), Dreams of a Final Theory, Vintage Books.

42 Indiscrete Affairs · I

— Were this page been blank, that would have been unintentional —

 43

B · Reflection

44 Indiscrete Affairs · I

— Were this page been blank, that would have been unintentional —

Procedural Reflection in Programming Languages
†

2a — Abstracts, Preface, and Prologue

 1 Abstract
We show how a computational system can be constructed to “rea-
son,” effectively and consequentially, about its own inferential
processes.a The analysis proceeds in two parts. First, we consider
the general question of computational semantics, rejecting tradi-
tional approaches, and arguing that the declarative and procedural
aspects of computational symbols (what they stand for, and what
behaviour they engender) should be analysed independently, in
order that they may be coherently related. Second, we investigate
self-referential behaviour in computational processes, and show
how to embed an effective procedural model of a computational
calculus within that calculus (a model not unlike a meta-circular
interpreter, but connected to the fundamental operations of the
machine in such a way as to provide, at any point in a computa-
tion, fully articulated descriptions of the state of that computation,
for inspection and possible modification). In terms of the theories
that result from these investigations, we present a general architec-
ture for procedurally reflective processes, able to shift smoothly
between dealing with a given subject domain, and dealing with
their own reasoning processes over that domain.

An instance of the general solution is worked out in the context
of an applicative language. Specifically, we present three successive

†”Prologue”, Brian Cantwell Smith, Procedural Reflection in Programming
Languages, doctoral dissertation submitted Jan 25, 1982 in the Laboratory
for Computer Science, Dept. of Electrical Engineering and Computer Sci-
ence, Massachusetts Institute of Technology (MIT), Cambridge, MA. Re-
printed as Technical Report MIT-LCS-TR-272, Laboratory for Computer
Science, MIT, Cambridge, MA, 1982. Available at:
 http://publications.csail.mit.edu/lcs/specpub.php?id=840

aNote: footnotes to the original versions of these Abstracts, the Preface,
and the Prologue are numbered sequentially (1–14); footnotes added for
this publication are identified by letter (a–m).

46 Indiscrete Affairs · I

dialects of Lisp: 1-Lisp, a distillation of current practice, for com-
parison purposes; 2-Lisp, a dialect constructed in terms of our ra-
tionalised semantics, in which the concept of evaluation is rejected
in favour of independent notions of simplification and reference,
and in which the respective categories of notation, structure, se-
mantics, and behaviour arc strictly aligned; and 3-Lisp, an exten-
sion of 2-Lisp endowed with reflective powers.

 2 Extended Abstract
We show how a computational system can be constructed to “rea-
son” effectively and consequentially about its own inference proc-
esses. Our approach is to analyse self-referential behaviour in com-
putational systems, and to propose a theory of procedural reflec-
tion that enables any programming language to be extended in
such a way as to support programs able to access and manipulate
structural descriptions of their own operations and structures. In
particular, one must encode an explicit theory of such a system
within the structures of the system, and then connect that theory
to the fundamental operations of the system in such a way as to
support three primitive behaviours. First, at any point in the course
of a computation, fully articulated descriptions of the state of the
reasoning process must be available for inspection and modifica-
tion. Second, it must be possible at any point to resume an arbi-
trary computation in accord with such (possibly modified) the-
ory-relative descriptions. Third, procedures that reason with de-
scriptions of the processor state must themselves be subject to de-
scription and review, to arbitrary depth. Such reflective abilities
allow a process to shift smoothly between dealing with a given
subject domain, and dealing with its own reasoning processes over
that domain.

Crucial in the development of this theory is a comparison of the
respective semantics of programming languages (such as Lisp and
Algol) and declarative languages (such as logic and the l-
calculus); we argue that unifying these traditionally separate dis-
ciplines clarifies both, and suggests a simple and natural ap-
proach to the question of procedural reflection. More specifically,
the semantical analysis of computational systems should comprise
independent formulations of declarative import (what symbols
stand for) and procedural consequence (what effects and results

 Procedural Reflection · Prologue

 PR · 47

are engendered by processing them), although the two semantical
treatments may, because of side-effect interactions, have to be for-
mulated in conjunction. When this approach is applied to a func-
tional language it is shown that the traditional notion of evalua-
tion is confusing and confused, and must be rejected in favour of
independent notions of reference and simplification. In addition,
we defend a standard of category alignment: there should be a
systematic correspondence between the respective categories of no-
tation, abstract structure, declarative semantics, and procedural
consequence (a mandate satisfied by no extant procedural formal-
ism). It is shown how a clarification of these prior semantical and
aesthetic issues enables a procedurally reflective dialect to be
clearly defined and readily constructed.

An instance of the general solution is worked out in the context
of an applicative language, where the question reduces to one of
defining an interpreted calculus able to inspect and affect its own
interpretation. In particular, we consider three successive dialects
of Lisp: 1-Lisp, a distillation of current practice for comparison
purposes; 2-Lisp, a dialect categorically and semantically rational-
ised with respect to an explicit theory of declarative semantics for s-
expressions; and 3-Lisp, a derivative of 2-Lisp endowed with full
reflective powers. 1-Lisp, like all Lisp dialects in current use, is at
heart a first-order language, employing meta-syntactic facilities
and dynamic variable scoping protocols to partially mimic higher-
order functionality. 2-Lisp like Scheme and the l-calculus, is
higher-order: it supports arbitrary function designators in argu-
ment position, is lexically scoped, and treats the function position
of an application in a standard extensional manner. Unlike
Scheme, however, the 2-Lisp processor is based on a regimen of
normalisation, taking each expression into a normal-form co-
designator of its referent, where the notion of normal-form is in
part defined with respect to that referent’s semantic type, not (as in
the case of the l-calculus) solely in terms of the further non-
applicability of a set of syntactic reduction rules. 2-Lisp normal-
form designators are environment-independent and side-effect
free; thus the concept of a closure can be reconstructed as a normal-
form function designator. In addition, since normalisation is a
form of simplification, and is therefore designation-preserving,
meta-structural expressions are not de-referenced upon normali-

48 Indiscrete Affairs · I

sation, as they are when evaluated. Thus we say that the 2-Lisp
processor is semantically flat, since it stays at a semantically fixed
level (although explicit referencing and de-referencing primitives
are also provided, to facilitate explicit level shifts). Finally, because
of its category alignment, argument objectification (the ability to
apply functions to a sequence of arguments designated collectively
by a single term) can be treated in the 2-Lisp base-level language,
without requiring resort to meta-structural machinery.

3-Lisp is straightforwardly defined as an extension of 2-Lisp,
with respect to an explicitly articulated procedural theory of 3-
Lisp embedded in 3-Lisp structures. This embedded theory, called
the reflective model, though superficially resembling a meta-
circular interpreter, is causally connected to the workings of the
underlying calculus in crucial and primitive ways. Specifically, re-
flective procedures are supported that bind as arguments (designa-
tors of) the continuation and environment structure of the proces-
sor that would have been in effect at the moment the reflective pro-
cedure was called, had the machine been running all along in virtue
of the explicit processing of that reflective model.a Because reflection
may recurse arbitrarily, 3-Lisp is most simply defined as an infi-
nite tower of 3-Lisp processes, each engendering the process im-
mediately below it. Under such an account, the use of reflective
procedures amounts to running programs at arbitrary levels in
this reflective hierarchy. Both a straightforward implementation
and a conceptual analysis are provided to demonstrate that such a
machine is nevertheless finite.

The 3-Lisp reflective model unifies three programming lan-
guage concepts that have formerly been viewed as independent:
meta-circular interpreters, explicit names for the primitive inter-
pretive procedures (EVAL and APPLY in standard Lisp dialects), and
procedures that access the state of the implementation (typically
provided, as part of a programming environment, for debugging
purposes). We show how all such behaviours can be defined
within a pure version of 3-Lisp (i.e., independent of implementa-
tion), since all aspects of the state of any 3-Lisp process are avail-
able, with sufficient reflection, as objectified entities within the 3-
Lisp structural field.

aEmphasis added.

 Procedural Reflection · Prologue

 PR · 49

 3 Preface
The possibility of constructing a reflective calculus first struck me
in June 1976, at the Xerox Palo Alto Research Center (PARC),
where I was spending a summer working with the KRL representa-
tion language of Bobrow and Winograd.1 As an exercise to learn
the new language, I had embarked on the project cf representing
KRL in KRL; it seemed to me that this “double-barreled” approach,
in which I would have both to use and to mention the language,
would be a particularly efficient way to unravel its intricacies.
Though that exercise was ultimately abandoned, I stayed with it
long enough to become intrigued by the thought that one might
build a system that was self-descriptive in an important way (cer-
tainly in a way in which my KRL project was not). More specifi-
cally, I could dimly envisage a computational system in which
what happened took effect in virtue of declarative descriptions of
what was to happen, and in which the internal structural condi-
tions were represented in declarative descriptions of those internal
structural conditions. In such a system a program could with
equal ease access all the basic operations and structures either di-
rectly or in terms of completely (and automatically) articulated
descriptions of them. The idea seemed to me rather simple (as it
still does); furthermore, for a variety of reasons I thought that
such a reflective calculus could itself be rather simple—in some
important ways simpler than a non-reflective formalism (this too I
still believe). Designing such a formalism, however, no longer seems
as straightforward as I thought at the time; this dissertation
should be viewed as the first report emerging from the research
project that ensued.

Most of the five years since 1976 have been devoted to initial
versions of my specification of such a language, called Mantiq,
based on these original hunches.b As mentioned in the first para-
graph of chapter 1, there are various non-trivial goals that must be
met by the designer of any such formalism, including at least a
tentative solution to the knowledge representation problem. Fur-
thermore, in the course of its development, MANTIQ has come to

1‘KRL’ for ‘Knowledge Representation Language; see Bobrow and Wi-
nograd (1977) and Bobrow et al. (1977).

b«Say something about the provenance of the name, and the fate of the pro-
ject.»

50 Indiscrete Affairs · I

rest on some additional hypotheses above and beyond those men-
tioned above (including, for example, a sense that it will be possi-
ble within a computational setting to construct a formalism in
which syntactic identity and intensional identity can be identi-
fied, given some appropriate, but independently specified, theory of
intensionalityc). Probably the major portion of my attention to
date has focused on these intensional aspects of the MANTIQ ar-
chitecture.

It was clear from the outset that no dialect of Lisp (or of any
other purely procedural calculus) could serve as a full reflective
formalism; purely declarative languages like logic or the l-
calculus were dismissed for similar reasons.d In February of 1981,
however, I decided that it would be worth focusing on Lisp, by way
of an example, in order to work out the details of a specific subset
of the issues with which MANTIQ would have to contend. In par-
ticular, I recognised that many of the questions of reflection could
be profitably studied in a (limited) procedural dialect, in ways
that would ultimately illuminate the larger programme. Further-
more, to the extent that Lisp could serve as a theoretical vehicle, it
seemed a good project; it would be much easier to develop, and
even more so to communicate, solutions in a formalism at least
partially understood.

The time from the original decision to look at procedural reflec-
tion (and its concomitant emphasis on semantics—I realised from
investigations of MANTIQ that semantics would come to the fore in
all aspects of the overall enterprise), to a working implementation
of 3-Lisp, was only a few weeks. Articulating why 3-Lisp was the
way it was, however—i.e., formulating in plain English the con-
cepts and categories on which the design was founded—required
quite intensive work for the remainder of the year. A first draft of
the dissertation was completed at the end of December 1981; the
implementation remained essentially unchanged during the
course of this writing (the only substantive alteration was the idea

c«Give an example of what this meant and means, why it is important, what
it would require [[substantial relaxation algorithms]], why it has not yet
been achieved, why it is still something worth pursuing, etc. May need to
explain what ‘intensionality’ means.»

d«Refer to—and perhaps include, if I still have it?—the reflective l-calculus
that I subsequently defined [[for Barwise]]»

 Procedural Reflection · Prologue

 PR · 51

of treating recursion in terms of explicit Y-operators). Thus—and
I suspect there is nothing unusual in this experience—
formulating an idea required approximately ten times more work
than embodying it in a machine; perhaps more surprisingly, all of
that effort in formulation occurred after the implementation was
complete, [and led to no revisions in the basic design]. We some-
times hear that writing computer programs is intellectually hygi-
enic because it requires that we make our ideas completely explicit.
I have come to disagree rather fundamentally with this view. Cer-
tainly writing a program does not force one to one make one’s
ideas articulate, although it is a useful first step. More seriously,
however, it is often the case that the organising principles and
fundamental insights contributing to the coherence of a program
are not explicitly encoded within the structures comprising that
program. The theory of declarative semantics embodied in 3-Lisp,
for example, was initially tacit—a fact perhaps to be expected, since
only procedural consequence is explicitly encoded in an imple-
mentation. Curiously, this is one of the reasons that building a
fully reflective formalism (as opposed to the limited procedurally
reflective languages considered here) is difficult: in order to build
a general reflective calculus, one must embed within it a fully ar-
ticulated theory of one’s understanding of it. This will take some
time.

52 Indiscrete Affairs · I

 4 Prologue
It is a striking fact about human cognition that we can think not
only about the world around us, but also about our ideas, our ac-
tions, our feelings, our past experience. This ability to reflect lies
behind much of the subtlety and flexibility with which we deal
with the world; it is an essential part of mastering new skills, of re-
acting to unexpected circumstances, of short-range and long-
range planning, of recovering from mistakes, of extrapolating from
past experience, and so on and so forth. Reflective thinking char-
acterises mundane practical matters and delicate theoretical dis-
tinctions. We have all paused to review past circumstances, such
as conversations with guests or strangers, to consider the appro-
priateness of our behaviour. We can remember times when we
stopped and consciously decided to consider a set of options, say
when confronted with a fire or other emergency. We understand
when someone tells us to believe everything a friend tells us, unless
we know otherwise. In the course of philosophical discussion we
can agree to distinguish views we believe to be true from those we
have no reason to believe are false. In all these cases the subject
matter of our contemplation at the moment of reflection includes
our remembered experience, our private thoughts, and our reason-
ing patterns.

The power and universality of reflective thinking has caught
the attention of the cognitive science community—indeed, once
alerted to this aspect of human behaviour, theorists find evidence
of it almost everywhere. Though no one can yet say just what it
comes to, crucial ingredients would seem to be the ability to recall
memories of a world experienced in the past and of one’s own par-
ticipation in that world, the ability to think about a phenomenal
world, hypothetical or actual, that is not currently being experi-
enced (an ability presumably mediated by our knowledge and be-
lief), and a certain kind of true self-reference: the ability to con-
sider both one’s actions and the workings of one’s own mind. This
last aspect—the self-referential aspect of reflective thought—has
sparked particular interest for cognitive theorists, both in psychol-
ogy (under the label meta-cognition) and in artificial intelligence
(in the design of computational systems possessing inchoate re-
flective powers, particularly as evidenced in a collection of ideas

 Procedural Reflection · Prologue

 PR · 53

loosely allied in their use of the term “meta”: meta-level rules,
meta-descriptions, and so forth).

In artificial intelligence, the focus on computational forms of
self-referential reflective reasoning has become particnlarly cen-
tral. Although the task of endowing computational systems with
subtlety and flexibility has proved difficult, we have had some suc-
cess in developing systems with a moderate grasp of certain do-
mains: electronics, bacteremia, simple mechanical systems, etc.
One of the most recalcitrant problems, however, has been that of
developing flexibility and modularity (in some cases even simple
effectiveness) in the reasoning processes that use this world
knowledge. Though it has been possible to construct programs
that perform a specific kind of reasoning task (say, checking a cir-
cuit or parsing a subset of natural language syntax), there has
been less success in simulating “common sense,” or in developing
programs able to figure out what to do, and how to do it, in either
general or novel situations. If the course of reasoning—if the
problem solving strategies and the hypothesis formation behav-
iour—could itself be treated as a valid subject domain in its own
right, then (at least so the idea goes) it might be possible to con-
struct systems that manifested the same modularity about their
own thought processes that they manifest about their primary
subject domains. A simple example might be an electronics “expert”
able to choose an appropriate method of tackling a particular cir-
cuit, depending on a variety of questions about the relationship
between its own capacities and the problem at hand: whether the
task was primarily one of design or analysis or repair, what strate-
gies and skills it knew it had in such areas, how confident it was
in the relevance of specific approaches based on, say, the complex-
ity of the circuit, or on how similar it looked compared with cir-
cuits it already knew. Expert human problem-solvers clearly dem-
onstrate such reflective abilities, and it appears more and more cer-
tain that powerful computational problem solvers will have to pos-
sess them as well.

No one would expect potent skills to arise automatically in a re-
flective system; the mere ability to reason about the reasoning proc-
ess will not magically yield systems able to reflect in powerful and
flexible ways. On the other hand, the demonstration of such an
ability is clearly a pre-requisite to its effective utilisation. Further-

54 Indiscrete Affairs · I

more, many reasons are advanced in support of reflection, as well
as the primary one (the hope of building a system able to decide
how to structure the pattern of its own reasoning). It has been ar-
gued, for example, that it would be easier to construct powerful
systems in the first place (it would seem you could almost tell them
how to think), to interact with them when they fail, to trust them if
they could report on how they arrive at their decisions, to give
them “advice” about how to improve or discriminate, as well as to
provide them with their own strategies for reacting to their history
and experience.

There is even, as part of the general excitement, a tentative sug-
gestion on how such a self-referential reflective process might be
constructed. This suggestion—nowhere argued but clearly in
evidence in several recent proposals—is a particular instance of a
general hypothesis, adopted by most A.I. researchers, that we will
call the Knowledge Representation Hypothesis. It is widely
held in computational circles that any process capable of reason-
ing intelligently about the world must consist in part of a field of
structures, of a roughly linguistic sort, which in some fashion rep-
resent whatever knowledge and beliefs the process may be said to
possess. For example, according to this view, since I know that the
sun sets each evening, my “mind” must contain (among other
things) a language-like or symbolic structure that represents this
fact, inscribed in some kind of internal code. There are various as-
sumptions that go along with this view: there is for one thing pre-
sumed to be an internal process that “runs over” or “computes with”
these representational structures, in such a way that the intelligent
behaviour of the whole results from the interaction of parts. In ad-
dition, this ingredient process is required to react only to the
“form” or “shape” of these mental representations, without regard
to what they mean or represent—this is the substance of the claim
that computation involves formal symbol manipulation. Thus my
thought that, for example, the sun will soon set, would be taken to
emerge from an interaction in my mind between an ingredient
process and the shape or “spelling” of various internal structures
representing my knowledge that the sun does regularly set each
evening, that it is currently tea time, and so forth.

The knowledge representation hypothesis may be summarised
as follows:

 Procedural Reflection · Prologue

 PR · 55

 Knowledge Representation Hypothesis: Any mechanically
embodied intelligent process will be comprised of structural in-
gredients that (a) we as external observers naturally take to
represent a propositional account of the knowledge that the
overall process exhibits, and (b) independent of such external
semantical attribution, play a formal but causal and essential
role in engendering the behaviour that manifests that knowl-
edge.

Thus for example if we felt disposed to say that some process knew
that dinosaurs were warm-blooded, then we would find (accord-
ing, presumably, to the best explanation of how that process
worked) that a certain computational ingredient in that process
was understood as representing the (propositional) fact that dino-
saurs were warm-blooded, and furthermore, that this very ingre-
dient played a role, independent of our understanding of it as rep-
resentational, in leading the process to behave in whatever way in-
spired us to say that it knew that fact. Presumably we would be
convinced by the manner in which the process answered certain
questions about their likely habitat, by assumptions it made about
other aspects of their existence, by postures it adopted on sugges-
tions as to why they may have become extinct, etc.

A careful analysis will show that. to the extent that we can make
sense of it, this view that knowing is representational is far less evi-
dent—and perhaps, therefore, far more interesting—than is
commonly believed. To do it justice requires considerable care: ac-
counts in cognitive psychology and the philosophy of mind tend
to founder on simplistic models of computation. and artificial in-
telligence treatments often lack the theoretical rigour necessary to
bring the essence of the idea into plain view. Nonetheless, conclu-
sion or hypothesis, it permeates current theories of mind, and has
in particular led researchers in artificial intelligence to propose a
spate of computational languages and calculi designed to under-
write such representation. The common goal is of course not so
much to speculate on what is actually represented in any particu-
lar situation as to uncover the general and categorical form of
such representation. Thus no one would suggest how anyone ac-
tually represents facts about tea and sunsets: rather, they might
posit the general form in which such beliefs would be “written”

56 Indiscrete Affairs · I

(along with other beliefs, such as that Lhasa is in Tibet, and that p
is an irrational number). Constraining all plausible suggestions,
however, is the requirement that they must be able to demonstrate
how a particular thought could emerge from such representa-
tions—this is a crucial meta-theoretic characteristic of artificial
intelligence research. It is traditionally considered insufficient
merely to propose true theories that do not enable some causally
effective mechanical embodiment. The standard against which
such theories must ultimately judged, in other words, is whether
they will serve to underwrite the construction of demonstrable, be-
having artefacts. Under this general rubric knowledge representa-
tion efforts differ markedly in scope, in approach, and in detail;
they differ on such crucial questions as whether or not the mental
structure are modality specific (one for visual memory, another for
verbal, for example). In spite of such differences, however, they
manifest the shared hope that an attainable first step towards a
full theory of mind will be the discovery of something like the
structure of the “mechanical mentalese” in which our beliefs are
inscribed.

It is natural to ask whether the knowledge representation hy-
pothesis deserves our endorsement, but this is not the place to pur-
sue that difficult question. Before it can fairly be asked, we would
have to distinguish a strong version claiming that knowing is nec-
essarily representational from a weaker version claiming merely
that it is possible to build a representational knower. We would
run straight into all the much-discussed but virtually intractable
questions about what would be required to convince us that an ar-
tificially constructed process exhibited intelligent behaviour. We
would certainly need a definition of the word ‘represent,’ about
which we will subsequently have a good deal to say. Given the cur-
rent (minimal) state of our understanding, I myself see no reason
to subscribe to the strong view, and remain skeptical of the weak
version as well.b But one of the most difficult questions is merely to
ascertain what the hypothesis is actually saying—thus my inter-
est in representation is more a concern to make it clear than it is to
defend or deny it The entire present investigation, therefore, will
be pursued under this hypothesis, not because we grant it our al-

b… «talk about this» …

 Procedural Reflection · Prologue

 PR · 57

legiance, but merely because it deserves our attention.
Given the representation hypothesis, the suggestion as to how to

build self-reflective systems—a suggestion we will call the Reflec-
tion Hypothesis—can be summarised as follows:h

 Reflection Hypothesis: In as much as a computational proc-
ess can be constructed to reason about an external world in vir-
tue of comprising an ingredient process (interpreter) formally
manipulating representations of that world, so too a computa-
tional process could be made to reason about itself in virtue of
comprising an ingredient process (interpreter) formally ma-
nipulating representations of its own operations and structures.

Thus the task of building a computationally reflective system is
thought to reduce to, or at any rate to include, the task of provid-
ing a system with formal representations of its own constitution
and behaviour. Hence a system able to imagine a world where
unicorns have wings would have to construct formal representa-
tions of that fact; a system considering the adoption of a hypothe-
sis-and-test style of investigation would have to construct formal
structures representing such an inference regime.

Whatever its merit, there is ample evidence that researchers arc
taken with this view. Systems such as Weyhrauch’s FOL, Doyle’s
TMS, McCarthy’s ADVICE-TAKER, Hayes’ GOLUM, and Davis’
TERESIUS arc particularly explicit exemplars of just such an ap-
proach.2 In Weyhrauch’s system, for example, sentences in first-
order logic arc constructed that axiomatize the behaviour of the
Lisp procedures used in the course of the computation (FOL is a
prime example of the dual-calculus approach mentioned earlier).
In Doyle’s systems, explicit representations of the dependencies be-
tween beliefs and of the “reasons” the system accepts a conclusion
play a causal role in the inferential process. Similar remarks hold
for the other projects mentioned, as well as for a variety of other
current research. In addition, it turns out on scrutiny that a great
deal of current computational practice can be seen as dealing, in
one way or another, with reflective abilities, particularly as exem-

h«Note that the numbered indentation of the following paragraphs has
been added, for clarity.»

2Weyhrauch (1978), Doyle (1979), McCarthy (1968), Hayes (1979), and
Davis (1980a), respectively.

58 Indiscrete Affairs · I

plified by computational structures representing other computa-
tional structures. We constantly encounter examples: the wide-
spread use of macros in Lisp, the use of meta-level structures in
representation languages, the use of explicit non-monotonic infer-
ence rules, the popularity of meta-level rules in planning systems.3
Such a list can be extended indefinitely; in a recent symposium
Brachman reported that the love affair with “meta-level reasoning”
was the most important theme of knowledge representation re-
search in the last decade.4

 4a The Relationship Between Reflection & Representation
The manner in which this discussion has been presented so far
would seem to imply that the interest in reflection and the adop-
tion of a representational stance are theoretically independent posi-
tions. I have argued in this way for a reason: to make clear that the
two subjects are not the same. There is no a priori reason to believe
that even a fully representational system should in any way be re-
flective or able to make anything approximating a reference to it-
self; similarly, there is no proof that a powerfully self-referential
system need be constructed of representations. However—and this
is the crux of the matter—the reason to raise both issues together
is that they are surely, in some sense, related. If nothing else, the
word ‘representation’ comes from ‘re’ plus ‘present’, and the ability
to re-present a world to itself is undeniably a crucial, if not the cru-
cial, ingredient in reflective thought. If I reflect on my childhood, I
re-present to myself my school and the rooms of my house; if I re-
flect on what I will do tomorrow, I bring into the view of my
mind’s eye the self I imagine that tomorrow I will be. If we take
“representation” to describe an ability rather than a structure, re-
flection surely involves representation (although—and this
should be kept clearly in mind—the “representation” of the knowl-
edge representation hypothesis refers to ingredient structures, not
to an activity).

It is helpful to look at the historical association between these

3For a discussion of macros see the various sources on Lisp mentioned in
note 16 of chapter 1; meta-level rules in representation were discussed in
Brachman and Smith (1980); for a collection of papers on non-monotonic
reasoning see Bobrow (1980); macros are discussed in Pitman (1980).

4Brachman (1980).

 Procedural Reflection · Prologue

 PR · 59

ideas, as well to search for commonalities in content. In the early
days of artificial intelligence, a search for the general patterns of
intelligent reasoning led to the development of such general sys-
tems as Newell and Simon’s GPS, predicate logic theorem provers,
and so forth.5 The descriptions of the subject domains were mini-
mal but were nonetheless primarily declarative, particularly in the
case of the systems based on logic. However it proved difficult to
make such general systems effective in particular cases: so much of
the “expertise” involved in problem solving seems domain and task
specific. In reaction against such generality, therefore, a procedural
approach emerged in which the primary focus was on the manipu-
lation and reasoning about specific problems in simple worlds.6
Though the procedural approach in many ways solved the prob-
lem of undirected inferential meandering, it too had problems: it
proved difficult to endow systems with much generality or modu-
larity when they were simply constituted of procedures designed
to manifest certain particular skills. In reaction to such brittle and
parochial behaviour, researchers turned instead to the develop-
ment of processes designed to work over general representations of
the objects and categories of the world in which the process was
designed to be embedded. Thus the representation hypothesis
emerged in the attempt to endow systems with generality, modu-
larity, flexibility, and so forth with respect to the embedding
world, but to retain a procedural effectiveness in the control com-
ponent.7 In other words, in terms of our main discussion, repre-
sentation as a method emerged as a solution to the problem of pro-
viding general and flexible ways of reflecting (not self-
referentially) about the world.

Systems based on the representational approach—and it is fair
to say that most of the current “expert systems” are in this tradi-
tion—have been relatively successful in certain respects, but a ma-
jor lingering problem has been a narrowness and inflexibility re-
garding the style of reasoning these systems employ in using these

5Newell and Simon (1963); Newell and Simon (1956).
6The proceduralist view was represented particularly by a spate of disserta-
tions emerging from MIT at the beginning of the 1970s; see for example
Winograd (1972), Hewitt (1972), Sussman et al. (1971), etc.

7See Minsky (1975), Winograd (1975), and all of the systems reported in
Brachman and Smith (1980).

60 Indiscrete Affairs · I

representational structures. This inflexibility in reasoning is strik-
ingly parallel to the inflexibility in knowledge that led to the first
round of representational systems; researchers have therefore sug-
gested that we need reflective systems able to deal with their own
constitutions as well as with the worlds they inhabit. In other
words, since the style of the problem is so parallel to that just
sketched, it has seemed that another application of the same medi-
cine might be appropriate. If we could inscribe general knowledge
about how to reason in a variety of circumstances in the “mental-
ese” of these systems, it might be possible to design a relatively sim-
pler inferential regime over this “meta-knowledge about reason-
ing,” thereby engendering a flexibility and modularity regarding
reasoning, just as the first representational work engendered a
flexibility and modularity about the process’s embedding world.

There are problems, however, in too quick an association be-
tween the two ideas, not the least of which is the question of to
whom these various forms of re-presentation are being directed. In
the normal case—that is to say, in the typical computational proc-
ess built under the aegis of the knowledge representation hypothe-
sis—a process is constituted from symbols that we as external
theorists take to be representational structures; they are visible only
to the ingredient interpretive process [that is just part] of the whole,
and they are visible to that constituent process only formally (this is
the basic claim of computation). Thus the interpreter can see them,
though it is blind to the fact of their being representations. (In fact
it is almost a great joke that the blindly formal ingredient process
should be called an interpreter: when the Lisp interpreter evalu-
ates the expression ‘(+ 2 3)’ and returns the result ‘6’, the last thing
it knows is that the numeral ‘2’ denotes the number two.c)

Whatever is the case with the ingredient process, there is no
reason to suppose that the representational structures are visible to
the whole constituted process at all, formally or informally. That
process is made out of them; there is no more a priori reason to
suppose that they are accessible to its inspection than to suppose
that a camera could take a picture of its own shutter—no more
reason to suppose it is even a coherent possibility than to say that
France is near Marseilles. Current practice should overwhelm-

c«Talk about the 100 Billion Lines coming later … »

 Procedural Reflection · Prologue

 PR · 61

ingly convince us of this point: what is as tacit—what is as thor-
oughly lacking in self-knowledge—as the typical modern com-
puter system?d

The point of the argument here is not to prove that one cannot
make such structures accessible—that one cannot make a repre-
sentational reflective system—but to make clear that two ideas are
involved. Furthermore, they are different in kind: one (representa-
tion) is a possibly powerful method for the construction of systems;
the other (reflection) is a kind of behaviour we are asking our sys-
tems to exhibit. It remains a question whether the representational
method will prove useful in the pursuit of the goal of reflective be-
haviour.

[Answering that question], in a nutshell, is our overall project.

 4b The Theoretical Backdrop
It takes only a moment’s consideration of such questions as the re-
lationship between representation and reflection to recognise that
the current state of our understanding of such subjects is terribly
inadequate. In spite of the general excitement about reflection, self-
reference, and computational representation, no one has presented
an underlying theory of any of these issues. The reason is simple:
we are so lacking in adequate theories of the surrounding territory
that, without considerable preliminary work, cogent definitions
cannot even be attempted. Consider for example the case regarding
self-referential reflection, where just a few examples will make this
clear.

1. From the fact that a reflective system A is implemented in
system B, it docs not follow that system B is thereby ren-
dered reflective (for example, in this dissertation I will pre-
sent a partially-reflective dialect of Lisp that I have imple-
mented on a Digital Systems Corporation PDP-10,e but the
PDP-10 is not itself reflective). Hence even a definition of re-
flection will have to be backed by theoretica1 apparatus ca-
pable of distinguishing between one abstract machine and
another in which the first is implemented—something we

d«Talk about response to Charles Taylor…»
e«Explain character and historical role»

62 Indiscrete Affairs · I

are not yet able to do.f

2. The notion seems to require of a computational process,
and (if we subscribe to the representational hypothesis) of
its interpreter, that in reflecting it “back off” one level of ref-
erence, and we lack theories both of interpreters in general,
and of computational reference in particular.g

3. Theories of computational interpretation will be required
to clarify the confusion mentioned above regarding the re-
lationship between reflection and representation: for a sys-
tem to reflect it must re-present for itself its mental states; it
is not sufficient for it to comprise a set of formal representa-
tions inspected by its interpreter. This is a distinction we
encounter again and again; a failure to make it is the most
common error in discussions of the plausibility of artificial
intelligence from those outside the computational commu-
nity, derailing the arguments of such thinkers as Searle
and Fodor.8

4. Theories of reference will be required in order to make
sense of the question of what a computational process is
“thinking” about at all, whether reflective or not (for exam-
ple. it may be easy to claim that when a program is manipu-
lating data structures representing women’s votes that the
process as a whole is “thinking about suffrage,” but what is
the process thinking about when the interpreter is expand-
ing a macro definition?).

5. Finally, if the search for reflection is taken up too enthusi-
astically, one is in danger of interpreting everything as evi-
dence of reflective thinking, since what may not be reflective
explicitly can usually be treated as implicitly reflective (espe-
cially given a little imagination on the part of the theorist).
However we lack general guidelines on how to distinguish
explicit from implicit aspects of computational structures.

f«Talk about subsequent theoretical work this points towards …»
g«Talk about 2-Lisp semantics, and how uninterpretable that attempt was
…»

8Searle (1980), Fodor (1978 and 1980). «Also point forwards to 100 Bil-
lion»

 Procedural Reflection · Prologue

 PR · 63

Nor is our grasp of the representational question any clearer; a se-
rious difficulty, especially since the representational endeavour
has received much more attention than has reflection. Evidence of
this lack can be seen in the fact that, in spite of an approximate
consensus regarding the general form of the task, and substantial
effort on its behalf, no representation scheme yet proposed has won
substantial acceptance in the field. Again this is due at least in
part to the simple absence of adequate theoretical foundations in
terms of which to formulate either enterprise or solution. We do
not have theories of either representation or computation in terms
of which to define the terms of art currently employed in their pur-
suit (representation, implementation, interpretation, control struc-
ture. data structure, inheritance, and so forth), and are conse-
quently without any well-specified account of what it would be to
succeed, let alone of what to investigate, or of how to proceed.i
Numerous related theories have been developed (model theories
for logic, theories of semantics for programming languages, and so
forth), but they do not address the issues of knowledge representa-
tion directly, and it is surprisingly difficult to weave their various
insights into a single coherent whole.

The representational consensus alluded to above, in other
words, is widespread but vague; disagreements emerge on every
conceivable technical point, as was demonstrated in a recent sur-
vey of the field.9 To begin with, the central notion of “representa-
tion” remains notoriously unspecified: in spite of the intuitions
mentioned above, there is remarkably little agreement on whether
a representation must “re-present” in any constrained way (like an
image or copy), or whether the word is synonymous with such
general terms as “sign” or “symbol”. A further confusion is shown
by an inconsistency in usage as to what representation is a rela-
tionship between. The sub-discipline is known as the representa-
tion of knowledge, but in the survey just mentioned by far the ma-
jority of the respondents (to the surprise of this author) claimed to
use the word, albeit in a wide variety of ways, as between formal
symbols and the world about which the process is designed to reason.
Thus a KLONE structure might be said to represent Don Quixote

iAgain, point forward to AOS.
9Brachman and Smith (1980).

64 Indiscrete Affairs · I

tilting at a windmill; it would not be taken as representing the fact
or proposition of this activity. In other words the majority opinion
is not that we are representing knowledge at all, but rather, as we put
it above, that knowing is representational.10

In addition, we have only a dim understanding of the relation-
ship that holds between the purported representational structures
and the ingredient process that interprets them. This relates to the
crucial distinction between that interpreting process and the
whole process of which it is an ingredient (whereas it is I who
thinks of sunsets, it is at best a constituent of my mind that inspects
a mental representationj). Furthermore, there are terminological
confusions: the word ‘semantics’ is applied to a variety of concerns,
ranging from how natural language is translated into the repre-
sentational structures, to what those structures represent, to how
they impinge on the rational policies of the “mind” of which they
are a part, to what functions are computed by the interpreting
process, etc.k The term ‘interpretation’ (to take another example)
has two relatively well-specified but quite independent meanings,
one of computational origin, the other more philosophical; how
the two relate remains so far unexplicated, although, as was just
mentioned, they are strikingly distinct.

Unfortunately, such general terminological problems are just
the tip of an iceberg. When we consider our specific representa-
tional proposals, we are faced with a plethora of apparently in-
comparable technical words and phrases. Node, frame, unit, con-
cept, schema, script, pattern, class, and plan, for example, are all
popular terms with similar connotations and ill-defined mean-
ing.11 The theoretical situation (this may not be so harmful in
terms of more practical goals) is further hindered by the tendency
for representational research to be reported in a rather demonstra-
tive fashion: researchers typically exhibit particular formal sys-
tems that (often quite impressively) embody their insights, but that

10See the introduction to Brachman and Smith (1980).
j«Point forward to internal-representation-registrational item (whatever I
end up calling it)»

k«Point forward to 100 Billion»
11References on node, frame, unit, concept, schema, script, pattern, class, and
plan can be found in the various references provided in Brachman and
Smith (1980).

 Procedural Reflection · Prologue

 PR · 65

are defined using formal terms peculiar to the system at hand. We
are left on our own to induce the relevant generalities and to locate
them in our evolving conception of the representation enterprise as
a whole. Furthermore, such practice makes comparison and dis-
cussion of technical details always problematic and often impossi-
ble, defeating attempts to build on previous work.

This lack of grounding and focus has not passed unnoticed: in
various quarters one hears the suggestion that, unless severely
constrained, the entire representation enterprise may be ill-
conceived—that we should turn instead to considerations of par-
ticular epistemological issues (such as how we reason about, say,
liquids or actions), and should use as our technical base the tra-
ditional formal systems (logic, Lisp, and so forth) that representa-
tion schemes were originally designed to replace.12 In defense of
this view two kinds of argument are often advanced. The first is
that questions about the central cognitive faculty are at the very
least premature, and more seriously may for principled reasons
never succumb to the kind of rigorous scientific analysis that
characterizes recent studies of the peripheral aspects of mind: vi-
sion, audition, grammar, manipulation, and so forth.13 The other
argument is that logic as developed by the logicians is in itself suf-
ficient; that all we need is a set of ideas about what axioms and in-
ference protocols are best to adopt.14 But such doubts cannot be
said to have deterred the whole of the community: the survey just
mentioned lists more than thirty new representation systems un-
der active development.

The strength of this persistence is worth noting, especially in
connection with the theoretical difficulties just sketched. There
can be no doubt that there are scores of difficult problems: we have
just barely touched on some of the most striking. But it would be a
mistake to conclude in discouragement that the enterprise is
doomed, or to retreat to the meta-theoretic stability of adjacent
fields (like proof theory, model theory, programming language

12See in particular Hayes (1978).
13The distinction between central and peripheral aspects of mind is articu-
lated in Nilsson (1981); on the impossibility of central AI (Nilsson himself
feels that the central faculty will quite definitely succumb to AI’s tech-
niques) see Dreyfus (1972) and Fodor (1980 and forthcoming).

14Nilsson (1981).

66 Indiscrete Affairs · I

semantics, and so forth). The moral is at once more difficult and
yet more hopeful. What is demanded is that we stay true to these
undeniably powerful ideas, and attempt to develop adequate theo-
retical structures on this home ground. It is true that any satisfac-
tory theory of computational reflection must ultimately rest, more
or less explicitly, on theories of computation, of intensionality, of
objectification, of semantics and reference, of implicitness, of for-
mality, of computation, of interpretation, of representation, and so
forth. On the other hand as a community we have a great deal of
practice that often embodies intuitions that we are unable to for-
mulate coherently. The wealth of programs and systems we have
built often betray—sometimes in surprising ways—patterns and
insights that eluded our conscious thoughts in the course of their
development. What is mandated is a rational reconstruction of
those intuitions and of that practice.

In the case of designing reflective systems, such a reconstruction
is curiously urgent. In fact this long introductory story ends with
an odd twist—one that “ups the ante” in the search for a carefully
formulated theory, and suggests that practical progress will be im-
peded until we take up the theoretical task. In general, it is of
course possible (some would even advocate this approach) to build
an instance of a class of artefact before formulating a theory of it.
The era of sail boats, it has often been pointed out, was already
drawing to a close just as the theory of airfoils and lift was being
formulated—the [very] theory that, at least at the present time,
best explains how those sailboats worked. However there are a
number of reasons why such an approach may be ruled out in the
present case. For one thing, in constructing a reflective calculus
one must support arbitrary levels of meta-knowledge and self-
modelling, and it is self-evident that confusion and complexity
will multiply unchecked when one adds such facilities to an only
partially understood formalism. It is simply likely to be unman-
ageably complicated to attempt to build a self-referential system
unaided by the clarifying structure of a prior theory. The com-
plexities surrounding the use of APPLY in Lisp (and the caution
with which it has consequently come to be treated) bear witness to
this fact. However there is a more serious problem. If one sub-
scribes to the knowledge representation hypothesis, it becomes an
integral part of developing self-descriptive systems to provide, en-

 Procedural Reflection · Prologue

 PR · 67

coded within the representational medium, an account of
(roughly) the syntax, semantics, and reasoning behaviour of that
formalism. In other words, if we are to build a process that “knows”
about itself: and if we subscribe to the view that knowing is repre-
sentational, then we are committed to providing that system with a
representation of the self-knowledge with which we aim to endow
it. That is, we must have an adequate theories of computational
representation and reflection explicitly formulated, since an encod-
ing of that theory is mandated to play a causal role as an actual in-
gredient in the reflective device.

Knowledge of any sort—and self-knowledge is no exception—
is always theory relative. The representation hypothesis implies
that our theories of reasoning and reflection must be explicit. We
have argued that this is a substantial, if widely accepted, hypothe-
sis. One reason to find it plausible comes from viewing the entire
enterprise as an attempt to communicate our thought patterns and
cognitive styles—including our reflective abilities—to these emer-
gent machines. It may at some point be possible for understanding
to be tacitly communicated between humans and system they have
constructed. In the meantime, however, while we humans might
make do with a rich but unarticulated understanding of compu-
tation, representation, and reflection, we must not forget that com-
puters do not [yetl] share with us our tacit understanding of what
they are.

l«The word ‘yet’, present in a draft written prior to submission, was for
unknown reasons deleted in the very last (submitted) version.»

68 Indiscrete Affairs · I

— Were this page been blank, that would have been unintentional —

 69

Procedural Reflection in Programming Languages
2b — Chapter One · Introduction

The successful development of a general reflective calculus based
on the knowledge representation hypothesis will depend on the
prior solution of three problems:

1. The provision of a computationally tractable and episte-
mologically adequate descriptive language;

2. The formulation of a unified theory of computation and
representation; and

3. The demonstration of how a computational system can
reason effectively and consequentially about its own infer-
ence processes.

The first of these issues is the collective goal of present knowledge
representation research; though much studied, it has met with
only partial success. The problems involved are enormous, cover-
ing such diverse issues as adequate theories of intensionality,x
methods of indexing and grouping representational structures,
and support for variations in assertional force. In spite of its cen-
trality, however, it will not be pursued here, in part because it is
so ill-constrained.x The second, though it is occasionally acknowl-

 x «Explain the use of this term—which I think I meant, at the time; rather

than “intentionality.” Talk about the ‘intensional fusion” thesis on which
Mantiq was to be based? And maybe also point to the “three spellings”
sidebar in aos?»

 x «Explain that this was, in a way, a pointer to Mantiq—which I had had to
defer, in writing this dissertation—though maybe also that the project may
yet see the light of day.»

70 Indiscrete Affairs · I

edged to be important, is a much less well publicized issue, having
received (so far as I know) almost no direct attention. As a conse-
quence, every representation system proposed to date exemplifies
what I will call a dual-calculus approach: a procedural calculus
(usually LISP) is conjoined with a declarative formalism (an en-
coding of predicate logic, frames, etc.) into something of a formal-
istic hybrid. Even such purportedly unified systems as PROLOG1
can be shown to manifest this structure. I will in passing suggest
that this dual-calculus style is unnecessary and indicative of seri-
ous shortcomings in our conception of the representational en-
deavour. However this issue too will be largely ignored.

In this dissertation my focus instead will be on the third prob-
lem: the question of making the inferential or interpretive aspects
of a computational process themselves accessible as a valid do-
main of reasoning. I will show how to construct a computational
system whose active interpretation is controlled by structures
themselves available for inspection, modification, and manipula-
tion, in ways that allow a process to shift smoothly between deal-
ing with a given subject or task domain, and dealing with its own
reasoning processes over that domain. In computational terms,
the question is one of how to construct a program able to reason
about and affect its own interpretationx—i.e., of how to define a
calculus with a reflectively accessible control structure.

 1 General Overview
The term “reflection” does not name a previously well-defined
question to which I propose a particular solution (although logic’s
reflection principles are not unrelated). Before I can present a the-
ory of what reflection comes to, and how it can be demonstrated,
therefore, I will have to give an account of what reflection is. In
the next section, by way of introduction, I will identify six charac-
teristics that I take to distinguish all reflective behaviour. Then,

 1 PROLOG has been presented in a variety of papers; see for example Clark

and McCabe (1979), Roussel (1975), and Warren et al. (1977). The con-
ception of logic as a programming language (with which I radically dis-
agree) is presented in Kowalski (1974 and 1979).

 x «Note that this is the computational notion of ‘interpretation’ (program
execution), not the representational one familiar from logic and philoso-
phical semantics.»

 2b · Reflection & Semantics · Introduction

 71

since I will be primarily concerned with computational reflec-
tion, I will sketch the model of computation on which the analy-
sis will be based, and will set the general approach to reflection to
be adopted into a computational context. In addition, once a
working vocabulary of computational concepts has been set out, I
will be able to define what I will mean by procedural reflec-
tion—an even smaller and more circumscribed notion than com-
putational reflection in general. All of these preliminaries are nec-
essary in order to enable to formulation of an attainable set of
goals.

Thus prepared, I will set forth on the analysis itself. As a tech-
nical device, over the course of the dissertation I will develop
three successive dialects of Lisp to serve as illustrations, and to
provide a technical ground in which to work out in detail the
theories of reflection to be proposed. I should say at the outset,
however, that this focus on Lisp should not mislead the reader
into thinking that the basic reflective architecture I propose—or
the principles endorsed in its design—are in any important sense
LISP specific. Lisp was chosen because it is simple, powerful, and
uniquely suited for reflection in two ways: it already embodies
protocols whereby programs are represented in first-class accessi-
ble (data) structures, and it is a convenient formalism in which to
express its own meta-theory—especially given that I will use a
variant of the λ-calculus as a mathematical meta-language (this
convenience holds especially in a statically scoped dialect of the
sort that will ultimately be adopted). Nevertheless, as I will dis-
cuss in the concluding chapter, it would be possible to construct a
reflective dialect of Fortran, Smalltalk, or any other procedural
calculus, by pursuing essentially the same approach as I will
demonstrate here for Lisp.

The first Lisp dialect (called 1-Lisp) will be an example in-
tended to summarise current practice, primarily for comparison
and pedagogical purposes. The second (2-Lisp) differs rather sub-
stantially from 1-Lisp, in that it is modified with reference to a
theory of declarative denotational semantics (i.e., a theory of the
denotational significance of s-expressions) formulated independ-
ent of the behaviour of the interpreter. The interpreter is then sub-

72 Indiscrete Affairs · I

sequently defined with respect to this theory of attributedx se-
mantics, so that the result of processing of an expression—i.e.,
the value of the function computed by the basic interpretation
process—is a normal-form co-designator of the input expression. I
will call 2-Lisp a semantically rationalised dialect, and will ar-
gue that it makes explicit much of the understanding of Lisp that
tacitly organises most programmers’ understanding of Lisp but
that has never been made an articulated part of Lisp theories.x Fi-
nally, a procedurally reflective Lisp called 3-Lisp will be devel-
oped, semantically and structurally based on 2-Lisp, but modified
so that reflective procedures are supported, as a vehicle with
which to engender the sorts of procedural reflection we will by
then have set as our goal. 3-Lisp differs from 2-Lisp in a variety of
ways, of which the most important is the provision, at any point
in the course of the computation, for a program to reflect and
thereby obtain fully articulated “descriptions,” formulated with
respect to a primitively endorsed and encoded theory, of the state
of the interpretation process that was in effect at the moment of
reflection. In this particular case, this will mean that a 3-Lisp pro-
gram will be able to access, inspect, and modify standard 3-Lisp
normal-form designators of both the environment and continua-
tion structures that were in effect a moment before.

More specifically, 1-Lisp, like Lisp 1.6 and all Lisp dialects in
current use, is at heart a first-order language, employing meta-
syntactic facilities and dynamic variable scoping protocols to par-
tially mimic higher-order functionality. Because of its metasyn-
tactic powers (paradigmatically exemplified by the primitive
QUOTE), 1-Lisp contains a variety of inchoate reflective features, all
of which we will examine in some detail: support for metacircular
interpreters, explicit names for the primitive processor functions
(EVAL and APPLY), the ability to mention program fragments, pro-
tocols for expanding macros, and so on and so forth. Though I
will ultimately criticize much of 1-Lisp ’s structure (and its under-

 x «Say: only thought then that it had to be attributed; explain why that was

reasonable, why I didn’t end up believing it, etc.)
 x «Say: this “mechanism honouring semantics” is like derivation in logic hon-

ouring (what logic calls) interpretation. This should be clearly stated some-
where; refer to that … »

 2b · Reflection & Semantics · Introduction

 73

lying theory), I will document its properties in part to serve as a
contrast for the subsequent dialects, and in part because, being
familiar, 1-Lisp can serve as a base in which to ground the analy-
sis.

After introducing 1-Lisp, but before attempting to construct a
reflective dialect, I will subject 1-Lisp to rather thorough semanti-
cal scrutiny. This project, and the reconstruction that results, will
occupy well over half the dissertation. The reason is that the
analysis will require a reconstruction not only of Lisp but of com-
putational semantics in general. I will argue in particular that it is
crucial, in order to develop a comprehensible reflective calculus,
to have a semantical analysis of that calculus that makes explicit
the tacit attribution of significance that I will claim characterises
every computational system. I take this attribution of semantical
import to computational expressions to be prior to any account of
what happens to those expressions: thus I will argue for an analy-
sis of computational formulae in which declarative import and
procedural consequence are independently formulated.x I claim,
in other words, that programming languages are better under-
stood in terms of two semantica1 treatments (one declarative, one
procedural), rather than in terms of a single one, as is exemplified
by current approaches (although interactions between them may
require that these two semantical accounts be formulated in con-
junction).

This semantical reconstruction is at heart a comparison and
combination of the standard semantics of programming lan-
guages on the one hand, and the semantics of natural human lan-
guages and of descriptive and declarative languages such as predi-
cate logic, the λ-calculus, and mathematics, on the other. Neither
will survive intact: the approach I will ultimately adopt is not

 x «This is what I said, but it is not strictly correct. What is intended is that the

declarative import precedes (ontologically and explanatorily) the proce-
dural consequence, and then procedural consequence (what happens to
program fragments, how they are executed) is defined to honour that de-
clarative import. Logically, the analytic structure would allow procedural
consequence (execution) to be defined arbitrarily; in fact, the point of call-
ing it a “semantical system” stems from the dependence that processing
bears on (declarative, not procedural) interpretation.»

74 Indiscrete Affairs · I

strictly compositional in the standard sense (although it is recur-
sively specifiable), nor are the declarative and procedural facets
entirely separate. (For example, the procedural consequence of
executing a given expression may affect the subsequent context of
use that determines what another expression declaratively desig-
nates.) Nor are the consequences of this approach minor. For ex-
ample, I will show that the traditional notion of evaluation, in
terms of which all Lisps to date have been defined, is both confus-
ing and confused, and must be separated into independent no-
tions of reference and simplification. I will be able to show, in
particular, that 1-Lisp “evaluator” de-references some expressions
(such meta-syntactic terms as (QUOTE X), for example), and does
not dereference others (such as the numerals and T and NIL). I
will argue instead for what I will call a semantically rationalised
dialect, in which the simplification and reference primitives are
kept strictly distinct.

The basic thesis on which this work depends is that semantical
cleanliness (along the lines suggested above) is by far the most
important pre-requisite to any coherent treatment of reflection.
However, as well as advocating semantically rationalised computa-
tional calculi, in the Lisp case I will also espouse an aesthetic I call
category alignment, by which I mean that there should be a
strict category-category correspondence across the four major
axes in terms of which a computation calculus is analysed:

1. Notation,
2. Abstract structure,
3. Declarative semantics, and
4. Procedural consequence

(Category alignment is a mandate satisfied by no extant Lisp dia-
lect.) In particular, I will insist in the dialects I design and present
here: (i) that each notational class be parsed into a distinct struc-
tural class; (ii) that each structural class be treated in a uniform
way by the primitive processor; (iii) that each structural class
serve as the normal-form designator of each semantic class; and
so forth.

Category alignment is an aesthetic with consequence. I will
show that the 1-Lisp programmer (i.e., all existing Lisp pro-
grammers) must in certain situations resort to meta-syntactic ma-

 2b · Reflection & Semantics · Introduction

 75

chinery merely because 1-Lisp fails to satisfy this mild require-
ment (in particular, 1-Lisp lists, which are themselves a derivative
class formed from some pairs and one atom, serve semantically to
encode both function applications and enumerations). Though it
does not have the same status as semantical hygiene, categorical
elegance will also prove almost indispensable, especially from a
practical point of view, in the drive towards reflection.

Once these theoretical positions have been formulated, I will be
in a position to design 2-Lisp. Like Scheme and the λ-calculus, 2-
Lisp is a higher-order formalism: consequently, it is statically
scoped, and treats the function position of an application as a
standard extensional position. 2-Lisp is of course formulated in
terms of the rationalised semantics being espoused here, accord-
ing to which declarative semantics must be formulated for all ex-
pressions prior to, and independent of, the specification of how
they are treated by the primitive processor. Consequently—and
in this way 2-Lisp is radically unlike Scheme—the 2-Lisp proces-
sor is based on a regimen of normalisation, according to which
each expression is taken into a normal-form designator of the
original expression’s referent, where the notion of normal-form is
defined in part with reference to the semantic type of the symbol’s
designation, rather than (as in the case of the λ-calculus) in terms
of the further (non-) applicability of a set of syntactic reduction
rules.

2-Lisp ’s normal-form designators are environment independ-
ent and side-effect free; thus the concept of a closure can be recon-
structed as a normal-form function designator. Since normalisation
is a form of simplification, and is therefore designation-preserving,
meta-structural expressions (terms that designate other terms in
the language) are not de-referenced upon normalisation, as they
are when evaluated. I therefore call the 2-Lisp processor seman-
tically flat, since it stays at a semantically fixed level (although
explicit referencing and de-referencing primitives—primitive
operations to perform what philosophers or logicians would call
semantic ascent and semantic descent—are also provided, to
facilitate explicit shifts in level of designation).

3-Lisp is straightforwardly defined as an extension of 2-Lisp, with

76 Indiscrete Affairs · I

respect to an explicitly articulated procedural theory of 3-Lisp
embedded in 3-Lisp structures. This embedded theory, called the
reflective model, though superficially resembling a metacircular
interpreter (as shown by a glance at the code, given in the sidebar
on p ■■), is causally connected to the workings of the underlying
calculus in critical and primitive ways. The reflective model is
similar in structure to the procedural fragment of the meta-
theoretic characterisation of 2-Lisp that was encoded in the λ-
calculus: it is this incorporation into a system of a theory of its
own operations that makes 3-Lisp, like any possible reflective sys-
tem, inherently theory relative. For example, whereas environ-
ments and continuations will up until this point have been theo-
retical posits, mentioned only in the meta-language, as a way of
explaining Lisp’s behaviour, in 3-Lisp such entities move from the
semantical domain of the meta-language into the semantical do-
main of the object language, and environment and continuation
designators emerge as part of the primitive behaviour of 3-Lisp
protocols.x

More specifically, arbitrary 3-Lisp reflective procedures can
bind as arguments (designators of) the continuation and envi-
ronment structure of the interpreter that would have been in effect
at the moment the reflective procedure was called, had the machine
been running all along in virtue of the explicit interpretation of
the prior program, mediated by the reflective model. Further-
more, by constructing and/or modifying these designators, and
resuming the process below, such a reflective procedure may arbi-
trarily control the processing of programs at the level beneath it.
Because reflection may recurse arbitrarily, 3-Lisp is most simply
defined as:

 An infinite tower of 3-Lisp processes, each engendering the
process immediately below, in virtue of running a copy of the re-

 x Note that it is designators of environments and continuations that are part

of the protocol. There is a sense in which environments and continuations
are themselves part of the definition of 3-Lisp, but the truth of that fact
should be not taken as implying that “environment structures” and “con-
tinuation structures” are a primitive part of 3-Lisp. To speak in that way
would be to fail to appreciate the importance of the declarative dimension
of 3-Lisp (and 2-Lisp) semantics.

 2b · Reflection & Semantics · Introduction

 77

flective model.

Under such an account, the use of reflective procedures amounts
to running simple procedures at arbitrary levels in this reflective
hierarchy. Both a straightforward implementation and a concep-
tual analysis are provided to demonstrate that such a machine is
nevertheless finite.

3-Lisp ’s reflective levels are not unlike the levels in a typed logic
or set theory, although of course each reflective level contains an
omega-order untyped computational calculus essentially isomor-
phic to (the extensional portion of) 2-Lisp. Reflective levels, in
other words, are at once stronger and more encompassing than
are the order levels of traditional systems. The locus of agency in
each 3-Lisp level, on the other hand, that distinguishes one com-
putational level from the next, is a notion without precedent in
logical or mathematical traditions.

The architecture of 3-Lisp allows us to unify three concepts of
traditional programming languages that are typically independent
(three concepts we will have explored separately in 1-Lisp):

1. The ability to support metacircular interpreters;
2. The provision of explicit names for the primitive interpre-

tive procedures (EVAL and APPLY in standard Lisp dialects);
and

3. The inclusion of procedures that access the state of the
implementation (usually provided as part of a program-
ming environment, for debugging purposes).

I will show how all such behaviours can be defined within a pure
version of 3-Lisp (i.e., independent of implementation), since all
aspects of the state of the 3-Lisp interpretation process are avail-
able, with sufficient reflection, as objectified entities within the 3-
Lisp structural field.

The dissertation concludes by drawing back from the details of
Lisp development, and showing how the techniques employed in
this one particular case could be used in the construction of other
reflective languages—reflective dialects of current formalisms, or

78 Indiscrete Affairs · I

other new systems built from the ground up. I will show, in par-
ticular, how this approach to reflection may be integrated with
notions of data abstraction and message passing—two (related)
concepts commanding considerable current attention, that might
seem on the surface incompatible with the notion of a system-
wide declarative semantics. Fortunately, I will be able to show
that this early impression is false—that procedurally reflective
and semantically rationalised variants on these types of languages
could be readily constructed as well.

Besides the basic results on reflection, there are a variety of
other lessons to be taken from the investigation, of which the in-
tegration of declarative import and procedural consequence in a
unified and rationalised semantics is undoubtedly the most im-
portant. The rejection of evaluation, in favour of separate simpli-
fication and de-referencing protocols, is the major, but not the
only, consequence of this revised semantical approach. The mat-
ter of category alignment, and the constant question of the proper
use of metastructural machinery, while of course not formal re-
sults, are nonetheless important permeating themes. Finally, the
unification of a variety of practices that until now have be treated
independently—macros, metacircular interpreters, EVAL and
APPLY, quotation, implementation-dependent debugging routines,
and so forth—should convince the reader of one of the disserta-
tions most important claims: procedural reflection is not a radi-
cally new idea; tentative steps in this direction have been taken in
many areas of current practice. The present contribution—fully
in the traditional spirit of rational reconstruction—is merely one
of making explicit what we all already knew.

I conclude this brief introduction with three footnotes.
First, given the flavour of the discussion so far, the reader may

be tempted to conclude that the primary emphasis of this report
is on procedural, rather than on representational, concerns (an
impression that will only be reinforced by a quick glance through
later chapters). This impression is in part illusory; as I will ex-
plain at a number of points. these topics are pursued in a proce-
dural context because it is simpler than attempting to do so in a
poorly understood representational or descriptive system. All of
the substantive issues, however, have their immediate counter-

 2b · Reflection & Semantics · Introduction

 79

parts in the declarative aspects of reflection, especially when such
declarative structures are integrated into a computational frame-
work. This investigation has been carried on with the parallel de-
clarative issues kept firmly in mind; the attribution of a declara-
tive semantics to Lisp s-expressions will also reveal my represen-
tational bias. As I mentioned in the preface, the decision to first
explore reflection in a procedural context should be taken as
methodological, rather than as substantive. Furthermore, it is to-
wards a unified system that I ultimate want to aim. One of the
morals underlying this reconstruction is that the boundaries be-
tween these two types of calculus should ultimately be disman-
tled.

Second. as this last comment suggests, and as the unified
treatment of semantics betrays, I consider it important to unify
the theoretical vocabularies of the declarative tradition (logic, phi-
losophy, and to a certain extent mathematics) with the procedural
tradition (primarily computer science). I view the semantical ap-
proach adopted here as but a first step in that direction; as sug-
gested in the first paragraph, a fully unified treatment remains an
as-yet unattained goal. Nonetheless, I have expended some effort
in the work reported here to develop and present a single seman-
tical and conceptual position that draws on the insights and tech-
niques of both of these disciplines.

Third and finally, as the very first paragraph of this chapter
suggests, the dissertation is offered as the first step in a general
investigation into the construction of generally reflective computa-
tional calculi to be based on more fully integrated theories of rep-
resentation and computation. In spite of its reflective powers, and
in spite of its declarative semantics, 3-Lisp cannot properly be
called fully reflective, since 3-Lisp structures do not form a de-
scriptive language (nor would any other procedurally reflective
programming language that might be developed in the future,
based on techniques set forth here, have any claim to the more
general term). This is not because the 3-Lisp structures lack ex-
pressive power (although 3-Lisp has no quantificational opera-
tors, implying that even if it were viewed as a descriptive language
it would remain algebraic), but rather because all 3-Lisp expres-
sions are devoid of assertional force. There is, in brief, no way to
say anything in such a formalism. One can set x to 3, in 3-Lisp or

80 Indiscrete Affairs · I

any other procedural (i.e., programming) language; one can test
whether x is 3; but one cannot say that x is 3. Nevertheless, I con-
tend that the insights won on the behalf of 3-Lisp will ultimately
prove useful in the development of more radical, generally reflec-
tive systems. In sum, I hope to convince the reader that, although
it will be of some interest on its own, 3-Lisp is only a corollary of
the major theses adopted in its development.

 2 The Concept of Reflection
In this section I will look more carefully at the term “reflection,”
both in general and in the computational case, and also specify
what I would consider an acceptable theory of this phenomenon.
The structure of the solution I will eventually adopt will be pre-
sented only in section 5, after discussing in section 3 the atten-
dant model of computation on which it is based. and in section 4
the conception of computational semantics to be adopted. Before
presenting any of that preparatory material, however, it helps to
know where we are headed.

 2a The Reflection and Representation Hypotheses
In the prologue I sketched in broad strokes some of the roles that
reflection plays in general mental life. In order to focus the dis-
cussion, this section consider in more detail what I will mean by
the more restricted phrase “computational reflection.” On one read-
ing this term might refer to a successful computational model of
general reflective thinking. For example, if you were able to for-
mulate what human reflection comes to (more precisely than I
have been able to do), and were then able to construct a computa-
tional model embodying or exhibiting such behaviour, you would
have some reason to claim that you had demonstrated computa-
tional reflection, in the sense of a computational process that exhib-
ited authentic reflective activity. ‘Computational’ in this sense
would mean, more or less, “computer-based.”

Though I have undertaken this work with this larger goal in
mind, my use of the phrase is more modest, in two important
ways.

First, in this dissertation I take no stand on the question of
whether computational processes are able to “think” or “reason”
at all, in, as it were, their own right. Certainly it would seem that

 2b · Reflection & Semantics · Introduction

 81

most of what we take computational systems to do is attributed, in
a way that is radically different from the situation regarding our
interpretations of the actions of other people. In particular, hu-
mans are first-class bearers of what is called semantic original-
ity:x they themselves are able to mean, without some observer
having to attribute meaning to them. Computational processes,
on the other hand, are at least not yet semantically original; to the
extent they can be said to mean or refer at all, they do so deriva-
tively, in virtue of some human finding that a convenient descrip-
tion (I duck the question as to whether it is a convenient truth or
a convenient fiction).2 For example, it: as you read this, you ra-
tionally and intentionally say “l am now reading section 2,” you
succeed in referring to this section, without the aid of attendant
observers. You do so because we define the words that way; refer-
ence and meaning and so on are not just paradigmatically but de-
finitionally what people do. In other words your actions are the
definitional locus of reference; the rest is hypothesis, and falsifi-
able theory. If on the other hand I “inquire” of my home com-
puter as to the address of a friend’s farm. and it “tells me” that it is
on the west coast of Scotland, the computer has not referred to
Scotland in any full-blooded sense—it hasn’t a clue as to what or
where Scotland is. Rather. it has merely typed out an address that
is probably stored in an ASCII code somewhere inside it, and I
supply the reference relationship between that spelled word and
the country in the British Isles.

The reflection hypothesis spelled out in the prologue, about how
computational models of reflection might be constructed, embod-
ied this cautionary stance: I said there that in as much as a compu-
tational process can be constructed to reason at all, it could be made
to reason reflectively in a certain fashion. Thus I will take the
topic of computational reflection to be restricted to those compu-
tational processes that, for similar purposes, we find it convenient
to describe as reasoning reflectively. I do this in order to avoid the
question of whether the “reflectiveness” embodied in our compu-
tational models is authentically borne, or derivatively ascribed.

 x «Reference Dennett, Haugeland, Searle, as appropriate…»

 2 For a discussion of the semantical properties of computational systems see
for example Fodor (1980), Fodor (1978), and Haugeland (1978).

82 Indiscrete Affairs · I

The setting aside worries about semantic originality is one reduc-
tion in scope; I also adopt another. Again, in the prologue, I
spoke of reflection as if it encompassed contemplative considera-
tion not only of one’s self but also of one’s world (and one’s place
therein). While I will discuss the relationship between reflection
and self-reference in more detail below, it is important to ac-
knowledge that the focus of this investigation is almost entirely
on the “selfish” part of reflection: on what it is to construct com-
putational systems able to deal with their own ingredient structures
and operations as explicit subject matters.

This second restriction might seem to arise for simple reasons,
such as that this is an easier and better-constrained subject matter
(I certainly do not consider myself in a position to postulate mod-
els of thinking about external worlds). But in fact the restriction
arises for deeper reasons, again having to do with the reflection
hypothesis. In the architectures I develop, I consider only internal
or interior processes, able to reflect on interior structures, which is
the only world that those internal processes conceivably can have
any access to. Lisp processors (interpreters), in particular, have no
access to anything except fields of s-expressions; they do not in-
teract with the world directly, but rather in virtue of running pro-
grams, engender more complex processes that interact with the
world.x

This “interior” sense of language processors interacts crucially
with the reflection hypothesis, especially in conjunction with the
representation hypothesis. Not only can we restrict to our atten-
tion to ingredient processes “reasoning about” (computing over.
whatever) internal computational structures, we can restrict our
attention to processes that shift their (extensional) attention to
meta-structural terms. For consider: if it turns out that I am a
computational system, consisting of an ingredient process P ma-
nipulating formal representations of my knowledge of the world,
then according to the representation hypothesis, when I think,
say, about Virginia Falls in northern Canada, my ingredient proc-
essor P is manipulating representations that are about Virginia
Falls. Suppose. then, that I back off a step and comment to myself

 x These paragraphs are awkward; and too wordy. I should compact them…

 2b · Reflection & Semantics · Introduction

 83

that whenever I should be writing another sentence I have a ten-
dency instead to think about Virginia Falls. What do we suppose
that my processor P is doing now? Presumably (“presumably”, at
least, according to the knowledge representation hypothesis.
which, it is important to reiterate, we are under no compulsion to
believe) my processor P is now manipulating representations of my
representations of Virginia Falls. In other words, because we are fo-
cused on the behaviour of interior processes, not on compositionally
constituted processes, our exclusive focus on self-referential aspects
of those processes is all we can do (given our two governing hy-
potheses) to uncover the structure of constituted, genuine reflective
thought.

The same point can be put another way. The reflection hy-
pothesis docs not state that, in the circumstance just described, P
will reflect on the knowledge structures representing Virginia
Falls (in some weird and wondrous way)—this would be an un-
happy proposal, since it would not offer any hope of an explana-
tion of reflection. On pain of circularity, reflective behaviour—the
subject matter to be explained—should not occur as a phenome-
non in the explanation. Rather, the reflection hypothesis is at
once much stronger and more tractable (although perhaps for
that very reason less plausible): it posits, as an explanation of the
mechanism of reflection, that the constituent interior processes
compute over a different kind of symbol. The most important fea-
ture of the reflection hypothesis, in other words, is its tacit as-
sumption that the computation engendering reflective reasoning,
although it may be over a different kind of structure, is nonethe-
less similar in kind to the sorts of computation that regurlarly
proceed over normal structures.

In sum, it is methodological allegiance to the knowledge repre-
sentation hypothesis that underwrites my self-referential stance.

Though I will not discuss this meta-theoretic position further,
it is crucial that it be understood, for it is only because of it that I
have any right to call this inquiry a study of reflection, rather than
a (presumably less interesting) study of computational self-

84 Indiscrete Affairs · I

reference.x

 2b Reflection in Computational Formalisms
Turn, then, to the question of what it would be to make a compu-
tational process reflective in the sense just described.

At its heart, the problem derives from the fact that in tradi-
tional computational formalisms the behaviour and state of the
interpretation process are not accessible to the reasoning proce-
dures: the interpreter forms part of the tacit background in terms
of which the reasoning processes work. Plus, in the majority of
programming languages, and in all representation languages, only
the uninterpreted data structures lie within the reach of a pro-
gram. A few languages, such as Lisp and Snobol,x extend this ba-
sic provision by allowing program structures to be examined, con-
structed, and manipulated as first class entities. What has never
before been provided is a high level language in which the process
that interprets those programs is also visible and subject to modi-
fication and scrutiny. Therefore such matters as whether the in-
terpreter is using a depth-first control strategy, whether free vari-
ables are dynamically scoped, how long the current problem has
been under investigation, or what caused the interpreter to start
up the current procedure, remain by and large outside the realm
of reference of standard representational structures. One way in
which this limitation is partially overcome in some programming
languages is to allow procedures access to the structures of the
implementation (examples: MDL, InterLISP, ete.3), although such a
solution is inelegant in the extreme, defeats portability and coher-
ence, lacks generality, and in general exhibits a variety of misfea-

 x Think about whether this is more subtle than the point in the Varieties

paper, or perhaps in the annotation to the POPL paper …

 x Snobol (“String Oriented Symbolic Language”), a string-processing lan-
guage developed in the 1960s at AT&T Bell Laboratories, allowed strings to
be treated as programs (programs could thus be dynamically constructed
and executed on the fly). Famous for treating patterns as a first-class data
type, Snobol served in some ways as a precursor to such modern languages
as Perl.

 3 Such facilities as are provided in MDL are described in Galley and Pfister
(1975); those in InterLISP, in Teitelman (1978).

 2b · Reflection & Semantics · Introduction

 85

tures that I will examine in due course. In more representational
or declarative contexts no such mechanism has been demon-
strated, although a need for some sort of reflective power has ap-
peared in a variety of contexts (such as for overriding defaults,
gracefully handling contradictions, etc.).

A striking example comes up in problem-solving: the issue is
one of enabling simple declarative statements to be made about
how the deduction operation should proceed For example, it is
sometimes suggested that a default should be implemented by a
deductive regime that accepts inferences of the following non-
monotonic variety (i.e., if “not P” cannot be proved, then deduce
P):

 ¬ ⊢ ¬P (1)
 P

Though it is not difficult to build a problem solver that embodies
such behaviour (at least on some computable reading of “not
provable”). one typically does not want such a rule to be obeyed
indiscriminately, independent of context or domain. On the con-
trary, there are usually constraints on when such inferences are
appropriate—having to do with, say, how crucially the problem
needs a reliable answer, or with whether other less heuristic ap-
proaches have been tried first What people writing problem-
solver systems have wanted is a way to write down specific in-
stances of something like (1) that explicitly refer both to the sub-
ject domain and to the state of the deductive apparatus, which, in
virtue of being written down, lead that inference mechanism to be-
have in the way described.

Particular examples are easy to imagine. Thus consider a com-
putational process designed to repair electronic circuits. One can
imagine that it would be useful to have inference rules of the fol-
lowing sort: “Unless you have been told that the power supply is bro-
ken. you should assume that it works”, or, “You should make checking
capacitors your first priority, since they are more likely than resistors
to break down”. Furthermore, it would be good to ensure that
such rules could be modularly and flexibly added and removed
from the system, without each time requiring surgery on the in-
ner constitution of the inference engine. Though we are skirting
close to the edge of an infinite regress, it is clear that something

86 Indiscrete Affairs · I

like this kind of protocol is a natural part of normal human con-
versation. From an intuitive point of view it seems perfectly rea-
sonable to say: By the way, if you ever want to assume P, it would be
sufficient to establish that you cannot prove its negation. The ques-
tion is whether we can make formal sense out of this intuition.

Clearly enough, the problem is not so much one of what to say,
but of how to say it (to some kind of theorem-prover, for exam-
ple) in a way that on the one hand does not lead to an infinite re-
gress, and that on the other genuinely affects its behaviour. All
sorts of technical question arise. It is not obvious what language
to use,, for example; or even to whom such a statement should be
directed. Suppose, for example, that we were supplied with a
monotonic natural-deduction based theorem prover for first or-
der logic. Could we supply it with (1) as an ordinary material im-
plication? Certainty not. At least in the form given above, it is not
even a well-formed sentence. There are various ways we could en-
code it as a sentence—one way would be to use set theory, and to
talk explicitly about the set of sentences derivable from other sen-
tences, and then to say that if the sentence ‘¬P’ is not in a certain
set, then ‘P’ is. The problem is that while such a sentence might
contribute to a model of the kind of inference procedure we de-
sire, in any ordinary theorem prover simply adding it to the stock
of implication that it has to work with would not thereby cause the
inference mechanism itself behave non-monotonically in the described
way. Rather than constructing a non-monotonic reasoning sys-
tem, all we would have done is to “teach” a monotonic one about
non-monotonic reasoning. While such a formulation might be of
interest in the specification of the constraints a reasoning system
must honour (a kind of “competence theory” for non-monotonic
reasoning4), it would not help us, at least on the face of things,
with the question of how a system using defaults might actually
be deployed. Another option, of course, would be to build a non-
monotonic inference engine from scratch, using expressions like
(1) to constrain its behaviour, along the lines of program re-
quirements and abstract program specifications. But this would
solve the problem by avoiding it—the whole question was how to
use such comments on the reasoning procedure coherently within

 4 Reiter (1978), McDermott and Doyle (1978), Bobrow (1980).

 2b · Reflection & Semantics · Introduction

 87

the structures of the problem-specific application.
Yet another possibility—one I wish to focus on for a mo-

ment—is to design a more complex inference mechanism to react
appropriately not only to sentences in the standard object lan-
guage, but to meta-theoretic expressions of the form (1). Al-
though no system of just this sort has been demonstrated, such a
program is readily imaginable, and various dialects of PROLOG—
perhaps most clearly the IC-PROLOG of Imperial College5—are
best viewed in this light The problem with such solutions, how-
ever, is their excessive rigidity and inelegance, coupled with the
fact that they do not really solve the problem in any case. What a
PROLOG user is given is not a unified or reflective system, but a
pair of two largely independent formal systems: a basic declarative
language in which facts about the world can be expressed, and a
separate procedural language, through which the behaviour of the
inference process may be controlled. Although the elements of
the two languages are mixed in a PROLOG program, they are best
understood as separate aspects. One set (the structure of clauses,
implications, and predicates, the identity of variables, and so
forth) constitutes the declarative language, with the standard se-
mantics of first-order logic. Another (the sequential ordering of
the sentences and of the predicates in the premise, the “con-
sumer” and “producer” annotations on the variables. the “cut” op-
erator, and so forth) constitute the procedural language. Of course
the flow of control is affected by the declarative aspects, but this is
just like saying that the flow of control of an ALGOL program is af-
fected by its data structures.

Thus the claim that to use PROLOG is to “program in logic” is in
my view misleading: rather, what happens is that one essentially
writes programs in a new (and, as it happens, rather limited) con-
trol language, using an encoding of first-order logic as the declara-
tive representation language (i.e., as the field of data structures).
Of course this is a dual system with a striking fact about its pro-
cedural component: all conclusions that can be reached are guar-
anteed to be valid implications of prior structures in the represen-
tational field. As mentioned above, however, this dual-calculus
approach seems ultimately rather baroque, and is certainly not

 5 Clark and McCabe (1979).

88 Indiscrete Affairs · I

conducive to the kind of reflective abilities we are after. It would
be far more elegant to be able to say, in the same language as the
target world is described, whatever it was salient to say about how
the inference process was to proceed.

For example, to continue with the PROLOG example, one would
like to say both FATHER(BENJAMIN,CHARLES) and CUT(CLAUSE-13)
or DATA-CONSUMER(VARIABLE-4) in one and the same language,
with both subject to the same semantical and procedural treat-
ment. The increase in elegance, expressive power, and clarity of
semantics that would result are too obvious to belabour: just a
moment’s thought leads to one realise that only a single semanti-
cal analysis would be necessary (rather than two); the reflective
capabilities could recurse without limit (PROLOG and other dual-
calculus systems intrinsically consist of just a single level); a meta-
theoretic description of the system would have to describe only
one formal language, not two; descriptions of the inference
mechanism, would be immediately available, rather than having
to be extracted from procedural code; and so forth.

This ability to pass coherently between two situations—in the
reflective case to have the structures that normally control the in-
terpretation process be fully and explicitly visible to (and manipu-
lable by) the reasoning process, and in the other to allow the rea-
soning process to sink into them, so that they may take their
natural effect as part of the tacit background in which the reason-
ing process works—this ability is a particular form of reflection
that I will call procedural reflection (“procedural” because I are
not yet requiring that those structures at the same time describe
the reasoning behaviours they engender; that is the larger task not
yet taken on). Although ultimately limited, in the sense that a
procedurally reflective calculus is by no means a fully reflective
one, even this more modest notion is on its own a considerable
subject of inquiry.

 2c Six General Properties of Reflection
Given the foregoing sketch of the task, it is appropriate to ask, be-
fore plunging into details, whether we can have any sense in ad-
vance of what form the solution might take. Six properties of
reflective systems can be identified straight away—features that
any ultimate solution should exhibit, however it ends up being
structured and/or explained.

 2b · Reflection & Semantics · Introduction

 89

tured and/or explained.

 2c.i Causal connection
First, the notion is one of self-reference, of a causally-connected
kind, stronger than the notion explored by mathematicians and
philosophers over much of the last century. What is needed is a
theory of the causal powers required in order for a system’s pos-
session of self-descriptive and self-modelling abilities to actually
matter to it—a requirement of substance, since full-blooded, ac-
tual behaviour is our ultimate subject matter, not simply the
mathematical characterisation of formal relationships.

In dealing with computational processes, we are dealing with
artefacts behaviourally defined, after all, unlike systems of logic,
which are functionally defined abstractions that in no way behave
or participate with us in the temporal dimension. Although any
abstract machine of Turing power can provably model any
other—including itself—there can be no sense in which such self-
modelling is even noticed by the underlying machine (even if we
could posit an animus ex machina to do the noticing). If, on the
other hand, our aim is to build a computational system of sub-
stantial reflective power, we will have to build something that is
affected by its ability to “think about itself.” This holds no matter
how accurate the self-descriptive model may be; you simply can-
not afford simply to reason about yourself as disinterestedly and
inconsequentially as if you were someone else.

Similar requirements of causal connection hold of human reflec-
tion. Suppose, for example, that after taking a spill into a river I
analyse my canoeing skills and develop an account of how I would
do better to lean downstream when exiting an eddy. Coming to
this realisation is useful just in so far as it enables me to improve.
If I merely smile in vacant pleasure at an image of an improved
me, but then repeat my ignominious performance—if in other
words my reflective contemplations have no effect on my subsequent
behaviour—then my reflection will have been in vain. It is crucial,
in other words, to make the move from description to reality. In
addition, just as the result of reflecting has to affect future non-
reflective behaviour, so does prior non-reflective behaviour have
to be accessible to reflective contemplation; one must equally be
capable of moving from reality to description. It would have been

90 Indiscrete Affairs · I

equally futile if, when I initially paused to reflect on the cause of
my dunking, I had been unable to remember what I had been do-
ing just before I capsized.

In sum, the relationship between reflective and non-reflective
behaviour must be of a form such that both information and ef-
fect can pass back and forth between them. These requirements
will impinge on the technical details of reflective calculi: we will
have to strive to provide sufficient connection between reflective
and non-reflective behaviour so that the right causal powers can
be transferred across the boundary, without falling into the oppo-
site difficulty of making them so interconnected that confusion
results. (An example is the issue of providing continuation struc-
tures to encode control flow: we will provide separate continua-
tion structures for each reflective level, to avoid unwanted interac-
tions, but we will also have to provide a way in which a designator
of the lower level continuation can be bound within the environ-
ment of the higher one, so that a reflective program can
straightforwardly refer to the continuation of the process below
it). The interactions between levels can grow rather complex.
Suppose, to take another example, that you decide at some point
in your life that whenever some type of situation arises (say, when
you start behaving inappropriately in some fashion), that you will
pause to calm yourself down, and to review what has happened in
the past when you have let your basic tendencies proceed un-
checked. The dispassionate fellow that you must now become is
one that embodies, in their current and on-going being, a decision
made now at some future point to reflect. Somehow, without acting
in a self-conscious way from now until such a circumstance arises,
you have to make it true that when the situation does arise, you
will have left yourself in a state that will cause the appropriate re-
flection to happen then. By the same token, in the technical
formalisms we design, we have to provide the ability to descend
(“drop down”) from a reflected state to a non-reflected one, hav-
ing left the base level system in such a state so that, when certain
situations occur in the future, the system will automatically re-
flect at that point, and thereby obtain access to the reasons that
were marshalled in support of the original decision.

 2b · Reflection & Semantics · Introduction

 91

 2c.ii Self-knowledge
Second, reflection has something, although just what remains to
be seen, to do with self-knowledge, as well as with self-reference—
and knowledge, as has often been remarked, is inherently theory-
relative (in a way that pure self-reference is not). Just as one can-
not interpret the world except through using the concepts and
categories of a theory, one cannot reflect on one’s self except in
terms of the concepts and categories of a theory of self. Further-
more, as is the case in any theoretical endeavour, the phenomena
under consideration under-determine the theory that accounts
for them, even when all the data are to be accounted for. In the
more common case, when only parts of the phenomenal field are
to be treated by the theory, an even wider set of alternative theo-
ries emerge as possibilities. In other words, when you reflect on
your own behaviour, you must inevitably do so in a somewhat arbi-
trary theory-relative way.

One of the mandates must be set for any reflective calculus,
therefore, is that it be provided, represented in its own internal
language, with an (in some appropriate sense) complete theory of
how it is formed and of how it works.

Theoretical entities may be posited by this account that facili-
tate an explanation of behaviour, even though those entities can-
not be claimed to have a theory-independent ontological existence
in the behaviour being explained. 3-Lisp will be provided with a
“theory” of 3-Lisp in 3-Lisp, for example, reminiscent of the
metacircular interpreter demonstrated in McCarthy’s original re-
port6 and in the reports of Sussman and Steele7—but causally
connected in novel ways. In providing this primitively supported
reflective model, I adopt a standard account, in which a number
of notions commonly used to describe Lisp play a central role—
such as that of an environment, just mentioned, and a parallel no-
tion of a continuation. In spite of their familiarity, however, these
have historically remained Lisp-external notions, being used only
to describe (and model) Lisp, rather than figuring as first-class
objects internal to the language in any direct sense. It is impossible
in a non-reflective Lisp to define a predicate true only of environ-

 6 McCarthy et al. (1965).
 7 Sussman and Steele (1975); Steele and Sussman (1978a).

92 Indiscrete Affairs · I

ments, since environments as such do not exist in such dialects.
Because its reflective capacities are defined in terms of an envi-
ronment and continuation-based theory, the notion of an envi-
ronment becomes language-internal to 3-Lsip—with environment
representing structures being passed around as first-class entities.

There are other possible Lisp theories, some of which differ
substantially from the one I have chosen. For example, it is possi-
ble to replace the notion of environment altogether (note that the
λ-calculus is explained without any such device). If a reflective
dialect were defined in terms of this alternative theoretical ac-
count (call such a language 3'-Lisp), environments would no
longer be a language internal concept. It would be likely, however,
that this theory would posit other kinds of object, or other no-
tions (such as α- and β-reduction), and in virtue of being reflective
3'-Lisp those notions would become language-internal. In order
to reflect you have to use some theory and its associated theoreti-
cal concepts and entities.

 2c.iii Reflectivity vs. Reflexivity
The third general point about reflection regards its name. I have
deliberately chosen the term ‘reflective,’ as opposed to ‘reflexive,’
since there are various senses (other recent research reports not
withstanding8) in which no computational process, in any sense I
can understand, can succeed in narcissistically thinking about the
fact that it is at that very instant thinking about itself thinking about
itself thinking...—and so on and so on, like a transparent eye in a
room full of mirrors.x The kind of reflecting I will consider—the

 8 Greiner and Lenat (1980), Genesereth and Lenat (1980).

 x This is what I wrote at the time (1980), and so I have left it standing—but it
is not a statement I would agree with today (2010). I still believe that there
is a sensible intuition that motivating saying it about local reflexion—i.e.,
about the possibility of having “I am now thinking” refer to itself quietly,
as it were, without invoking a Necker-cube like reverberation between one
state and another (in something like the way in which non-well-founded
set theory supports the notion of a one-element set having itself as its sole
member). While not necessarily easy, I believe that this can be done accom-
plished—and, perhaps oddly but perhaps not, that doing so relates to vari-
ous forms of self-referential discipline trained in various Asian meditative
traditions. More seriously, unlike some others I do not believe that either

 2b · Reflection & Semantics · Introduction

 93

kind that 3-Lisp demonstrates how to technically define, imple-
ment, and control—requires that in the act of reflecting the proc-
ess “take a step back” in order to allow the interpreted process to
consider what it was just up to from a different vantage point, to
bring into view symbols and structures that describe its state “just
a moment earlier.” From the mere fact of a system’s having a
name for itself it does not follow that the system thereby auto-
matically acquires the ability to focus on its current instantaneous
self, for in the process of “stepping back” or reflecting, the “mind’s
eye” moves out of its own view, being replaced by an (albeit possi-
bly complete) account of itself. (Though this description is surely
more suggestive than incisive, it is my hope that the technical
work to be presented will help to allow us to make it precise.)

 2c.iv Fine-grained control
Fourth, in virtue of reflecting a process can always obtain a finer-
grained control over its behaviour than would otherwise be possi-
ble. What was previously an inexorably atomic stepping from one
state to the next is opened up so that each move can be analysed,
countered, and so forth—and also be broken down into constitu-
ent parts. As we will see in detail, in this way reflective powers
give a system a far more subtle and more catholic—if less effi-
cient—way of reacting to a world. The requirement here is the
usual one: for what was previously implicit to be made explicit,
albeit in a controlled and useful way, without violating the ulti-
mate truth that not everything can be made explicit in a finite
mechanism. This ability enables a system designer to satisfy what
might otherwise be taken to be incompatible demands: (i) the
provision of a small and elegant kernel calculus, with crisp defini-

the meaning or the truth of such statements as that “all statements are
perspectival” need in any way be undermined by the fact that they apply,
among other things, to themselves.

 As explained in “Varieties of Self-Reference,” «check ■■» I use ‘reflexive’
to refer to states, processes, expressions, etc., that include themselves
within their referential or semantic extension; ‘reflective,’ as here, to refer
to processes of “stepping back” and assaying, from a distinct vantage
point, another part or aspect or period of oneself. There is no doubt that,
according to this distinction, 3-Lisp was correctly described as a model of
computational reflection, not or computational reflexion.

94 Indiscrete Affairs · I

tion and strict behaviour; and at the same time (ii) the ability for
the user (by using reflection) to be able to modify or adjust the
behaviour of this kernel in peculiar or extenuating circumstances.
One of reflection’s great powers is that it allows such simplicity
and flexibility to be achieved simultaneously.

 2c.v Vantage point
This leads to the fifth general comment, which is that the ability
to reflect never provides a complete separation, or an utterly ob-
jective vantage point from which to view either oneself or the
world. No matter now reflective any given system or person may
be, it remains a truism that there is ultimately no escape from be-
ing the person in question. Though as the dissertation proceeds I
will increasingly downplay any connection between the formal
work presented here and human abilities, it is still perhaps helpful
to say that the kind of reflection to be presented here is closer to
what is known as detachment or awareness than it is to a strict
kind of self-objectivity (this is why I have been and will remain
systematically imprecise about whether reflection is fundamentally
a way to think about oneself or a way to think about the world).

The environment example just mentioned provides an illustra-
tion in a computational setting. As we will see in detail, the envi-
ronment in which are bound the symbols that a program is using
is, at any level, merely part of the embedding background in
which the program is running. The program operates within that
background, dependent on it but—in the normal (unreflective)
course of events—unable to access it explicitly. The operation of
reflecting makes explicit what was just implicit: it renders visible
what was tacit, what was in the background. In doing so, how-
ever, a new background fills in to support the reflective delibera-
tions. Again, the same is true of human reflection: you and I can
interrupt our conversation in order to sort out the definition of a
contentious term. but—as has often been remarked—we do so
using other terms. Since language is our inherent medium of
communication, we cannot step out of it to view it from a com-
pletely independent vantage point. Similarly, while the systems I
will show how to build can at any point back up and mention
what was previously used, in doing so more structured back-
ground will come into implicit use.

 2b · Reflection & Semantics · Introduction

 95

This lesson, of course, has been a major one in philosophy at
least since Peirce; certainly Quine’s famous comment about Ncu-
rath’s boat holds as true for the systems we design as it does for us
designers.9

 2c.vi Reflectivity vs. Reflexivity
Sixth and finally, the ability to reflect is something that must be
built into the heart or kernel of a calculus. There are theoretically
demonstrable reasons why reflective powers cannot be
“progrrammed up” as an addition to a calculus (though one can of
course implement a reflective machine in a non-reflective one: the
difference between these two must always be kept in mind). The
reason for this claim is that, as discussed in the first comment, be-
ing reflective is a stronger requirement on a calculus than simply
being able to model the calculus in the calculus, something of which
any machine of Turing power is capable (this is the “making it
matter” that was alluded to above). This will be demonstrated in
detail; the crucial difference, as suggested above, comes in con-
necting the self-model to the basic interpretation functions in a
causal way, so that (for example and very roughly) when a process
“decides to assume something,” it can thereby in fact assume it,
rather than simply constructing a model or self-description or
hypothesis that claims that it is assuming it. As well as “backing
up” in order to reflect on its thoughts or operations, in other
words, a reflective process must be able to “drop back down
again” to consider the world directly, in accord with the conse-
quences of those reflections. Both parts of this involve a causal
connection between the explicit programs and the basic workings
of the abstract machine, and such connections cannot be “pro-
grammed into” a calculus that does not support them primitively.

 2d Reflection and Self-Reference
At the beginning of this section I said that my investigation of re-
flection in general would primarily concern itself, because of op-
erating under the knowledge representation hypothesis, with the
self-referential aspects of reflective behaviour. There has been in
the last century no lack of investigation into self-referential ex-

 9 Quine (1953a), p. 79 in the 1963 edition.

96 Indiscrete Affairs · I

pressions in formal systems, especially since it has been exactly in
these areas where the major results on paradox, incompleteness,
undecidability, and so forth, have arisen. It is therefore helpful to
compare the present enterprise with these theoretical precursors.

Two facets of the computational situation show how very dif-
ferent our concerns here will be from these more traditional stud-
ies. First, although I do not formalise this, there is no doubt in my
work that I consider the locus of referring to be an entire process,
not a particular expression or structure (especially not a solitary
expression or structure). Even though I will posit declarative se-
mantics for individual expressions, I will also make evident the
fact that the designation of any given expression is a function not
only of that expression itself, but also of the state of the processor
at the point of that expression’s use. And to the extent that “use” is
even a coherent term for symbolic activity, it is the processor that
uses the symbol; the symbol does not use itself. To the extent
that we want a system to be self-referential, then, we want the
process as a whole to be able to refer, to first approximation, to its
whole self, although in fact this usually reduces to a question of it
referring to some of its own ingredient structure.

Achieving this goal is not only not met by providing the system
with self-referential structure, but even more strongly, I avoid
such self-referential structures entirely, exactly to avoid many of
the intractable (if not inscrutable) problems that arise in such
cases. Because of it’s λ-calculus base, it is perfectly possible in 3-
Lisp to construct apparently self-designating expressions (at least
up to type-equivalence: token self-reference is more difficult). But
from a practical point of view the system of levels I will embrace
will by and large exclude such local self-reference from our con-
sideration. Truly self-referential expressions, such as This sentence
is six words long, are unarguably odd, and certain instances of
them, such as the clichéd This sentence is false, are undeniably
problematic.10 None of these truths impinge particularly on our

 10 Strictly speaking, of course, the sentence “This sentence is six words long”

contains a self-reference, but is not itself self-referential. We could instead
construct the composite term ‘This five word noun phrase’—though it is
not as immediately evident that this leads to trouble. However the point is
that the kind of reflection I am aiming for in 3-Lisp is of quite a different
kind, and has no need to any such convolutions.

 2b · Reflection & Semantics · Introduction

 97

quite different concerns.
The second comment illustrating how different 3-Lisp and

procedural are from mathematical and logical studies of self-
reference is this: in traditional formal systems, the actual reference
relationship between any given expression and its referent
(whether that referent is itself or a distal object) is mediated by an
externally attributed semantical interpretation function. The sen-
tence “This sentence is six words long” does not actually refer. in
any causal full-blooded sense. to anything; rather, we English
speakers take it to refer to itself. The reference relation connect-
ing that sentence in its role as sign, and that same sentence in its
role as referent or significant, flows through us.

As emphasized in the previous section in the discussion of
causal connection, in constructing reflective computational sys-
tems it is crucial for the causal mediation not to be be deferred
through an external observer. Reflection in a computational sys-
tem has to be causally connected internally, even if the semantical
understanding of that causal connection is externally attributed.
For example, in 3-Lisp there is a primitive relationship that holds
between a certain kind of symbol, called a handle (a canonical
form of meta-descriptive rigidly-designating name) and another
symbol that, semantically, each handle designates. I.e., handles
are the 3-Lisp structural form of quotation. Suppose that H1 is a
handle, and that S1 is some structure that H1 refers to. Strictly
speaking, there is an internal structural relationship between H1
and S1, which we, as external semantical attributors, take in addi-
tion to be a reference relationship. Until we can construct compu-
tational systems that are what I have called semantically original.
the semantical import of that relationship will always remain ex-
ternally mediated. But the causal relationship between H1 and S1
must be internal: otherwise there would be no way for the internal
computational processes to treat that relationship in any way that
mattered.

This may be clearer if put a bit more formally. Suppose that φ
is the externally attributed semantical interpretation function, and
that ζ is the primitive structural function that relates handles to
those structures we call their referents. It is ζ that will allow the
processor to produce or obtain causal access to a structure S given
that H is its handle. Thus in the prior example, it is true both that

98 Indiscrete Affairs · I

φ(H1)=S1, due to our external semantical attribution of reference
to H, and that ζ(H1)=S1. More generally, we know that:

 ∀H,S [[handle(H) ∧ ζ(H)=S]] ⊃ [Φ(H)=S]] (2)

However, though in some sense it is strictly true,x this equation in
no way reveals the structure of the relationship between φ and ζ; it
merely states their extensional equivalence. More revealing of the
fact that I take the relationship between handles and referents to
be a reference relation (if I may wantonly reify relationships for a
moment) is the following:

 φ(ζ)=φ (3)

Of, rather, since not all symbols are handles. as:

 φ(ζ) ⊂ φ (4)

The requirement that reflection matter, to summarise. is a crucial
facet of computational reflection—one without precedent in pre-
computational formal systems. What is striking is that the mat-
tering cannot be derived from the semantics, since it would
appear that mattering—which requires a real causal
connection—is a precursor to semantica1 originality, not
something that can follow semantical relationships. Put another
way. in the inchoately semantical computational systems I are try-
ing to build, the reference relationships between internal meta-
level symbols and their internal referents (the semantical relation-
ships crucial in reflective considerations) may have to be causal in
two distinct ways: once mediated by us, who attribute semantics to
those symbols in the first place, and a second time internally, so
that the appropriate causal behaviour, to which we attribute se-
mantics, can be engendered. On that day when we succeed in
constructing semantically original mechanisms, those two pres-
ently independent causal connections may merge; until then we
will have to content ourselves with causally original but semanti-
cally derivative systems. The reflective dialects I will propose will
all be of this form.

 x It is false. «Explain»

 2b · Reflection & Semantics · Introduction

 99

 3 A Process Reduction Model of Computation
I next want to sketch the model of computation on which the
analysis and design of 3-Lisp will depend.

I take processes to be the fundamental subject matter; though
I will not define the concept precisely, we can assume that a proc-
ess consists approximately of a connected or coherent set of
events through time. The reification of processes as objects in
their own right—composite and causally engen-
dered—is a distinctive, although not distin-
guishing, mark of computer science. Processes
are inherently temporal, but not otherwise
physical:x they do not have spatial extent, al-
though they must have temporal extent Whether
there are more abstract dimensions in which in
is appropriate to locate a process is a question I
will sidestep; since this entire characterisation is
by way of background for another discussion, I will rely more on
examples and on the uses to which we put these objects than on
explicit formulation.

I will depict processes as in figure 1. The boundary of the icon
is intended to signify the boundary or surface of the process itself,
taken to be the interface between the process and the world in
which it exists (I take objectifying a process to involve “carving
them” out of a world in which it can then be said to be embed-
ded). Thus the set of events that collectively form the behaviour
of a coherent process in a given world would consist of all events
on the surface of this abstract object. This set of events could be
more or less specifically described: we might simply say that the
process had certain gross input/output behaviour (with “input”
and “output” being defined as a certain class of surface perturba-
tion—an interesting and non-trivial problem), or we might ac-
count in tine detail for every nuance of the process’s behaviour,
including the exact temporal relationships between one event and

 x At the time this was written, I was already starting to reject the claim that

computational processes are formal, in the sense of operating independ-
ently of their semantic interpretation (in spite of what is being said in this
passage), but had yet to question adequately another assumption: that
computational arrangements are abstract. See «ref AOS».

Figure 1

100 Indiscrete Affairs · I

the next, and so forth.
It is crucial to distinguish these more and less fine-grained ac-

counts of the surface of a process, on the one hand—its behav-
ioural interface or interactions with its environment—from com-
positional accounts of its interior, on the other. That a process
has such an “interior” is again a striking assumption throughout
computer science: the role of what in computer science are uni-
versally called interpreters, though I myself will use the term
processors, is a striking example.x Suppose for instance that one
were interact with a so-called “Lisp-based editor.” It is standard
to assume that the Lisp interpreter (processor) is an ingredient
process within the process with which you interact: moreover, it is
understood to be the locus of anima or agency inside your editor
process, that in turn supplies the temporal action or activity in
the editor itself. That is, of all the interior ingredients constitut-
ing the editor, only the interpreter (processor) is understood to
be active; all other components—specifically, the “editor pro-
gram” and any associated data structures—will be static or at
least passive, at least at this level of abstraction. Yet the one active
ingredient (interior) process never appears as the surface of the edi-
tor: no user interaction with the editor (via the keyboard, say) is
itself directly an interaction with the Lisp processor. Rather, the
Lisp processor, in conjunction with some appropriate (passive)
Lisp program, together engender the behavioural surface with
which the user interacts.

Computer science has studied a variety of such architectures—
or classes of architecture; here I will briefly mention just two, but
will then focus, throughout the rest of the dissertation, on just
one. Every computational process, I will assume (I will take on
the question of which processes we are disposed to call computa-
tional in a moment), has within it at least one other process,
which, singly or collectively, supplies the animate agency of the
overall constituted process.

I will call this model a process reduction model of computa-
tion. since at each stage of computational reduction a given process
is reduced in terms of constituent symbols and other processes.

 x «Reference the discussions in other papers—POPL? Prologue? I forget

where this is talked about, complete with figures, etc.»

 2b · Reflection & Semantics · Introduction

 101

There may be more than one internal process (in what are known
as parallel or concurrent processes), or there may be just a single
one (known as serial processes). Reductions of processes that do
not posit an interior process as the source of the agency I will
consider to be outside the realm of computer science proper—
though of course some such reduction must at some point be ac-
counted for, if the engendered process is ever to be realized. I will
view these alternatives forms of reduction—from process to, say,

behaviours of physical mecha-
nism—to fall more within physics
or electronics (or perhaps computer
engineering) than within computer
science per se. What is critical is
that at some stage in a series of
computational reductions this leap
from the domain or processes to
the domain of mechanisms be

taken, as for example in the explaining how the behaviour of a set
of logic circuits constitutes a processor (interpreter) for the mi-
crocode of a given computer. Given this one account of what may
reasonably be called the realization of a computational process,
an entire hierarchy of processes above it may obtain indirect reali-
sation through a series of process reductions of the above form.
For example, if microcode processor interprets a set of instruc-
tions that are the program for a macro machine (say, a CPU), then
a macro processor—an interpreter (processor) for the resulting
“machine language” may be said to exist. Similarly, that macro
machine may in turn interpret (process) a machine language pro-
gram that implements SNOBOL: thus by two stages of “process
composition” (i.e., the inverse of process reduction) a SNOBOL

processor is also realised.
In order to make this talk of processors and so forth a little

clearer, it helps to diagram two different forms of process reduc-
tion: what I will call communicative reduction and interpretive re-
duction. Taking the arrow ‘⇒’ to mean “reduces to,” figure 2 de-
picts communicative reduction, by showing that process P reduces
to a set of five interior processes (P1…P5). What it is for processes
to communicate I will not here say: I merely assume that those
five ingredient processes interact in some fashion, so that taken as

Figure 2 — Communicative Reduction

102 Indiscrete Affairs · I

a composite unity their total behaviour is (i.e., can be “inter-
preted”11 as) the behaviour of the thereby constituted process.
Responsibility for the surface of the total process P is assumed to
be shared in some way amongst the five ingredients. Examples of
this sort of reduction may be found at any level of the computa-

tional spectrum—from metaphors
of disk-controllers communicating
with bus mediators communicating
with central processors, to the mes-
sage-passing metaphors in such
Artificial Intelligence languages as
ACTI and Smalltalk and so forth.12

Communicative reductions will
receive only passing mention in this
dissertation; I discuss them only in
order to admit that the model of

reflection that I will propose is not (at least at present) suffi-
ciently general to encompass them. Instead I will focus instead on
the more common model that I am calling interpretive reduc-
tion, pictured in figure 3.x In such cases the overall process is
composed of what I will call a processor and a structural field.
The former ingredient is the locus of active agency we have been
speaking of; as already mentioned, it is what is typically called an
‘interpreter;’ from here on I will avoid that term (or when using it,
do so within quotation marks), because of its confusion with no-
tions of interpretation from the declarative tradition (I will have
much more to say about this confusion in chapter 3).x The latter
ingredient is intended to include both the program or the pro-
gram’s data structures (or both); it is often taken to consist of a
set of symbols, although that term is so semantically loaded that
for the time being I will avoid it as well.

 11 Using the English, rather than computer science, meaning of the term

‘interpret.’
 12 For references on the message-passing metaphor, see Hewitt et a1. (1974)

and Hewitt (1977); for ACT1 see Lieberman (1987); for Smalltalk see
Goldberg (1981), Ingalls (1978).

 x Why I did not use the phrases ‘serial’ and ‘parallel’ reduction I no longer
remember; they would seem to be more appropriate terms.

 x «Point also to other papers and commentaries as appropriate»

Figure 3 — Interpretive Reduction

 2b · Reflection & Semantics · Introduction

 103

This second kind of reduction includes all of computer sci-
ence’s standard interpreted languages, of which Lisp is as good an
instance as any. The Lisp structural field consists of what are
known as s-expressions: a combination of pairs (binary graph
elements of a certain form), atoms, numerals, and so forth.

One benefit of the interpretive
model of process reduction is that
it can be used to understand both
language design and the construc-
tion of particular programs.x For
example, we can characterise For-
tran in its terms, by positing a For-
tran “processor” that computes over
(examines, manipulates, constructs,
reacts to, and so forth) elements of
the Fortran structural field, which

includes primarily an ordered sequence of Fortran instructions,
FORMAT statements, etc. Suppose you were to set out to develop a
Fortran “program” (really: process) to manage your financial af-
fairs—which for discussion I will call Chequers. To do this, you
would specify a set of Fortran data structures, and design a proc-
ess to interact with them. In terms of the model, those data struc-
tures—the tables that list current balances, recent deposits, inter-
est rates, currency conversion factors, and so on—would consti-
tute the structural field of the first interpretive process reduction
of Chequers. The “program” you design to interact with these
data base I will simply call Pc. Thus the first Chequers interpre-
tive reduction would be pictured in the model as depicted in Fig-
ure 4.

We are assuming, however, that Pc is specified by a Fortran
program. Pc is not itself that program—or any program, for that
matter; Pc is a process, and programs are static, requiring interpre-
tation by a processor in order to engender processes or behaviour.
Rather, Pc can itself be understood in terms of a second interpre-

 x «The relation between programs and programming languages is a topic

that I continue to believe is of far more theoretical importance than is
normally recognized. See «…» for a discussion of the relation between pro-
gramming language semantics and program semantics. … discuss … »

Figure 4 — First Reduction of Chequers

104 Indiscrete Affairs · I

tive reduction, of the program C that, when processed by the For-
tran processor, yields process Pc as a result. In toto, that is, the
development of Chequers involves have a double interpretive re-

duction, depicted in Figure 5.

A host of questions would have to
be answered before this model
could be made precise (before, for
example, one could develop any-
thing like an adequate mathemati-
cal framework based on its underly-
ing intuitions). For example, the
data structures in the foregoing
example are themselves have to be
implemented in Fortran as well.

However to fill out the model just a little, we can suggest how we
might, in these terms, define a variety of commonplace terms of
art of computer science.

First, I take it that the computer science term ‘interpreter’
(which, to repeat, I will call a “processor”) is used in the following
way:

 Interpreter: A process that is the interior process in an inter-
pretive reduction of another interior process.

For example, the process Pc developed in the course or imple-
menting Chequers is not interpreter, on this definition, because
although it is an ingredient process (it is not, in particular,
Chequers itself, but rather interior to Chequers), it is nevertheless
interior only singly. The process thereby constituted—viz.,
Chequers—is not itself an interior process. On the other hand, it
is legitimate to call the process that “interprets” (i.e., processes)
Lisp programs an interpreter, because Lisp programs are struc-
tural field arrangements that engender other interior processes
that work over data structures so as to yield yet other processes.

Second, I would argue that we use “compilation” as follows:

 Compilation: The transformation or translation of a structural
field arrangement S1 to another structural field arrangement S2,
in such a way that the surface behaviour of the process Q1 that

Figure 5 — Second Chequers Reduction

 2b · Reflection & Semantics · Introduction

 105

would result from the processing of S1 by some processor P1 is
equivalent—modulo some appropriate equivalence metric—to
the surface behaviour of the process Q2 that would result from
the processing of S2 by some processor P2.

For example, I spoke above about a Fortran “processor,” but of
course such a processor is rarely if ever realised. Rather, Fortran
programs are typically compiled—usually into some form of ma-
chine language. Consider the compiler that compiles Fortran into
the machine language of the IBM 360. Then the compilation of a
particular Fortran program CF into an IBM 360 machine language
program C360 would be correct just in case the surface of the proc-
ess that would result from the processing of CF by the (hypotheti-
cal) Fortran processor would be equivalent to the process that
will actually result by the processing of C360 by the basic IBM 360
machine language processor.

In sum, compilation is defined relative to two interpretive re-
ductions, and is mandated only to ensure equivalence, modulo an
appropriate metric, of resulting process surfaces.

Third, by ‘implementation’ I take it that we refer to two kinds of
construction.

 Process Implementation (i.e., programming): The con-
struction of a structural field arrangement S for some processor P
such that the surface of the process that results from the interpre-
tation of S by P yields the desired behaviour—i.e., desired process
Q.

More interesting is to implement a computational language. In
terms of the model, we can characterize (serial) computer lan-
guages as follows:

 Computational Language: The architecture of a structural
field and a behaviourally specified processor for it, in which are
specified both possible arrangements or configurations of the
field, and the behaviour that would result from the processing of
them by the specified processor.

In terms of this definition, we can characterize the implementa-

106 Indiscrete Affairs · I

tion of a language:x

 Language Implementation: The provision of a process P that
can be interpretively reduced to the structural field and interior
processor of the language being implemented.

To implement Lisp, in other words, all that is required is the pro-
vision of a process that behaviourally appears to be a constituted
process consisting of the Lisp structural field and the interior
Lisp processor. Thus I am completely free of any actual commit-
ment as to the reality, if any, of the implemented field.x

Typically, one language is implemented in another by con-
structing some arrangement or set of protocols on the data struc-
tures of the implementing language to encode the structural field
of the implemented language. and by constructing a program in
the implementing language that, when processed by the imple-
menting language’s processor, will yield a process whose surface
can be taken as a processor for the interpreted language, with re-
spect to that encoding of the implemented language’s structural
field. (By a program we refer to a structural field arrangement
within an interior processor—i.e., to the inner structural field of a
double reduction—since programs are structures that are inter-
preted to yield processes that in turn interact with another struc-
tural field (the data structures) so as to engender a whole consti-
tuted behaviour.)

Finally, it is straightforward to imagine how this model could
be used in cognitive theorising. A weak computational model of
some mental phenomenon or behaviour ψ would be a computa-
tional process that was claimed to be superficially equivalent to ψ
(as always: modulo some equivalence metric). Note that surface
equivalence of this sort can be arbitrarily fine-grained. Just be-
cause a given computational model predicts the most minute
temporal nuances revealed by click-stop experiments and so forth,
that does not imply that anything other than surface equivalence
has been achieved In contrast, a strong computational model
would posit not only surface but interior architectural structure.

 x Is the following coherent—and correct? I am not at all sure. Tai!! …

 x … Similarly …

 2b · Reflection & Semantics · Introduction

 107

Thus for example Fodor’s recent claim of mental modularity13 is a
coarse-grained but strong claim: he suggests that the dominant or
overarching computational reduction of the mental is closer to a
communicative than to an interpretive reduction.

This has been the briefest of sketches of a substantial subject. Ul-
timately, it should be formalized into a generally applicable and
mathematically rigorous account. In this dissertation I will merely
use its basic conceptual structure to organise the analysis, and will
also base the 3-Lisp architecture on it. Even for these purposes,
however, it is important to identify three properties that all struc-
tural fields must manifest.

1. Locality: A locality metric or measure must be defined
over every structural field—since (in consort with physical
constraint) the interaction of a processor with a structural
field is always constrained to be locally continuous.

Informally, one can think of the processor looking at
the structural field with a pencil-beam flashlight—able to
see and react only to what is currently illuminated (more
formally, the behaviour of the processor must always be a
function only of its internal state plus the current single
structural field element under investigation). Why it is
that the well-known joke about a COME-FROM statement
in Fortran is funny, for example,14 can be explained only
because this it violates this local accessibility constraint
(it is otherwise perfectly well-defined). Note as well that
in logic, the λ-calculus, and so forth, no such locality con-
siderations come into play. In addition, the measure
space yielded by this locality metric need not be uniform,
as Lisp demonstrates; from the fact that A is accessible
from B it does not follow that B must be accessible from A.

2. Semantics: it is important to the overall consideration of

 13 Fodor (forthcoming).
 14 As reported on Wikipedia, COMEFROM was initially seen in lists of joke

assembly language instructions (as 'CMFRM'). It was elaborated upon in
Clark, R. Lawrence, “We don't know where to GOTO if we don't know
where we've COME FROM”, Datamation, 1973, written in response to
Edsger Dijkstra's “Go To Statement Considered Harmful” «ref».

108 Indiscrete Affairs · I

semantics that structural field elements are taken to be sig-
nificant—i.e., to be meaningful. This is why we tend to call
them symbols. In particular, i will count as computational
only those processes consisting of ingredient structures
and events to which we, as external observers, attribute
semantical value or import.

The reason cars are not considered to be computers,
even if we treat their electronic fuel injection modules
computationally, hinges on this issue of semantical attri-
bution. The main components of a car we understand in
terms of mechanics—forces, torques, plasticity, geome-
try, heat, combustion, and so on. These are not inter-
preted notions; or to put the same point another way, ex-
plaining a car does not require positing any externally at-
tributed semantical interpretation function in order to
make sense of a car’s inner workings. With respect to a
computer, however—whether abacus, calculator, elec-
tronic fuel injection system, or a full-scale digital com-
puter—the best explanation is exactly in terms of the in-
terpretation of the ingredients, even though the machine
itself is not allowed access to that interpretation (for fear
of violating the strictures of mechanism). Thus while I
may know that the arithmetic logical unit in my machine
works in such and such a way, I nevertheless “under-
stand” its workings in terms of addition, logical opera-
tions. and so forth, all of which speak about the
interpretations of its parts and workings, rather than
speaking about them directly. In other words the proper
use of the term “computational” is as a predicate on
explanations, not on artefacts.x

 x «This paragraph, and the subsequent (third) point, are clearly an informal

(and not especially clear) amalgam of Fodor’s “formality condition,” Den-
nett’s “intentional stance,” and a distinction between original and derived
intentionality. Fodor’s classic formulation of the formality condition ap-
peared in 1981 (the year this dissertation was written; see Fodor 1981);
Dennett’s Intentional Stance was not published until six years later (Den-
nett 1987), though formulations had appeared earlier (check■■). I no
longer believe that ‘computational’ is best understood a predicate on ex-
planations, though from a position that accepts derivative intentionality it

 2b · Reflection & Semantics · Introduction

 109

3. Formality: The third constraint follows directly on the
second: in spite of this semantical attribution, the interior
processes of a computational process must interact with
these structures and symbols and other processes in com-
plete ignorance and disregard of any this externally-attributed
semantical weight. This is the substance of the claim that
computation is formal symbol manipulation—that compu-
tation has to do with the interaction with symbols solely in
virtue of their spelling or shape. We computer scientists
are so used to this formality condition—this requirement
that computation proceed syntactically—that we are liable
to forget that it is a major claim, and are in danger of
thinking that the simpler phrase “symbol manipulation”
means formal symbol manipulation. Nevertheless, part of
the semantical reconstruction to be undertaken here will
rest on a claim that, in spite of its familiarity, we have not
taken semantical attribution seriously enough.

A book should be written on all these issues; I mention them here
only because they will play an important role in the upcoming re-
construction of Lisp. There are obvious parallels and connections
to be explored, for example, between this external attribution of
significance to the ingredients of a computational process, and the
issue of what would be required far a computational system to be
semantically original in the sense discussed at the beginning of the
previous section. This is not the place for such investigations; but
as §4 and chapter 3 will make clear, below, this attribution of sig-
nificance to Lisp structures must be part of the full declarative
semantics for Lisp. The present moral is merely that, although
including such interpretation within the scope of an account of a

still does not follow that that would be so; it is a view that would deny that
the property of being computational is intrinsic—but that is a different
thing.

 The main point is that, because of the fundamental thesis (that reflection
is straightforward to understand and implement if built on a semantically
clear base) developing this account of computational reflection and design-
ing 3-Lisp required not only understanding such philosophical views about
the nature of computing, but effectively “building them in” to the result-
ing reflective architecture.

110 Indiscrete Affairs · I

language’s semantics has not (to my knowledge) been done be-
fore, the attribution of semantic interpretation itself is neither
something new, nor something specific to Lisp’s circumstances.
Externally attributed (declarative) significance is a foundational
part of computer science.

 4 The Rationalisation of Computational Semantics
From even the few introductory sections that have been pre-
sented so far. it is clear that semantical vocabulary will permeate
the upcoming analysis. In discussing the Knowledge Representa-
tion and Reflection hypotheses, I talked of symbols that repre-
sented knowledge about the world, and of structures that desig-
nated other structures. In the model of computation just pre-
sented, I said that the attribution of semantic significance to the
ingredients of a process was a distinguishing mark of computer
science. Informally, no one could possibly understand Lisp with-
out knowing that the atom T stands for truth, and NIL for falsity.
If we subscribe to the view that computer science is about formal
symbol manipulation, we admit not only that the subject matter
involves symbols, but also that any computations over them must
occur in ignorance of their semantical weight.15 Even at the very
highest levels, when we say that a process—human or computa-
tional—is reasoning about a given subject, or reasoning about its
own thought processes, we implicate semantics, since the term
‘semantics’ can (at least in part) be viewed as merely a fancy word
for aboutness.

It is therefore necessary for me to add to last section’s account
of processes and process reduction a corresponding accounting of
the semantical assumptions I will make and techniques I will use,
and to make clear what I mean when we say that I will subject
computational dialects to semantical scrutiny.

 4a Pre-Theoretic Assumptions
When we engage in semantical analysis, I do not take it to be our
goal simply to provide a mathematically adequate specification of

 15 You cannot treat a non-semantical object, such as an eggplant or a water-

fall, formally (unless you first, non-standardly, set it up as a symbol). The
mere use of the predicate ‘formal’ assumes that its object is significant, or
has been attributed significance, even if on the side.

 2b · Reflection & Semantics · Introduction

 111

the behaviour of one or more procedural calculi that would enable
us, for example, to prove that programs will meet some specifica-
tion of what they were designed to do. That is: by “semantics” I
do not simply mean a mathematical formulation of the properties
of a system, formulated from a meta-theoretic vantage point.
(Unfortunately, in my view, in some writers the term seems to be
acquiring this weak connotation.x) Rather, I take semantics to
have fundamentally to do with meaning and reference and so
forth—whatever they come to—as paradigmatically manifested
in human thought and language (as was mentioned in §2a). I am
therefore interested in semantics for two reasons: first, because, as
I said at the end of the last section, all computational systems are
marked by external semantical attribution; and second, because
semantics is the study that will reveal what a computational sys-
tem is reasoning about, and a theory of what a computational
process is reasoning about is a pre-requisite to a proper charac-
terisation of reflection.

Given this agenda, I will approach the semantical study of
computational systems with a rather precise set of guidelines. In
particular, I will require that any subsequent semantical analyses
answer to the following two requirements, emerging from the two
facts about processes and structural fields laid out at the end of
section:

1. They should manifest the fact that we understand compu-
tational structures in virtue of attributing to them seman-
tical import;

2. They should make evident that, in spite of such attribu-
tion, computational processes are formal, in that they must
be defined over structures independent of their semantical
weight.

 x As explained in the annotation to the “Reflection and Semantics in Lisp”

paper presented at the Principles of Programming Languages conference in
1984 (included in this volume—see ■■), at the time this dissertation was
written I was in the grip of an “ingrediential” view of programs, rather
than a “specificational” one, and so had not considered the position, much
more commonly held in computer science, that a program was a specifica-
tion of, rather than an ingredient within, a computational process.

112 Indiscrete Affairs · I

These two principles alone entail the requirement of a double
semantics, since the attributed semantics mentioned in the first
premise includes not only a pre-theoretic understanding of what
happens to computational symbols, but also a pre-computational
intuition as to what those symbols stand for. It follows that we
will have to make clear the declarative semantics of the elements
of (in our case) the Lisp structural field, as well as establishing
their procedural import

I will explore these results in more detail below, but in bare
outlines the argument is straightforward. Most of the results are
consequences of the following basic tenet (relativised here to Lisp,
for perspicuity, but the same would hold for any other calculus):

 What Lisp structures mean ;s not a function of how they are
treated by the Lisp processor. Rather, how they are treated is a
function of what they mean.

For example, I take it that the Lisp expression “(+ 2 3)” evaluates
to “6” for the undeniable reason that “(+ 2 3)” is understood as a
complex name of the number that is the successor of four. We ar-
range things—we define Lisp in the way that we do—so that the
numeral 6 is the value because we know in advance what (+ 2 3)
stands for. To borrow a phrase from Barwise and Perry, this re-
construction is an attempt to “regain our semantic innocence”16—
an innocence that still permeates traditional formal systems
(logic, the λ-calculus, and so forth), but that has been lost in the
attempt to characterise the so-called “semantics” of computer
programming languages.

That “(+ 2 3)” designates the number five is self-evident, as are
many other examples on which I will begin to erect my denota-
tional account. I have also already alluded to the equally unargu-
able fact that (at least in certain contexts) T and NIL designate
Truth and Falsity. Similarly, it is commonplace use the term
“CAR” as a descriptive function to designate the first element of a
pair, as for example in the English sentence “I noticed that the
CAR of that list is the atom L.” The important point is that, in that
English sentence, the phrase “CAR of that list” occurs as a name or
a designator—not as a procedure call. Nothing happens, when I say

 16 «Ref Situations and Attitudes, probably—check»

 2b · Reflection & Semantics · Introduction

 113

it; it is not executed. It is merely a way of pointing to something—
to the first element of the list pointed to by the ingredient phrase

‘that list.’ Similarly, it is hard to
imagine an argument against
the idea that “(QUOTE X)” desig-
nates X—in contrast to the
claim, which is also often
heard, that does not speak at

all about naming or designation, but only about procedural
treatment: that QUOTE is a function that holds off the evaluator.

In sum, the moral is not so much that formulating the declara-
tive semantics of a computational formalism is difficult, as that it
must be recognized as an important thing to do.

 2b Semantics in a Computational Setting
In the most general form that I will use the term semantics,17 a
semantical investigation aims to characterise the relationship be-
tween a syntactic domain and a semantic domain—a relation-
ship typically studied as a mathematical function mapping ele-
ments of the first domain into elements of the second. I will call
such a function an interpretation function (it was in order to be
able to talk about this function, which must be sharply distin-

guished from what is called an
‘interpreter’ in computer sci-
ence, that I switched to the
term processor). Schematically,
that it, as shown in figure 6, the
function φ is taken to be an
interpretation function from S
to D.

In a computational setting,
this simple situation is made
more complex because we are
studying a variety of interacting

interpretation functions. In particular, figure 7 identifies the rela-
tionships between the three main semantical functions that will

 17 See the postscript, however, where I in part disavow this fractured notion

of syntactic and semantic domains.

Figure 6 — Minimal Semantics

Figure 7 — Computational Semantics

114 Indiscrete Affairs · I

permeate the analysis of 3-Lisp. θ is the interpretation function
mapping notations into elements of the structural field, φ is the
interpretation function making explicit our attributed semantics
to structural field elements, and ψ is the function formally com-
puted by the language processor. ω will be explained below; it is
intended to indicate a φ-semantic characterisation of the relation-
ship between S1 and S2, whereas ψ indicates the formally com-
puted relationship—a distinction similar, as I will soon argue, to
that between the logical relationships of derivability (⊢) and en-
tailment (⊨).

The names have been chosen for connotative convenience: ‘ψ’
by analogy with psychology, since it is a study of the internal rela-
tionships between and among symbols, all within the machine (‘ψ’
in this sense is meant to signify psychology narrowly construed, in
the sense of Fodor, Putnam, and others18). The label ‘φ’, on the
other hand, chosen to suggest philosophy, signifies the relationship
between a set of symbols and the world. By analogy, suppose we
were to accept the hypothesis that people represent or encode
English sentences in an internal mental language called mentalese
(suppose, in other words, that we accept the hypothesis that our
minds are computational processes). If you say to me “A com-
poser who died in 1750” and I respond with “Johan Sebastian
Bach”, then, in terms of the figure, the first phrase, qua sentence
of English, would be N1; it would “notate” or “express” the men-
talese structure N1, and the person who lived in the seventeenth
and eighteenth centuries would be the referent D1. Similarly, my
reply would be N2, the mentalese fragment that I thereby express
would be S2, and D2 would again be the long-dead composer. I.e.,
in this case D1 and D2 would be identical.

N1, S1, D1, N2, S2, and D2, in other words, need not necessarily
all be distinct; in a variety of different circumstances two or more
of them may be one and the same entity. I will examine cases, for
example, of self-referential designators, where S1 and D1 are the
same object. Similarly, if, on hearing the phrase “the pseudonym
of Samuel Clemens,” I reply “Mark Twain”, then D1 and N2 are
identical. By far the most common situation, however, will be as
in the Bach example, where D1 and D2 are the same entity—a cir-

 18 Fodor (1980).

 2b · Reflection & Semantics · Introduction

 115

cumstance in which I will say that the function ψ is designation-
preserving. As we will see in the next section, the α-reduction
and β-reduction of the λ-calculus, and the derivability relation-
ship (⊢) of logic, are both designation-preserving relationships.
Similarly, the 2-Lisp and 3-Lisp processors I present will be des-
ignation-preserving, whereas 1-Lisp ’s and Scheme’s evaluation
protocols, as we have already indicated, are not.

In the terms of this figure, the argument I will present in chap-
ter 3 will run roughly as follows. First I will review both logic sys-
tems and the λ-calculus, to illustrate the general properties of the
φ and ψ employed in those formalisms, for comparison. Next I
will shift towards computational systems, beginning with
PROLOG, since it has evident connections to both declarative and
procedural traditions. Finally I will take up Lisp. I will argue that
it is not only coherent, but in fact natural, to define a declarative φ
for Lisp, as well as a procedural ψ. I will also sketch some of the
mathematical characterisation of these two interpretation func-
tions. It will be clear that though similar in certain ways, they are
nonetheless crucially distinct. In particular, I will be able to show
that 1-Lisp ’s ψ (EVAL) obeys the following equation. I will say that
any system that satisfies this equation has the evaluation prop-
erty, and the statement that, for example, the equation holds of
1-Lisp the evaluation theorem. (The formulation used here is
simplified for perspicuity, ignoring contextual relativisation; Σ is
the set of structural field elements.)

 ∀ S∊Σ [if φ(S)∊Σ then ψ(S)=φ(S) (5)
 else φ(ψ(S))=φ(S)]

1-Lisp ’s evaluator, in other words, de-references just those struc-
tures whose referents lie within the structural field, and is designa-
tion-preserving otherwise. Where it can, in other words, 1-Lisp ’s
ψ (i.e, its processor) implements φ; when it cannot, ψ is φ-
preserving, although what it does do with its argument in this case
has yet to be explained (saying that it preserves φ is too easy: the
identity function preserves designation was well, but EVAL is not
the identity function).

The behaviour described in (5) is unfortunate, in part because
the question of whether φ(S)∊Σ is not in general decidable, and
therefore even if one knows of two expressions S1 and S2 that S2 is

116 Indiscrete Affairs · I

ψ(S1), one still does not necessarily know the relationships be-
tween φ(S1) and φ(S2). More seriously, it makes the explicit use of
meta-structural facilities extraordinarily awkward, thus defeating
attempts to engender reflection. I will argue instead for a dialect
described by the following alternative (again in skeletal form):

 ∀ S∊Σ [[φ(ψ(S))=φ(S)] ∧ [NORMAL-FORM(ψ(S))]] (6)

When I prove it for 2-Lisp, I will call this equation the normali-
sation theorem; I will say that any system satisfying it has the
normalisation property. Diagrammatically. the circumstance it

describes is pictured in figure 8.
Such a ψ, in other words, is al-
ways φ-preserving. In addition, it
relies on a notion of of normal-
formedness, which we will have
to define.

In the λ-calculus, ψ(S) would
definitionally be in normal-form,
since in that calculus normal-
formedness is defined in terms of
the non-applicability of any fur-

ther β-reductions. As I will argue in more detail in chapter 3, this
makes the notion less than ideally useful: in designing 2-Lisp and
3-Lisp, therefore, I will in contrast define normal-formedness in
terms of the following three (provably independent) properties:

1. Normal-form designators must be context-independent,
in the sense of having the same declarative and procedural
import independent of their context of use;

2. They must also be side-effect free, implying that any
(further) procedural treatment of them will have no affect
on the structural field or state of the processor; and

3. They must be stable, meaning that they normalise to
themselves in all contexts.

It will then require a proof that all 2-Lisp and 3-Lisp results (all
expressions ψ(S) are in normal-form. In addition, from the third
(stability) property, plus this proof that ψ’s range includes only
normal-form expressions, it will be possible to show that ψ is
idempotent, as was suggested earlier (ψ=ψ°ψ—i.e., ∀S

Figure 8 — Normalisation

 2b · Reflection & Semantics · Introduction

 117

ψ(S)=ψ(ψ(S)))—a property of 2-Lisp and 3-Lisp that will ulti-
mately be shown to have substantial practical benefits.

There is another property of normal-form designators in 2-
Lisp and 3-Lisp, beyond the three requirements just listed, that
follows from the category alignment mandate. In designing those
dialects I will insist that the structural category of each normal
form designator be determinable from the type of object designated,
independent of the structural type of the original designator, and
independent as well of any of the machinery involved in imple-
menting ψ (this is in distinction to the received notion of normal
form employed in the λ-calculus, as will be examined in a mo-
ment). For example, I will be able to demonstrate that any term
that designates a number will be taken by ψ into a numeral, since
numerals will be defined as the normal-form designators of num-
bers. In other words. from just the designation of a structure S the
structural category of ψ(S) will be predictable, independent of the
form of S itself (although the token identity of ψ(S) cannot be pre-
dicted on such information alone, since normal-form designators
are not necessarily unique or canonical). This category result,
however, will also need to be proved: i call it the semantical type
theorem.

That normal form designators cannot be canonical arises, of
course, from computability considerations: one cannot decide in
general whether two expressions designate the same function, and
therefore if normal-form function designators were required to be
unique, it would follow that expressions that designated functions
could not necessarily be normalized. Instead of pursuing that ap-
proach, however, which I would view as unhelpful, I will instead
adopt a non-unique notion of normal-form function designator,
which still satisfies the three requirements specified above; such a
designator will by definition be called a closure. All well-formed
function-designating expressions, on this scheme, will succumb to
a standard normalisation.

Some 2-Lisp (and 3-Lisp) examples will illustrate all of these
points. I assume that the numbers are included in the semantical
domain, a syntactic class of numerals are taken to be normal-
form number designators. The numerals are canonical (one per
number), and as usual are side-effect free and context-

118 Indiscrete Affairs · I

independent; thus they satisfy the requirements on normal-
formedness. The semantical type theorem says that any term that
designates a number will normalise to a numeral: thus if X desig-
nates five and Y designates six, and if + designates the addition
function, then we know (can prove) that (+ X Y) designates eleven
and will normalise to the numeral 11. Similarly, there are two
boolean constants $T and $F that are normal-form designators of
Truth and Falsity, respectively, and a canonical set of rigid struc-
ture designators called handles that are normal-form designators
of all s-expressions (including themselves). And so on; closures
are normal-form function designators, as mentioned above; I will
also specify normal-form designators for sequences and other
types of mathematical objects included in the semantical domain.

I have diverted the discussion away from general semantics,
onto the particulars of 2-Lisp and 3-Lisp in order to illustrate
how the semantical reconstruction I endorse impinges on lan-
guage design. However, it is important to recognise that the be-
haviour mandated by (6) is not new: this is how all standard se-
mantical treatments of the λ-calculus proceed, and the designa-
tion-preserving aspect of it is approximately true of the inference
procedures in logical systems as well, as we will see in detail in
chapter 3. Neither the λ-calculus reduction protocols, in other
words, nor any of the typical inference rules one encounters in
mathematical or philosophical logics, de-reference the expressions
over which they are defined. In fact it is hard to imagine defending
equation (5). Rather, it seems reasonable to speculate that be-
cause Lisp includes its syntactic domain within the semantic do-
main—i.e., because Lisp has QUOTE as a primitive “operation”—a
semantic inelegance was inadvertently introduced into the design
of the language that has never been corrected. If this is right, then
the proposed rationalisation of Lisp can be understood as an at-
tempt to regain the semantical clarity of predicate logic and the λ-
calculus, achieved in part by connecting the language of the com-
putational calculi with the language in which prior linguistic sys-
tems have been studied.

It is this regained coherence that I am claiming is a necessary
prerequisite to a coherent treatment of reflection.

One final comment The consonance of (6) with standard seman-

 2b · Reflection & Semantics · Introduction

 119

tical treatments of the λ-calculus, and the comments just made
about Lisp’s inclusion of QUOTE, suggest that one way to view the
present project is as a semantical analysis of a variant of the λ-
calculus with quotation. In the Lisp dialects I consider, I will re-
tain sufficient machinery to handle side effects, but it is of course
always possible to remove such facilities from a calculus. Simi-
larly, we could remove the numerals and atomic function designa-
tors (i.e., the ability to name composite expressions as unities).
What would emerge would be a semantics for a deviant λ-
calculus with some operator like QUOTE included as a primitive
syntactic construct—a semantics for a meta-structural extension of
the already higher-order λ-calculus. I will not pursue this line of at-
tack further in this dissertation, but, once the mathematical
analysis of 2-Lisp is in place, such an analysis should emerge as a
straightforward corollary.

 4c Recursive and Compositional Formulations
If the previous sections have briefly suggested the work that I
would like the proposed semantics to do, they do not reveal how
this is to be accomplished. In chapter 3, where the reconstruction
of semantics is laid out, I will of course pursue this latter question
in detail, but I can summarise some of its results here.

Beginning very simply, standard approaches suffice. For exam-
ple, I begin with declarative import (φ), and initially posit the des-
ignation of each primitive object type (saying for instance that the
numerals designate the numbers, and that the primitively recog-
nised closures designate a certain set of functions, and so forth),
and then specify recursive rules that show how the designation of
each composite expression emerges from the designation of its in-
gredients. Similarly, in parallel fashion I specify the procedural
consequence (ψ) of each primitive type (saying in particular that
the numerals and booleans are self-evaluating, that atoms evaluate
to their bindings, and so forth),x and then once again specify re-
cursive rules showing how the value or result of a composite ex-
pression is formed from the results of processing its constituents.

 x «Check whether the two instances of ‘evaluate’ in that sense should be

‘normalise’. Or am I still talking about 1-Lisp ?»

120 Indiscrete Affairs · I

If we were considering only purely extensional, side-effect free,
functional languages, the story might end there. However, of a va-
riety of complications that will demand resolution, two may be
mentioned here. First, none of the Lisp’s that I will consider are
purely extensional: there are intensional constructs of various
sorts (QUOTE, for example, and even LAMBDA, which I will view as a
standard intensional procedure, rather than as a syntactic mark).
The hyper-intensional QUOTE operator is not in itself difficult to
deal with, although I will also consider questions about the less
fine-grained intensionality manifested by a statically-scoped
LAMBDA. As in any system, the ability to deal with intensional con-
structs requires a reformulation of the semantics of all expres-
sions—i.e., requires recasting the semantics of extensional proce-
dures as well, in appropriate ways. This is a minor complexity,
but no particular difficulty emerges.

The second difficulty has to do with side-effects and contexts.
All standard model-theoretic techniques allow for the general fact
that the semantical import of a term may depend in part of on the
context in which it is used, of course (variables are the classic sim-
ple example). However, side-effects—which are part of the total
procedural consequence of an expression, impinge on the ap-
propriate context for declarative purposes as well as well as for pro-
cedural ones. For example, in a context in which X is bound to the
numeral 3 and Y is bound to the numeral 4, it is straightforward to
say that the term (+ Y Y) designates the number seven, and re-
turns the numeral Y. However consider the semantics of the more
complex (this is standard Lisp):

 (+ 3 (PROG (SETQ Y 14) Y)) (7)

It would be hopeless—to say nothing of false—to have the for-
mulation of declarative import ignore procedural consequence,
and claim that (7) designates seven, even though it patently re-
turns the numeral 17.19 On the other hand, to include the proce-
dural effect of the SETQ within the specification of φ would seem
to violate the ground intuition arguing that the designation of this

 19 I say this in spite of the fact that I am under no absolute obligation to

make the declarative and procedural stories cohere—in fact I will reject 1-
Lisp exactly because they do not cohere in any way that I can accept.

 2b · Reflection & Semantics · Introduction

 121

term, and the structure to which it evaluates, are different.
The approach I will ultimately adopt is one in which I define

what I call a general significance function Σ which embodies
both declarative import (designation), local procedural conse-
quence (what an expression “evaluates to,” to use 1-Lisp jargon),
and full procedural consequence (the complete contextual effects
of an expression, including side-effects to the environment, modi-
fications to the structural field, and so forth). Only the total sig-
nificance of the dialects I define will be strictly compositional; the
components of that total significance, such as the designation,
will be recursively specified in terms of the designation of the con-
stituents, relativized to the total context of use specified by the
encompassing general significance function. In this way I will be
able to formulate precisely the intuition that (7) designates seven-
teen, as well as returning the corresponding numeral 17.

Lest it seem that by handling these complexities we have lost
any incisive power in the approach, I should note that it is not al-
ways the case that the processing of a term results in the obvious
(i.e., normal-form) designator of its referent For example, I will
prove that, in traditional Lisps, the expression

 (CAR '(A B C)) (8)

both designates and returns the atom A. Just from the contrast be-
tween these two examples ((7)and (8)) it is clear that traditional
Lisp processing and Lisp designation do not track each other in
any trivially systematic way.

Although this approach will be shown successful, I will ulti-
mately abandon the strategy of characterising the full semantics
of standard Lisp (as exemplified in my 1-Lisp dialect), since the
confusion about the semantic import of evaluation will in the end
make it virtually impossible to say anything coherent about des-
ignation. This, after all, is my goal: to judge 1-Lisp, not merely to
characterise it. By the time I wrap up its semantical analysis, I will
have shown not only that Lisp is confusing, but also (in detail)
why it is confusing—giving us adequately preparation to design a
dialect that corrects its errors.

 4d The Role of a Declarative Semantics
One brief final point about this double semantics.

122 Indiscrete Affairs · I

It should be clear that it is impossible to specify a normalising
processor without a pre-computational theory of semantics.x If
you do not have an account of what structures mean, independent
of and how they are treated by the processor, there is no way to
say anything substantial about the semantical import of the func-
tion that the processor computes.x On the standard approach, for
example, it is impossible to say that the processor is correct, or se-
mantically coherent, or semantically incoherent, or any such thing; it
would merely be what it is. Given some account of what it does,
one can compare this to other accounts: thus it would for example
be possible to prove that a specification of it was correct, or that an
implementation of it was correct, or that it had certain other inde-
pendently definable properties (such as that it always terminated,
that it used certain resources in certain fashion, etc.). In addition,
given such an account, one could prove properties of programs
written in the resulting language—thus, from a mathematical
specification of the processor of ALGOL, plus the listing of an
ALGOL program, it might be possible to prove that that program
met some specification (such as that it sorted its input, or what-
ever). But all of these things are compatible with the system being
a purely mechanical system—such as a device that sorted apples
into different bins, or for that matter was a care. However none
of these questions are the question I am trying to answer here—
namely: what is the semantical character of the processor itself?

In the particular case I am considering, I will be able to specify
the semantical import of the function computed by Lisp’s evalua-
tion regimen (i.e., by EVAL—this is content of the evaluation theo-
rem), but only by first laying out both declarative and procedural
theories of Lisp. Again, I will be able to design 2-Lisp only with

 x This is the equivalent, in a computational context, of saying something that

would be obvious, logically: that one cannot specify a proof procedure (⊢)
without first having in mind an interpretation function for it to honour.

 x This is too strongly stated. Full independence is not required; the two could
be co-constituted. What is true about the point made in the text is that de-
fining a processing regimen in a calculus in which there was nothing more
to meaning than “how the symbol or structure was treated” would not just
evacuate the system of any semantic or intentional (or computational!) in-
terest; it would deprive it of any claim to being a computational system.
I.e., it would reduce it to nothing but pure mechanism.

 2b · Reflection & Semantics · Introduction

 123

reference to this pre-computational theory of declarative seman-
tics. It is a simple point, which I am perhaps repeating too often,
but it is important to make clear how the semantical reconstruc-
tion I am endorsing is a prerequisite to the design of 2-Lisp and 3-
Lisp, not a post-facto method of analysing them.

 5 Procedural Reflection
Now that we have assembled a minimal vocabulary with which to
talk about computational processes and matters of semantics, it is
possible to sketch the architecture of reflection that I will present
in the final chapter of the dissertation.

I will start rather abstractly, with the general sense of reflection
sketched in section 2, and then make use of both the Knowledge
Representation Hypothesis and the Reflection Hypothesis to de-
fine a more restricted goal. Next, I will employ the characteriza-
tions of interpretively reduced computational processes and of
computational semantics to narrow this goal even further. At
each step in this progressive focusing process, it will become in-
creasingly clear what would be be involved in actually construct-
ing an authentically reflective computational language. By the end
of this section I will be able to suggest the particular structure
that, in chapter 5, will be embody in the 3-Lisp design.

 5a A First Sketch
Begin very simply. At the outset, I characterised reflection in
terms of a process shifting between a pattern of reasoning about
some subject matter, world, or task domain, to reasoning reflec-
tively about its thoughts and actions in that world. I said in the
Knowledge Representation Hypothesis that the only current
candidate architecture for a process that reasons at all (even de-
rivatively) is one constituted in terms of an interior process ma-
nipulating representations of the appropriate knowledge of that
domain. We can see in terms of the process reduction model of
computation a little more clearly what this means. For the proc-
ess we called Chequers to reason about the world of finance, I
suggested that it be interpretively composed of an ingredient proc-
ess P manipulating a structural field S consisting of representa-
tions of cheque books, credit and debit entices, currency exchange
rates, and so forth. Thus we were led to the image depicted in

124 Indiscrete Affairs · I

figure 4 (reproduced here as figure 9).
Next, I said (in the Reflection Hypothesis) that the only sug-

gestion we have as to how to make Chequers reflective is this: as
well as constructing process P to deal with these various financial
records, we could also construct process Q to deal with P and the

structural field that P manipu-
lates. Thus Q might specify
what to do when P failed or
encountered an unexpected
situation, based on what parts
of P had worked correctly and
what state P was in when the
failure occurred, and so on.
Alternatively, Q might describe
or generate parts of P that had
not been fully or adequately

specified. Finally, Q might bring into existence a more complex
interpretation process for P, or one particularized to suit specific
circumstances. In general, whereas the world of P—the domain
that P models, simulates, reasons about—is the world of finance,
the world of Q is the world of the process P and the structural
field it computes over.x

I have spoken as if Q were a different process from P, but
whether it is really different from P, or whether it is P in a differ-
ent guise, or P at a different time, is a question I will defer for a
while (in part because I have said nothing about individuation cri-
teria on processes). All that matters for the moment is that there
be some process that does what I have said that Q must do.

What is required, in order for Q to reason about P? Because Q,
like all the processes we are considering, is assumed to be inter-
pretively composed, what is needed is what is always needed:
structural representations of the relevant facts about P. What would
such representations be like? First, they must be expressions
(statements), formulated with respect to some theory, describing
or representing the state of process P (we can begin to see how the
theory relative mandate on reflection from §2 is making itself evi-

 x That last ¶ isn’t stated right; it is off one level of designation. I must fix it…

Figure 9 — First Interpretive Reduction

 2b · Reflection & Semantics · Introduction

 125

dent). Second, in order to actually describe P, they must be caus-
ally connected to P in some appropriate way (another of the gen-
eral requirements). Thus we are considering a situation such as
that depicted in figure 10, where the field (or field fragment) SP
contains these causally connected structural descriptions.

Figure 10 is of course incomplete, in that it does not suggest
how SP should relate to P (answering this question is our current

quest). Note however that reflection
must be able to recurse, implying the
additional possibility of something
like the image depicted in figure 11.

Where might an encodable proce-
dural theory come from? There are
two possible sources: in the semanti-
cal reconstruction to be undertaken
presently (before 3-Lisp is designed) I

will have presented a full theory of the (non-reflective versions of
the) dialects under development; this is one candidate source for
an appropriate theory. But given that for the moment we are con-
sidering only procedural reflection, we need only the (simpler)
procedural component of that theory.20

The second source of a theoretical account, quite similar in
structure but even closer to the one we will adopt, is what we will
call the metacircular processor, which is worth a brief examina-
tion.

 20 In the general case, we would need to encode, both declarative and proce-

durally, the full theory of computational significance.

Figure 10 — Reflective Chequers, Step 1

Figure 11 — Reflective Chequers, Step 2

126 Indiscrete Affairs · I

 5b Metacircular Processors
In any computational formalism in which programs are accessible
as first class structural fragments, it is possible to construct what
are commonly known as metacircular interpreters: “meta” because
they operate on (and therefore terms within them designate)
other formal structures, and “circular” because they do not consti-
tute a definition of the processor, for two reasons: (i) they have to
be run by that processor in order to yield any sort of behaviour
(since they are programs, not processors, strictly speaking); and (ii)
the behaviour they would thereby engender can be known only if
one knows beforehand what the processor does. Nonetheless,
such processors are often pedagogically illuminating, and they
wilt play a critical role in our development of the reflective model.
In line with my general strategy of reserving the word “interpret”
for the semantical interpretation function. I will henceforth call
such processors metacircular processors.

In the presentation of 1-Lisp and 2-Lisp I will construct
metacircular processors (MCPs); the 2-Lisp version is presented in
figure 12 (details will be explained in chapter 4; at the moment I
mean only to illustrate the general structure of this code). The
basic idea is that if this code were processed by the primitive 2-
Lisp processor. the process that would thereby be engendered
would be behaviourally equivalent to that of the primitive proces-
sor itself. In other words, if we were mathematically to take proc-
esses as functions from structure onto behaviour, and if we name
the processor presented in figure 12 MCP2L, and the primitive 2-
Lisp processor P2L, then if we taken ‘≅’ to mean behaviourally
equivalent, then we should be able to prove the following, in some
appropriate sense (this is the sort of proof of correctness one
finds in for example Gordon21):

 P2L(MCP2L) ≅ P2L (9)

It should be recognised that the equivalence spoken of here is a
global equivalence; by and large the primitive processor, and the
processor resulting from the explicit running of the MCP, cannot
be arbitrarily mixed (as already mentioned, and as a more detailed

 21 Gordon (1973 and 1975).

 2b · Reflection & Semantics · Introduction

 127

discussion in chapter 5 will formalize). For example, if a variable
is bound by the underlying processor P2L it will not be able to be
looked up by the metacircular code. Similarly, if the metacircular
processor encounters a control structure primitive, such as a THROW
or a QUIT, it will not cause the metacircular processor itself to exit
prematurely, or to terminate. The point, rather, is that if an en-
tire computation is mediated by the explicit processing of the
MCP, then the results will be the same as if that entire computa-
tion had been carried out directly.

We can merge these results about MCPs in general with the dia-
gram in figure 9 as follows: if we replaced P in the figure with a
process that resulted from P processing the metacircular proces-
sor MCP (for the appropriate language—in this case assumed to

(DEFINE NORMALISE
 (LAMBDA EXPR [EXP ENV CONT]
 (COND [(NORMAL EXP) (CONT EXP)]
 [(ATOM EXP) (CONT (BINDING EXP ENV))]
 [(RAIL EXP) (NORMALISE-RAIL EXP ENV CONT)]
 [(PAIR EXP) (REDUCE (CAR EXP) (CDR EXP) ENV CONT)])))

(DEFINE REDUCE
 (LAMBDA EXPR [PROC ARGS ENV CONT]
 (NORMALISE PROC ENV
 (LAMBDA EXPR [PROC!]
 (SELECTQ (PROCEDURE-TYPE PROC!)
 [IMPR (IF (PRIMITIVE PROCI)
 (REDUCE-IMPR PROC! ARGS ENV CONT)
 (EXPAND-CLOSURE PROC! ARGS CONT))]
 [EXPR (NORMALISE ARGS ENV
 (LAMBDA EXPR [ARGS!]
 (IF (PRIMITIVE PROC!)
 (REDUCE-EXPR PROC! ARGS! ENV CONT)
 (EXPAND-CLOSURE PROC! ARGS! CONT))))]
 [MACRO (EXPAND-CLOSURE PROC! ARGS
 (LAMBDA EXPR [RESULT]
 (NORMALISE RESULT ENV CONT)))])))))

(DEFINE EXPAND-CLOSURE
 (LAMBDA EXPR [CLOSURE ARGS CONT]
 (NORMALISE (BODY CLOSURE)
 (BIND (PATTERN CLOSURE) ARGS (ENV CLOSURE))
 CONT)))

Figure 12 — A Metacircular Processor for 2-Lisp

128 Indiscrete Affairs · I

be Fortran), we would still correctly
engender the behaviour of Chequers,
as depicted in figure 13. Furthermore,
this replacement could also recurse, as
shown in figure 14. Admittedly, un-
der the standard interpretation, each
such replacement would involve a
dramatic increase in inefficiency, but
the important point is that the result-
ing behaviour would in some sense
still be correct.

 5d Procedural Reflective Models
We are now in a position to unify the suggestion made at the end
of section 5b, on having Q reflect upwards, with the insights em-
bodied in the MCPs described in the previous section, to define
what I will call the procedural reflective model. The fundamen-
tal insight arises from the eminent similarity between figures 10
and 11, on the one hand, compared with figures 13 and 14, on the
other. These diagrams do not represent exactly the same situa-
tion, but the approach will be to converge on a unification of the
two.

I said earlier that in order to satisfy the requirements on the Q
of §5b we would need to provide a causally connected structural
encoding of a procedural theory of our dialect (Lisp in this case)

within the accessible
structural field. In the
immediately preceding
section we have seen
something that is ap-
proximately such an
encoding: the metacir-
cular processor. How-
ever—and here I refer
back to the six proper-
ties of reflection set out
in §2—in the normal
course of events the
MCP lacks the appropri-

Figure 13 — Chequers via the MCP

Figure 14 — Two layers of MCP

 2b · Reflection & Semantics · Introduction

 129

ate causal access to the state of P: whereas any possible state of Q
could be procedurally encoded in terms of the metacircular proc-
ess (i.e., given any account of the state of P we could retroactively
construct appropriate arguments for the various procedures in
the metacircular processor so that if that metacircular processor
were run with those arguments it would mimic P in the given
state), in the normal course of events the state of P will not be so
encoded.

This similarity, however, does suggest the form of the solution.

Suppose that P were never run directly, but were always run in
virtue of the explicit mediation of the metacircular processor—as,
for example, in figure 13 and 14. Then at any point in the course
of the computation, if that running of one level of the MCP were
interrupted, and the arguments being passed around were used by
some other procedures, they would be given just the needed infor-
mation: causally connected and correct representations of the
state of the process P prior to the point of reflection. The MCP

would of course have to be modified in order to support such an
interruption; the point however is that the MCP is already traffick-
ing in the requisite causally connected representations.

There are however evident problems with this approach. First,
if P were always run through the mediation of the metacircular
processor MCP, P would as a result almost surely be unnecessarily
inefficient. Second, as so far stated the proposal seems to deal
with only one level of reflection. What if the code that was given
these structural encodings of P’s state was itself to reflect? This
query suggests that providing a general mechanism for reflection
would generate an infinite regress: not only should the MCP be
used to run the base (“level 0”) programs, but the MCP should be
used to run the level 1 MCP. And so on. That is: all of an infinite
number of MCPs should be run by yet further MCPs, ad infinitum.

Setting aside the obvious vicious regress for a moment, note that
this seems otherwise to be a reasonable suggestion. The poten-
tially infinite (i.e., indefinite) set of reflecting processes Q are al-
most indistinguishable in basic structure from the infinite tower
of MCPs that would result. Furthermore the MCP’ would contain
just the correct structurally encoded descriptions of processor

130 Indiscrete Affairs · I

state. We would still need to modify the whole set of MCPs, so
that an appropriate interruption or reflective act could make use
of the tower of processes, but it is nevertheless evident that, to a
first degree of approximation, this solution has the proper charac-
ter.

The fundamental “trick” of 3-Lisp (i.e., of the model of proce-
dural reflection being proposed) hinges on the fact that, it turns
out, we can effectively posit that the primitive reflective processor is
engendered by an infinite number of recursive instances of the MCP,
each running a version one level below. That is: 3-Lisp will be de-
fined to be isomorphic to that infinite limit. This turns out to be
legitimate—i.e., the implied infinite regress is not after all prob-
lematic—since only a finite amount of information is encoded in
it; at all but a finite number of the bottom levels, each MCP will
merely be running a copy of the MCP. Because we, as the language
designers, know exactly how the language runs, and because we
also know what the MCP is like, we can provide this infinite num-
bers of levels, to use current jargon, purely virtually. As I will ex-
plain in detail in chapter 5, such a virtual simulation turns out to
be perfectly well-defined.

Once the changes are made to support appropriate interrup-
tion and resumption at any arbitrary level, it becomes no longer
appropriate to call the processor a metacircular processor, since it
becomes inextricably woven into the fundamental architecture of
the language (as will be explained in detail in chapter 5). This is
why, as suggested above, I call it a reflective processor. Nonetheless
its genealogical roots in the abstract idea of an infinite tower of
metacircular processor should be clear.

To provide a little bit of concrete grounding for this suggestion, I
will explain just briefly the “interruption adjustment” we will
make in order to allow this architecture to be used.

3-Lisp supports what I will call reflective procedures—
procedures that, when invoked, are run not at the level at which
the invocation occurred, but one level higher in the reflective hi-
erarchy. They are given, as arguments, those structures that would
have been passed around in the reflective processor, had it always been
running explicitly. The code for the resulting 3-Lisp reflective
processor program is given in figure 15, in part so that it may be

 2b · Reflection & Semantics · Introduction

 131

compared with the (very similar) 2-Lisp meta-circular processor
code given earlier in figure 12. The most important difference lies
on a single line, underlined here for emphasis.

What is important about the underlined line is this: when a
redex (application) is encountered whose CAR normalises to a re-
flective as opposed to standard procedure (the standard ones are
called “simple”), the corresponding function, designated by the

1 (define READ-NORMALISE-PRINT
2 .. (lambda simple [level env stream]
3 (normalise (prompt&read level stream) env
4 (lambda simp1e [result] ; C-REPLY
5 (block (prompt&reply result level stream)
6 (read-normalise-print level env stream))))))
7 (define NORMALISE
8 .. (lambda simple [struc env cont]
9 (cond [(normal struc) (cont struc)]
10 [(atom struc) (cont (binding struc env))]
11 [(rail struc) (normalise-rail struc env cont)]
12 [(pair struc) (reduce (car struc) (cdr struc) env cont)]))
13 (define REDUCE
14 .. (lambda simple [proc args env cont]
15 (normalise proc env
16 (lambda simple [proc!] ; C-PROC!
17 (if (reflective proc!)
18 ((de-reflect proc!) args env cont)
19 (normalise args env
20 (lambda simple [args!] ; C-ARGS!
21 (if (primitive proc!)
22 (cont (proc! . args!))
23 (normalise (body proc!)
24 (bind (pattern proc!) args! (environment proc!))
25 cont))))))))
26 (define NORMALISE-RAIL
27 .. (lambda simple [rail env cont]
28 (if (empty rail)
29 (cont (rcons))
30 (normalise (1st rail) env
31 (lambda simple [first!] ; C-FIRST!
32 (normalise-rail (rest rail) env
33 (lambda simple [rest!] ; C-REST!
34 (cont (prep first! rest!)))))))))

Figure 15 — The 3-Lisp Reflective Processor Program

132 Indiscrete Affairs · I

term (de-reflect proc!), is run at the level of the reflective proces-
sor, rather than by the processor. In other words the inclusion of
this single underlined line unleashes the full infinite reflective hi-
erarchy.

Coping with that hierarchy will occupy part of chapter 5,
where I explain this all in much more depth (including why the
resulting virtual machine is in fact finite, and how it can be im-
plemented). Just this much of an introduction, however, should
convey, if only a glimpse of how reflection is possible, at least the
architectural structure of a language that provides it.

 5d Two Views of Reflection
The reader will have noted a tension between two ways in which I
have characterised the form of reflection we are aiming at. On the
one hand I have sometimes written as if there were a primitive
and noticeable reflective act, which causes the processor to shift
levels rather markedly (this is the explanation that best coheres
with some of our pre-theoretic intuitions about reflective human
thinking). On the other hand, I have also just written of an infi-
nite number of levels of re1ective processors, each essentially im-
plementing the one below—a story according to which it is not
coherent either to ask at which level Q is running, or to ask how
many reflective levels are running. On this “infinite tower” ac-
count, there is a strong some sense in which all levels are running
at once, in exactly the same sense that both the Lisp processor in-
side your Lisp-based editor, and your editor itself, and the ma-
chine language code that underpins the implementation of Lisp,
are all running at once, when you use the editor. It is of course
not as if Lisp, the editor, and the machine language are running
simultaneously in the sense of side-by-side or independently. This is
not a parallel computing scheme being described. On the other
hand, in each case one, being “interior” to the other, supplies the
anima or agency of the outer one (machine language processor
animating the Lisp processor, which in turn animates the editor).
It is just this sense in which the higher levels in the 3-Lisp reflec-
tive hierarchy are always running: each of them is in some sense
within (interior to) the processor at the level below it, in such a
way that it thereby engenders its agency.

Call the account that views reflection as a case of a single locus

 2b · Reflection & Semantics · Introduction

 133

of agency stepping between levels the level-shifting view. And
call the other view that of an infinite tower. I will not take a
principled view on which is correct; on the contrary, the architec-
tural thesis behind 3-Lisp, and behind the model of reflection be-
ing proposed, can be understood as comprising two parts: (i) that
they can be shown behaviourally equivalent, and thus (ii) that
adopting the architecture of the tower view is an appropriate way
to understand (and implement) the level-shifting view. For cer-
tain purposes one is simpler, for others the other.

Though perhaps more initially intuitive, the level-shifting ac-
count turns out to be more complex than the tower view. To il-
lustrate it, consider the following account of what is involved in
constructing a reflective dialect—in part by way of review, but
also in order to suggest how it is that a practical reflective dialect
could be finitely constructed.

1. As I have repeatedly said, in order to design a reflective
language one must provide a complete theory of the given
calculus expressed in its own language. I call this the reflec-
tive processor—it is required on both accounts.

2. You must arrange things so that, when the process re-
flects—i.e., when the locus of control shifts “upwards”—all
of the structures used by the reflective processor (the for-
mal structures designating the theoretical entities posited
by the theory) are available for inspection and manipula-
tion. In any particular case, these to-be-provided struc-
tures must correctly encode the state that the processor was
in prior to the reflective level-shift, assuming that it had been
running all the while (this is where the tower view provides
structure and substance—fills in the technical details—for
the level shifting view).

3. You must also ensure, when the (level-shifting) process
comes to the point of “shifting down” again, that base-level
processing is resumed in accordance with the facts encoded in
the structures being passed around at the immediately higher
reflective level.

As a minimal case, take a situation where the user process shifts

134 Indiscrete Affairs · I

upwards, but does nothing; and then shifts down again. At the
point of shifting up, the situation should merely be one where the
processor would process the reflective processor code explicitly, as
if it had been doing so all along. At the point of shifting down, it
would take up running the base-level code directly (i.e., non-
reflectively), again as if it had been doing that all along, but also (of
course it must be proved that these are equivalent) exactly in ac-
cord with the state of the structures being passed around in the
reflective processor code at the point of down-shifting. Such a
situation, in fact, is so simple that it could not be distinguished
(except perhaps in terms of elapsed time) from pure non-
reflective interpretation.

The situation would get more complex, however, as soon as
the user is given any power. Two provisions in particular are cru-
cial.

First, the whole purpose of a reflective dialect is to allow the
user to have his or her own programs run along with, or in place
of, or between the steps of, the reflective processor. One must in
other words provide an abstract machine with the ability for the
programmer to insert code—in convenient ways and at conven-
ient times—at any level of the reflective hierarchy. Suppose, for
example, we were to wish to have a particular λ-expression closed
only in the dynamic environment of its use, rather than in the
lexical environment of its definition (i.e., suppose we were to
want “dynamic scoping” for a given λ-expression, even though
lexical scoping is the system default). Needless to say, the reflec-
tive processor contains code that performs the requisite opera-
tions needed to implement the default behaviour for lexical clo-
sures. Given that programmer can assume that, upon reflection,
the reflective processor code is being explicitly processed, he or
she can supply, for the lambda expression in question, an appro-
priate alternate piece of code in the different actions are taken so
as to provide it with dynamic scoping behaviour.. By simply in-
serting this code into the correct level, (s)he can use variables
bound by the reflective model in order to fit gracefully into the
overall processing regimen. Appropriate hooks and protocols for
such insertion, of course, must be provided, but they need be pro-
vided only once. Furthermore, the reflective processor code (i.e.,
reflective model) will contain code showing how this hook is

 2b · Reflection & Semantics · Introduction

 135

treated.
All of these requirements are met by the underlined line 18 in

the reflective processor program of figure 15. That line indicates
how the user code will be inserted, what context it will run it,
what variables will be bound to what structures containing what
information, etc.

Second, as well as providing for the arbitrary interpretation of
special programs at the reflective level, the language designer must
also enable the user to modify the explicitly available structures
provided in the reflective model. Though this ability is easier to
design than the former, its correct implementation is trickier. An
example will make this clear. As already indicated, the 3-Lisp re-
flective processor deals explicitly with both environment and con-
tinuation structures. Upon reflecting, user programs can at will
access these structures that, at the base level, are purely implicit.
Suppose that a user writes reflective code that does two things.
First, it modifies the environment structure being passed around
at the first reflective level (e.g., suppose it changes the binding of a
variable bound by some procedure that is running “somewhere up
the stack,” in the way that might be provided by a typically de-
bugging package). Second, it changes the continuation structure
(designating the continuation function) so as to cause some pro-
cedure that is currently running to, upon its return, bypass its
immediate caller, and instead return its result to the procedure
who called that procedure. Then, once it has effected these two
changes, it “returns”—which is to say, it “drops back down” to
other base-level code, and no longer runs at the reflective level.

I said above that, upon this kind of semantic or reflective de-
scent, the base-level program will again be processed “directly.”
But of course it must be processed in such a way as to honour the
changes indicated by these modified structures—not in the way
that it would have been processed, prior to the reflection. The
user’s reflective modifications, in other words, must matter—
must be noticed. This is the (downwards direction of) the causal
connection aspect that is so crucial to true reflection.

 53 General Comments
The details of the proposed architecture have emerged from de-
tailed considerations of process reduction, computational seman-

136 Indiscrete Affairs · I

tics, and meta-circular processing. It is interesting to draw back
and to see the extent to which the global properties of the result-
ing architecture match our pre-theoretic intuitions about reflec-
tion.

First, it is simple to see that the proposed architecture honours
all six requirements laid out in section 2c:

1. It is causally connected and theory-relative;
2. It is theory-relative;
3. It involves an incremental “stepping back,” rather than a

full (and potentially vicious) instantaneous “reflexion”;
4. Finer-grained control is provided over the processing of

lower level structures;
5. It is only partially detached (3-Lisp reflective procedures

are still in and part of 3-Lisp; they are still animated by the
same fundamental agency, since if one level stops process-
ing the reflective model, or some analogue of it, all the
processors “below” it cease to exist): and

6. The reflective powers of 3-Lisp are primitively provided.

Thus in this sense at least it is fair to count the architecture a suc-
cess.

Other questions—such as about the locus of self, the concern
as to whether the potential to reflect requires that one always par-
ticipate in the world indirectly rather than directly, and so
forth—turn out to be about as difficult to answer for 3-Lisp as
they are to answer in the case of human reflection. In particular,
the solution I have proposed does not answer the question I
posed earlier, about the identity of the reflected processor: is it P
that reflects, or is it another process Q that reflects on P? The “re-
flected process” is neither quite the same process, nor quite a dif-
ferent process; it is in some ways as different as an interior proc-
ess, except that since it shares the same structural field it is not as
different as an implementing process. No more informative an-
swer will be forthcoming until we define individuation criteria on
processes much more precisely—and perhaps more strikingly,
there seems no particular reason to answer the question one way
or another. It is tempting (if dangerous) to speculate that the rea-
son for these difficulties in the human case is exactly why they do

 2b · Reflection & Semantics · Introduction

 137

not have answers in the case of 3-Lisp: they are not, in some
sense, “real” questions. But it is premature to draw this kind of
parallel; our present task is merely to clarify the structure of pro-
posed solution.

 6 Lisp as an Explanatory Vehicle
There are any number of reasons why it is important to work
with a specific programming language, rather than abstractly and
in general (for pedagogical accessibility, as a repository for emer-
gent results, as an example to test proposed technical solutions,
and so forth). Furthermore, commonsense considerations suggest
that a familiar dialect, rather than a totally new formalism, would
better suit our purposes. On the other hand there are no current
languages that are categorically and semantically rationalised in
the way that the proposed theory of reflection demands; accord-
ing to the “reflection is intelligibly implementable only on a se-
mantically clarified basis” mandate, it is not an option to endow
any extant system with reflective capabilities without first subject-
ing it to substantial modification. It would be possible to present
some system embodying all the necessary modifications and fea-
tures, but it would be difficult for the reader to sort out which ar-
chitectural features were due to what concern. In this disserta-
tion, therefore, I have adopted the strategy of presenting a reflec-
tive calculus in two steps: first, by modifying an existing language
to conform to the outlined semantical mandates; and second, by
extending the resulting rationalised language with reflective capa-
bilities.

Once this overall plan has been agreed, the question arises as to
what language should be used as a basis for this two-stage devel-
opment Since my present concern is with procedural rather than
with general reflection, the relevant class of potential languages in-
cludes essentially all programming languages, but excludes exem-
plars of the declarative tradition: logic, the λ-calculus, specifica-
tion and representation languages, and so forth.x Furthermore, we

 x In the original dissertation, the following parenthetical comment was in-

serted at this point: “It is important to recognise that the suggestion of
constructing a reflective variant of the λ-calculus represents a category er-
ror.” Especially given the first half of the sentence, it is hard to know what

138 Indiscrete Affairs · I

need a programming language—a procedural calculus—with at
least the following properties:

1. Though not a formal requirement, it helps for the chosen
language to be simple. By itself reflection is complicated
enough that, especially as an initial illustration of the co-
herence and power of the architecture, it seems recom-
mended to introduce it into a formalism of minimal inter-
nal complexity;

2. It must be possible to access program structures as first-
class elements of the language’s structural field;

3. Meta-structural primitives must be provided (the ability to
mention structural field elements, such as data structures
and variables, as well as to use them); and

4. The underlying architecture should facilitate the embed-
ding, within the calculus, of the procedural components of
its own meta-theory.

The second property could be added to a language: we could de-
vise a variant on ALGOL, for example, in which ALGOL programs
were made an extended data type, but Lisp already possesses this
feature. In addition, since (in the formal semantical analysis pre-
sented in following chapters) I will use an extended λ-calculus as
the meta-language, it is natural to use a procedural calculus that is
functionally oriented. Finally, although full-scale modern Lisps
are as complex as any other languages, both Lisp 1.6 and Scheme
have the requisite simplicity.

Lisp has other recommendations as well. Because of its sup-
port of accessible program structures, it provides considerable evi-
dence of exactly the sort of inchoate reflective behaviour that it
has been my aim to reconstruct The explicit use of EVAL and
APPLY, for example, provides considerable fodder for subsequent
discussion, both in terms of what they do well and how they are
confused. In chapter 2, for example, I describe half a dozen types

exactly this meant (if anything true); and in point of fact I informally de-
fined a reflective version of the λ-calculus a couple of years later, as a vehi-
cle in terms of which to explain reflection to my colleague Jon Barwise. I
have therefore omitted it from this version.

 2b · Reflection & Semantics · Introduction

 139

of situation in which a standard Lisp programmer would be
tempted to use these meta-structural primitives, only two of
which in the deepest sense have anything to do with the explicit
manipulation of expressions; the other four, I will argue, ought to
be treated directly in the object language—and their use of metas-
tructural machinery understood to be no more than a “work-
around” for fundamental failures in Lisp’s original design.x And
finally, and non-trivially, Lisp is the lingua franca of the AI com-
munity; this fact alone makes it an eminent candidate.

 6a 1-Lisp as a Distillation of Current Practice
The decision to use Lisp as a base does not solve all of cur prob-
lems, since the name “Lisp” still refers to a wide range of lan-
guages and dialects. For purposes of this dissertation it has
seemed simplest to define a simple kernel, not unlike Lisp 1.6, as
a basis for further development, in part to have a fixed and well-
defined target to set up and criticise, and in part so that I can col-
lect into one dialect the features that prove most important for
subsequent analysis. I take Lisp 1.6 as the primary source for the
result, which I have called 1-Lisp, although some facilities I will
ultimately want to examine as (often inchoate) examples of reflec-
tive behaviour—such as CATCH and THROW and QUIT—have been in-
cluded, along with the repertoire of behaviours manifested in
McCarthy’s original design. Similarly, I have included macros as a
primitive procedure type, as well as intensional and extensional
procedures of the standard variety (“call-by-value” and “call-by-

 x In a colloquium in the Artificial Intelligence Laboratory at SRI International,

in the spring of 1982, I have one of the very first talks on 3-Lisp. As it hap-
pened, John McCarthy (inventor of Lisp, and designer of Lisp 1.6) attended.
Though as a young student I was nervous about making this claim in front
of him, I nevertheless proceeded with what I had planned to say, and
claimed that, according to my analysis, traditional Lisp’s dynamic scoping
protocols were a “mistake,” to which quotation and other metastructural
manoeuvrings were a partial work-around—in particular providing a way
of handing closures “downwards,” though there was no way to pass them
”upwards” (in terms of the usual notion of a control stack; this has nothing
to do with the reflective hierarchy).

 To my surprise and considerable relief, John McCarthy very graciously
agreed.

140 Indiscrete Affairs · I

name,” in standard computer science parlance, although I avoid
these terms, since I reject the notion of “value” entirely).

It turns out not to be entirely simple to present 1-Lisp. given
my theoretical biases, since so much of what I will ultimately re-
ject about it comes so quickly to the surface in explaining it.
However I have felt that it is important to present this formalism
without modification, because of the role I ask it to play in the
structure of the overall argument. In particular, my desideratum
for the dialect is not that it be clean or coherent, but rather that it

serve as a vehicle in
which to examine a
body of practice
suitable for subse-
quent reconstruc-
tion. To the extent
that I make empiri-
cal claims about
semantic recon-
struction, I use 1-
Lisp as evidence in
its role as being a

model of all extant Lisp practice. It is theoretically critical, given
this role, that I leave this practice as intact as possible, free of my
own theoretical biases. Even though it is a dialect of my own de-
sign, therefore, I have intentionally but uncritically forged it in
terms of received notions of evaluation, lists, free and global vari-
ables, and so forth.

As an example of the style of analysis to be engage in, figure 16
gives a diagram of the 1-Lisp category structure—to be con-
trasted with the category structure of 2-Lisp and 3-Lisp, which
has been designed to satisfy the category alignment mandate. The
intent of the diagram is to show that in 1-Lisp (as in any compu-
tational calculus) there are a variety of ways in which structures
or s-expressions may be categorised—represented in turn by each
of the vertical columns. The point I am attempting to demon-
strate is the (unnecessary) complexity of interaction between
these various categorical decompositions.

Consider each of these various 1-Lisp categories in brief. The
first column (notational) is categorized by the lexical categories

Figure 16 — 1-Lisp Category Structure

 2b · Reflection & Semantics · Introduction

 141

accepted by the reader (including strings that are parsed into no-
tations for numerals, lexical atoms, and “list” and “dotted-pair”
notations for pairs). Another categorization (structural) is in
terms of the primitive types of s-expression (numerals, atoms,
and pairs); this is the categorisation typically revealed by the
primitive structure typing predicates (in 1-Lisp I call this proce-
dure TYPE, but it is traditionally encoded in an amalgam of ATOM
and NUMBERP). A third traditional categorisation (derived structure)
includes not only the primitive s-expression types but also the de-
rived notion of a list—a category built up from some pairs (those
whose CARS are, recursively, lists) and the atom NIL. A fourth tax-
onomy (labeled procedural consequence) is embodied by the primi-
tive processor: thus 1-Lisp ’s evaluation processor (EVAL) sorts
structures into various categories, each handled differently. This
is the “dispatch” categorization that one typically finds at the top
of metacircular definitions of EVAL and APPLY. In most Lisp
metacircular processors six categories are discriminated:

1. The self-evaluating atoms T and NIL;
2. The numerals;
3. The other atoms, used as variables or global function des-

ignators, depending on context;
4. Lists whose first clement is the atom LAMBDA, used to en-

code applicable functions;
5. Lists whose first clement is the atom QUOTE; and
6. Other lists, which in evaluable positions represent function

application.

Finally, the fifth taxonomy (declarative import) has to do with de-
clarative semantics—i.e., discriminates categories of structure
based on their signifying different sorts of semantic entities. Once
again a different category structure emerges: applications and
variables can signify semantic entities of arbitrary type except that
they cannot designate procedures (since 1-Lisp is first-order); the
atoms T and NIL signify Truth and Falsity; general lists, plus again
(in different contexts) the atom NIL, signify enumerations (se-
quences): the numerals signify numbers; and so on and so forth.

The reason why the demerits of this non-alignment of catego-
ries multiply in a reflective dialect is that reflective programs need

142 Indiscrete Affairs · I

to know about all of them, in different situations and for different
purposes—and also about the relationships between and among
them (as, impressively, all human Lisp programmers do). And
remember, too, that as one climbs from reflective level 1 to yet
higher reflective levels, the combinatorics of non-alignment would
multiply correspondingly. I need not dwell on the evident disar-
ray that would likely result.

One other example of 1-Lisp behaviour will be illustrative. I have
mentioned above that 1-Lisp requires the explicit use of APPLY in a
variety of circumstances. These include the following:

1. When an argument expression designates a function name,
rather than a function—as for example in

 (APPLY (CAR '(+ – *)) '(2 3))
2. When the arguments to a multiple-argument procedure

are designated by a single term, rather than designated in-
dividually. Thus if X evaluates to the list (3 4), one must
use (APPLY '+ X) rather than (+ X) or (+ . X).

3. When a function is designated by a variable rather than by
a global constant. Thus one must use:

 (LET ((FUN '+)) (APPLY FUN '(1 2)))

rather than the simpler:

 (LET ((FUN '+)) (FUN 1 2))

4. When the arguments to a function are “already evaluated”,
since APPLY, although itself extensional (it is an “EXPR”),
does not re-evaluate the arguments even if the procedure
being applied is an EXPR. Thus one uses:

 (APPLY '+ (LIST X Y))

rather than:

 (EVAL (CONS '+ (LIST X Y)))

As I will show, in 2-Lisp and 3-Lisp only the first of these will re-
quire explicitly mentioning the processor function by name, be-
cause it inherently deals with the designation of expressions, rather
than with the designation of their referents. Because of their cate-

 2b · Reflection & Semantics · Introduction

 143

gory alignment, 2-Lisp and 3-Lisp treat the other three cases ade-
quately in the object language.

 6b The Design of 2-Lisp
Though it meets the criterion of simplicity, 1-Lisp provides more
than ample material for further development, as the previous ex-
amples suggest. Once I have introduced it, as mentioned earlier, I
subject it to a semantical analysis that leads us into an examina-
tion of computational, semantics in general, as described in the
previous section. The search for semantical rationalisation, and
the exposition of the 2-Lisp that results, occupies a substantial
part of the dissertation, even though the resulting calculus still fail
to meet the requirements of procedural reflection (as befitting the
underlying thesis that reflection is relatively straightforward, once
these semantical issues are taken care of). I discussed what se-
mantic rationalisation comes to in general in a previous section
(§■■); here I sketch how its mandates are embodied in the design
of 2-Lisp.

The most striking difference between 1-Lisp and 2-Lisp is that
the latter rejects evaluation in favour of independent notions of
simplification and reference. Thus, 2-Lisp ’s processor is not called
EVAL, but NORMALISE, where by normalisation I refer to a particular
form of expression simplification that takes each structure into
what I call a normal-form designator of that expression’s referent
(making normalization designation-preserving). Details are pro-
vided in chapter 4, but a sense of the resulting architecture can be
given here.x

Simple object level computations in 2-Lisp (those that do not
involve meta-structural structures designating other elements of
the Lisp field) are treated in a manner that looks very similar to 1-
Lisp. The expression (+ 2 3), for example, normalises to 6, and
the expression (= 2 3) to $F (the primitive 2-Lisp boolean con-
stant designating falsity). On the other hand an obvious superfi-

 x Somewhere I should talk about processing “honouring” such semantics;

which is explicit in logic; only implicit (part of practice) in CS; but made ex-
plicit again here. Cf. Mike’s Amala proposals, too; it should be highlighted
in the overall introductory annotation (which I haven’t written yet).

144 Indiscrete Affairs · I

cial difference is that in 2-Lisp meta-structural terms are not
automatically dereferenced. Thus the quoted term 'X, which in 1-
Lisp would evaluate to X, normalises in 2-Lisp to itself. Similarly,
whereas (CAR '(A . B)) would evaluate in 1-Lisp to A, in 2-Lisp it
normalises to 'A. Similarly, in 1-Lisp (CONS ‘A ‘B) evaluates to the
pair (A . B); in 2-Lisp the corresponding expression would yield
the handle '(A . B).

From these almost trivial examples, one might be tempted to
embrace the following idea: that the 2-Lisp processor is just like
the 1-Lisp processor, except that it puts a quote back on before
returning the result. But that is ill-advised; the difference, more
theoretically motivated, is more substantial in terms of structure,
procedural protocols, and semantics. For starters 2-Lisp, like
Scheme, is statically-scoped and higher-order; function-
designating expressions may be passed as regular arguments. 2-
Lisp is also structurally different from I-Lisp; there is no derived
notion of list, but rather a primitive data structure called a rail
that serves the function of designating a sequence of entities
(pairs are still used to encode function applications). What in 1-
Lisp are called “quoted expressions” correspond to the primitive
structural type handle, not to applications framed in terms of a
(pseudo) QUOTE procedure; they are also canonical (one per struc-
ture designated). The 2-Lisp notation 'X, in particular, is not an
abbreviation for (QUOTE X), but rather the primitive notation for
the handle that is the unique normal-form designator of the atom
X. There are other notational differences as well: rails are ex-
pressed with square brackets (thus the expression ‘[1 2 3]’ no-
tates a rail of three numerals that in turn designates a sequence of
three numbers), and expressions of the form

 (F A1 A2 … Ak)
expand not into

 (F . (A1 . (A2 . (… . (Ak . NIL)…))))

but instead into
 (F . [A1 A2 … Ak])

The category structure of 2-Lisp is summarized in figure 17.
Closures, which have historically been treated as rather curious

entities somewhere in between functions and expressions, emerge

 2b · Reflection & Semantics · Introduction

 145

i
n

2
-
L
i
s
p

a
s

standard expressions; in fact I define the term ‘closure’ to refer to
a normal-form function designator. Not only are closures pairs, but
all normal-form pairs are closures, illustrating once again the
category alignment that permeates the design.

As stated above, all 2-Lisp normal-form designators are not
only stable (self-normalising), but also side-effect free and context-
independent. A variety of facts emerge from this result. First, the
primitive processor procedure (NORMALISE) can be proved to be
idempotent in terms of both result and total effect:

 ∀S [(NORMALISE S) = (NORMALISE (NORMALISE S))] (10)

 Consequently, as in the λ-calculus, the result of normalising a
constituent (in an extensional context) in a composite expression
may be substituted back into the original expression, in place of
the non-normalized expression, yielding a partially simplified ex-
pression having the same designation and same normal-form as
the original. So support for “partial evaluation” is in some sense
an automatic feature of the two dialects. In addition, in code-
generating code such as macros and debuggers and so forth, there
is no need to worry about whether an expression has already been
processed, since second and subsequent processings will never
cause any harm (nor, as it happens, will they take any time).

All of the foregoing facts can in some sense be considered to be
simplifications embedded in the design of 2-Lisp. Most of 2-Lisp ’s
complexities emerge only when one consider forms that designate

Figure 17 — 2-Lisp Category Structure

146 Indiscrete Affairs · I

other semantically significant forms. The intricacies of such
“level-crossing” expressions are the stock-and-trade of a reflective
system designer, and only by setting such issues straight before we
consider reflection proper will we face the latter task adequately
prepared.

Primitive procedures called NAME and REFERENT (notationally
abbreviated ‘’ and ‘’) are provided to mediate between sign and
significant (they must be primitive because without them the
processor provably remains semantically flat); thus (taking ‘⇒’ to
mean “normalises to”):

 3 ≡ (NAME 3) ⇒ '3
 'A ≡ (REFERENT 'A) ⇒ 'A

The issue of the explicit use of APPLY, mentioned in the discussion
of 1-Lisp, above, is instructive to examine in the 2-Lisp context,
since it manifests both the structural and the semantic differences
between 2-Lisp and its precursor dialect. In 1-Lisp, the functions
EVAL and APPLY mesh in a well-known mutually-recursive fashion.
Evaluation is uncritically thought to be defined over expressions,
but it is much less clear what application is defined over. On one

view, APPLY is a func-
tional that maps
functions and (se-
quences of) argu-
ments onto the value
of the function at
that argument posi-
tion—thus making it
a second (or higher)
order function. On
another view, APPLY
takes two expressions
as arguments, and
has as its value a
third expression that

designates the value of the function designated by the first argu-
ment at the argument position designated by the second. In 2-
Lisp I will call the first of these notions application and the sec-
ond reduction (the latter in part because the word suggests an

Figure 18 — Reduction and Function Application

 2b · Reflection & Semantics · Introduction

 147

operation over expressions, and in part by analogy with the β-
reduction of Church.22 Current Lisp systems are less than lucid
regarding this distinction (in MacLISP , for example, the function
argument is an expression, whereas the arguments argument is not
an expression, nor is the value). The position I will adopt is de-
picted in figure 18 (to be explained more fully in chapter 3):

The procedure REDUCE, together with NORMALISE will of course
play a major role in the characterisation of 2-Lisp, and in the sub-
sequent construction of the reflective 3-Lisp. It is worth noting,
however, that although it would be trivial to do so, there is no
reason to define a designator of the APPLY function, since any
term of the form:

 (APPLY FUN ARGS)

would be equivalent in both designation and effect (i.e., would be
equivalent in full computational significance) to:

 (FUN . ARGS)

In contrast, since it is a meta-structural function, REDUCE is neither
trivial to define (as is APPLY) nor recursively empty.

A summary of the most salient differences between 2-Lisp and 1-
Lisp is provided in the following list:

1. Scoping: 2-Lisp is lexically scoped, in the sense that vari-
ables free in the body of a LAMBDA form take on the bind-
ings in force in their statically enclosing context, rather
than from the dynamically enclosing context at the time of
function application.

2. Functions: Functions are first-class semantical objects,
and may be designated by standard variables and argu-
ments. As a consequence, the function position in an ap-
plication (the CAR of a pair) is both procedurally and de-
claratively “extensional,” and thus normalised in exactly the
same way as argument positions.

3. Simplification: Evaluation is rejected in favour of inde-
pendent notions of simplification and reference. The primi-

 22 Church (1941).

148 Indiscrete Affairs · I

tive processor is a particular kind of simplifier. rather than
being an evaluator. In particular, it normalises expressions,
returning for each input expression a normal-form co-
designator.

4. Declarative Semantics: A complete theory of declarative
semantics is postulated for all s-expressions. prior to and
independent of the specification of how they are treated by
the processor function—a pre-requisite to the claim that
the processor is designation-preserving):.

5. Closures: Closures—normal-form function designators—
are valid and inspectable s-expressions.

6. Normal Form: Though not all normal-form expressions
are canonical (functions, in particular, may have arbitrarily
many distinct normal-form designators), nevertheless they
are all stable (self-normalising), side-effect free, and both de-
claratively and procedurally context independent.

7. Semantically Flat: The primitive processor (designated by
NORMALISE) is semantically flat; in order to shift level of des-
ignation one of the explicit semantical primitives NAME ()
or REFERENT () must be applied.

8. Category Alignment: 2-Lisp is category-aligned (as indi-
cated in figure 17, above): there are two distinct structural
types, pairs and rails, that respectively encode function ap-
plications and sequence enumerations. There is in addition
a special two-element structural class of boolean constants.
There is no distinguished atom NIL.

9. Binding: Variable binding is co-designative, rather than be-
ing either evaluative or designative, in the sense that a vari-
able normalises to what it is bound to, and therefore desig-
nates the referent of the expression to which it is bound.
Although I will speak of the binding of a variable, and of
the referent of a variable, I will not speak of a variable’s
value, since that term conflates these two notions.

10. Identity: Identity considerations on normal-form designa-
tors are as follows: the normal-form designators of truth-
values, numbers, and s-expressions (the booleans, numer-
als, and handles, respectively) are unique. Normal-form

 2b · Reflection & Semantics · Introduction

 149

designators of sequences (rails) and functions (pairs) are
not. No atoms are normal-form designators of anything;
therefore the question does not arise in their case.

11. LAMBDA: The use of LAMBDA is purely an issue of abstrac-
tion and naming, and is completely divorced from proce-
dural type (extensional, intensional, macro, and so forth).

As soon I we have settled on the definition of 2-Lisp, however, I
will begin to criticise it. In particular, I will provide an analysis of
how 2-Lisp fails to be appropriately reflective, in spite of its
semantical cleanliness.

A number of problems in particular emerge as troublesome.
First, it will turn out that the clean semantical separation between
meta-levels is not yet matched with a clean procedural separation.
For example, too strong a separation between environments, with
the result that intensional procedures become extremely difficult
tn use, shows that in one respect, 2-Lisp ’s inchoate reflective
facilities suffer from insufficient causal connection. On the other
hand, awkward interactions between the control stacks of inter-
level programs will show how, in other respects, there is too much
connection. In addition, although I will demonstrate a metacircu-
lar implementation of 2-Lisp in 2-Lisp, and will provide 2-Lisp
with explicit names for its basic interpreter functions (NORMALISE
and REDUCE), these two facilities will remain utterly uncon-
nected—an instance of a general problem to be discussed in chap-
ter 3 on reflection in general.

 6c The Procedurally Reflective 3-Lisp
From this last analysis will emerge the design of 3-Lisp, a proce-
durally reflective Lisp and the last of the dialects to be considered
here.

As presented in chapter 5, 3-Lisp differs from 2-Lisp in a vari-
ety of ways.

1. The fundamental reflective act is identified and accorded
tbe centrality it deserves in the underlying definition.

2. Each reflective level is granted its own environment and
continuation structure, with the environments and con-
tinuations of the levels below it accessible as first-class ob-

150 Indiscrete Affairs · I

jects (inheriting a Quinean stamp of ontological approval,
since they can be the values of bound variables).

3. As mentioned in the earlier discussion these environments
and continuations are theory relative. The (procedural)
theory is embodied in the 3-Lisp reflective model, a caus-
ally connected variant on the metacircular interpreter of 2-
Lisp discussed in section 3.

4. Surprisingly, the integration of reflective power into the
metacircular—now reflective—model is itself extremely
simple (though to implement the resulting machine is not
trivial).

5. Reflecting its more complete nature, in a number of ways
3-Lisp is notably simpler than 2-Lisp.

Once all these moves have been taken it will be possible to Inerge
the explicit reflective version of NORMALISE and REDUCE, and the
similarly named primitive functions. In other words the 3-Lisp
reflective model unifies what in 2-Lisp were separate: primitive
names for the underlying processor, and explicit metacircular
programs demonstrating the procedural structure of that proces-
sor.

It was a consequence of defining 2-Lisp in terms of NORMALISE,
a species of simplification, that the 2-Lisp processor is “semanti-
cally flat”: the semantical level of an input expression is always the
same as that of the expression to which it simplifies.. An even
stronger claim holds for function application. Except in the case
of the explicit level-shifting functions NAME () and REFERENT (),
the semantical level of the result is also the same as that of all of
the arguments. This is all evidence of the effort to drive a wedge
between simplification and de-referencing mentioned earlier. 3-
Lisp inherits this semantical characterisation; note that it remains
true even in the case of reflective functions.

A semantically-flat (fixed-level) processor of this form—one of
the reasons 2-Lisp was designed this way—enables an important
move: it becomes possible, though only in an approximate sense,
to identify declarative meta levels with procedural reflective levels.
This does not quite have the status of a claim, because it is virtu-
ally mandated by the Knowledge Representation Hypothesis
(furthermore, the correspondence is somewhat asymmetric: de-

 2b · Reflection & Semantics · Introduction

 151

clarative levels can be crossed within a given reflective level, but
reflective shifts always involve shifts of designation). But it is in-
structive to realise that we have been able to identify the reflective
act (that makes available the structures encoding the processing
state and so forth) with two shifts: (i) the shift from objects to
their names, and (ii) the shift from tacit aspects of the back-
ground to objects. Reification, that is, emerges as the first form of
semantic ascent. Thus what was used prior to reflection is men-
tioned upon reflecting; what was tacit prior to reflection becomes
used upon reflection.x When this behaviour is combined with the
ability for reflection to recurse, we are able to lift structures that
are normally tacit into explicit view in one simple reflective step;
we can then obtain access to designators of those structures in
another.

Later in the dissertation both the 3-Lisp reflective model, and a
MacLISP implementation of it, will be provided by way of defini-
tion. In addition, some hints will be presented of the style of se-
mantical equation that would be required for a traditional deno-
tational-semantics style account of 3-Lisp —though it is impor-
tant to admit that a full semantical treatment of procedural reflec-
tion in general or of 3-Lisp in particular has yet to be worked out.

In a more pragmatic vein, however, and in part to show how 3-
Lisp satisfies many of the desiderata that motivated the original
definition of the concept of reflection, I will present a number of

 x Although I did not pay a great deal of attention to this claim at the time

the dissertation was written, I was very struck by it when I came to realize
it. It not only influenced the approach to real-world ontology that is
sketched in O3, but it also infected the ideas I was mulling on, at the time,
about fusing higher-order and intensional “objectification” levels in Man-
tiq.

 I still believe that a substantial issue remains lurking here, with which a
proper theory of cognition should come to grips: relations between and
among processes of (i) reification—leading us to find the world intelligible
in terms of objects; (ii) semantic ascent—generating quotation, meta-level
concepts and expressions, and other forms of symbolic or cognitive “men-
tion”); and (iii) the use of higher-order structures (such as higher-order
functions). In our formal efforts to be rigorously clear about the differences
among these notions, we sometimes fail to recognize their similarity—and
more seriously, what may be their common genealogy.

152 Indiscrete Affairs · I

examples of programs defined in 3-Lisp: a variety of standard
functions that make use of calls to the processor, access to the
implementation (debuggers, “single-steppers,” and so forth), and
non-standard “evaluation” (processing) protocols. The suggestion
will be made that the case with which these powers can be em-
bedded in “pure” programs recommends 3-Lisp as a plausible dia-
lect in its own right. Nor is this simply a matter of using 3-Lisp as
a theoretical vehicle in which to model or implement these vari-
ous constructs, or of showing that such models fit naturally and
simply into the 3-Lisp dialect (as a simple continuation-passing
scheme can for example be shown to be adopted in Scheme). The
claim is stronger: that such functionality can be naturally embed-
ded in 3-Lisp in a manner that allows it to be congenially mixed
(without pre-processing or pre-compilation) with simpler, more
standard forms of practice. Without the user normally having to
use (or even understand) explicit continuation-passing style,
nonetheless, at any point in the course of the computation, the
applicable continuation is easily and explicitly available (upon re-
flection) for any programs that wish to deal with such things di-
rectly. Similar remarks hold for other aspects of the control struc-
ture and environment

One final comment about the 3-Lisp architecture will relate it
to the two views on reflection—“level-shifting” and “infinite-
tower”—mentioned at the end of section 5. Modulo the amount
of time it takes, processing mediated by the 3-Lisp reflective
model is guaranteed to yield indistinguishable behaviour (at least
from a non-reflective point. of view—there are subtleties here)
from basic, non-reflected processing. It is this fact that allows us
to make the abstract claim that 3-Lisp runs in virtue of an infinite
number of levels of reflective models all running at once. by an
(infinitely fleet) overseeing processor running at level ∞. The re-
sulting infinite abstract machine is well defined, for it is of course
behaviourally indistinguishable from the perfectly finite 3-Lisp
that will already have been laid out (and implemented). For some
purposes 3-Lisp is most easily described in terms of this infinite
tower—and in some ways, too, it is the easiest model for the 3-
Lisp programmer to have in mind, when writing programs.. Such
a programmer can write programs to be interpreted at any reflec-
tive level, and cannot tell that all infinitude of levels are not being

 2b · Reflection & Semantics · Introduction

 153

run (the implementation surreptitiously constructs them and
places them in view each time the user’s program steps back to
view them), such a characterisation is usually more illuminating
than talk of the processor “switching back and forth from one
level to another”. In terms of mathematical analysis, treating 3-
Lisp as a purely formal object, the infinite tower characterisation
would also be more likely to be preferred. On the other hand,
when taken as a model of psychologically intuitive reflection—
based on a vague desire to locate the self of the machine at some
level or other—the language of level-shifting seems more highly
recommended. Level-shifting is also a major and constant concern
for anyone person who designs and constructs a 3-Lisp imple-
mentation.

 6d Reconstruction Rather Than Design
2-Lisp and 3-Lisp can claim to be dialects of Lisp only on a gen-
erous interpretation. Both dialects are unarguably more different
from the original Lisp 1.6 than are all other dialects that have pre-
viously been proposed, including for example Scheme, MDL, NIL,
SEUS, MacLISP, InterLISP, and Common Lisp.23

In spite of this difference, however, I view it as important to
the exercise to call these languages Lisp. The aim in developing
them has not been simply to propose some new variants in a
grand tradition, perhaps better suited for a certain class of prob-
lem than others that have gone before. Rather—and this is one of
the reasons that this dissertation is as long as it is—it is my claim
that the architecture of these new dialects, in spite of its differ-
ence from that of standard Lisps, is a more accurate reconstruction
than has heretofore been provided of the underlying coherence that or-
ganises our communal understanding of what Lisp is. I am making
an empirical claim, in other words—a claim that should ulti-
mately be judged as right or wrong. Whether 2-Lisp or 3-Lisp are

 23 Scheme is reported in Sussman and Steele (1975) and in Steele and

Sussman (1978a); MDL in Galley and Pfister (1975), NIL in White (1979),
MacLISP in Moon (1974) and Weinreb & Moon (1981), and InterLISP in
Teitelman (1978). Common Lisp and SEUS are both under development,
as this is being written, and have not yet been reported in print, so far as i
know (personal communication with Guy Steele and Richard Weyhra-
uch).

154 Indiscrete Affairs · I

better than previous Lisps is of course a matter of interest on its
own, but it is not the thesis that this dissertation has set out to
argue.

 6 Remarks

 6a Comparison with Other Work
Although I know of no previous attempts to construct eitller a
semantically rationalised or a reflective computational calculus,
the research presented here is of course dependent on, and related
to, a large body of prior work. There are in particular four general
areas of study with which this project is best compared:

1. Investigations into the meta-cognitive and intensional as-
pects of problem solving (this includes much current re-
search in Artificial Intelligence);

2. The design of logical and procedural languages (including
virtually all of programming language research, as well as
the study of logics and other declarative calculi);

3. General studies of semantics (including both natural lan-
guage and logical theories of semantics, and semantical
studies of programming languages); and

4. Studies of self-reference, of the sort that have characterised
much of metamathematics and the theory of computability
throughout this century, particularly since Russell, and in-
cluding the formal study of the paradoxes, the Gödel in-
completeness results, and so forth.

I will make detailed comments about connections between this
project and such other work throughout the discussion (for ex-
ample in chapter 5 I will compare the reflective sense of “self-
reference” with the notion traditionally studied in logic and
mathematics), but some general comments can be made here.

Consider first the meta-cognitive aspects of problem-solving, of
which the dependency-directed deduction protocols presented by
Stallman and Sussman, Doyle, McAllester, and others are an il-

 2b · Reflection & Semantics · Introduction

 155

lustrative example.24 This work depends on explicit encodings, in
some form of meta-language, of information about object-level
structures, used to guide a deduction process. Similarly, the meta-
level rules of Davis in his TEIRESIUS system,25 and the use of meta-
levels rules as an aid in planning,26 can be viewed as examples of
inchoate reflective problem solvers. Some of these expressions are
primarily procedural in intent,27 although declarative statements
(for example about dependencies) are perhaps more common,
with respect to which particular procedural protocols are defined.

The relationship of the current project to this type of work is
more one of support than of direct contribution. I do not present
(or even hint at) problem solving strategies involving reflective
manipulation, although the fact that others are working in this
area has certainly been a motivation for my research. Rather, I at-
tempt to provide a rigorous account of the particular issues that
have to do simply with providing facilities for reflection, independ-
ent of what such facilities are then used for. An analogy might be
drawn to the development of the λ-calculus, recursive equations,
and Lisp, in relationship to the use of these formalisms in
mathematics, symbolic computation, and so forth: the former
projects provide a language and architecture, to be used reliably
and perhaps without much conscious thought, as the basis for a
wide variety of applications. The present dissertation will be suc-
cessful not if it forces everyone working in meta-cognitive areas to
think about the architecture of reflective formalisms, but almost
the opposite: if it allows them to forget that the technical details
of reflection were ever considered to be problematic. Church’s α-
reduction was a successful manoeuvre precisely because it means
that one can treat the λ-calculus in the natural way; I hope that
my treatment of reflective procedures will enable those who use
3-Lisp or any subsequent reflective dialect to treat “backing-off’ in
what they take to be “the natural way.”

The “reflective problem-solver” reported by Doyle28 deserves a

 24 Stallman and Sussman (1977), de Kleer et al. (1977).
 25 Davis (1980)
 26 Stefik (1981a and 1981b).
 27 de Kleer et al. (1977).
 28 Doyle (1981).

156 Indiscrete Affairs · I

special comment. Again, I provide an underlying architecture
which might facilitate his project, without actually contributing
solutions to any of his particular problems about how reflection
should be effectively used, or when its deployment is appropriate.
Doyle’s envisaged machine is a full-scale problem solver; it is also
(so at least he argues) presumed to be large, to embody complex
theories of the world, and so forth. In contrast, 3-Lisp is not a
problem solver at all (all the user is “given” is a language—very
much in need of programming); it embodies only a small proce-
dural theory of itself, and it is really quite small. As well as these
differences in goals there are differences in content (I for example
endorse a set of reflective levels, rather than any kind of true in-
stantaneous self-referential “reflexive” reasoning); it is difficult,
however, to determine with very much detail what his proposal
comes to, since his report is more suggestive than final.

Given that 3-Lisp is not a problem solver of the sort Doyle
proposes, it is natural to ask whether it would be a suitable lan-
guage in which Doyle might implement his system. There are two
different kinds of answer to this question, depending on how he
takes his project.

If, on the one hand, Doyle is proposing a design of a complete
computational architecture (i.e., a process reduced in terms of an
ingredient processor and a structural field), and wishes to imple-
ment it in some convenient underlying language, then 3-Lisp ’s re-
flective powers will not in themselves immediately engender cor-
responding reflective powers in the virtual machine that he im-
plements. Reflection, as I have been at considerable pains to dem-
onstrate, is first and foremost a semantical phenomenon, and se-
mantical properties—designation and normalisation protocols and
reflection and the rest—do not cross implementation boundaries
(this is one of the great powers, but also a very serious limitation,
of implementation).x 3-Lisp would be useful in such a project to

 x This is a very serious issue. Suppose that architecture or virtual machine Y is

implemented on top of language or system X. The question has to do with
which of various properties Pi exemplified by X (the underlying system) are
“inherited” by—i.e., true of—system Y, in virtue of the implementation re-
lation holding between them. The answers are complex, and illuminating.
There is no way that Y can be a “real-time” system, for example (in the
sense of providing metric guarantees about certain kinds of behaviour,

 2b · Reflection & Semantics · Introduction

 157

the extent that it is generally a useful and powerful language, but
it is important to recognise that its reflective powers cannot be
used directly to provide reflective capabilities in other architec-
tures implemented on top of it.

There is an alternative strategy open to Doyle, however, by
which he could use 3-Lisp ’s reflective powers more directly. If,
rather than defending a generic reflective architecture, he more
simply intended to show how a particular kind of reflective rea-
soning was useful, he could perhaps construct such behaviour in
3-Lisp, and thus use its reflective capabilities rather directly.
There are consequences of this approach, however: he would have
to accept 3-Lisp structures and semantics, including among other
things the fact that it is purely a procedural formalism. It would
not be possible, in other words, to encode a full descriptive lan-
guage on top of 3-Lisp, and then use 3-Lisp ’s reflective powers to
reflect in the general sense with these descriptive structures. If
one aims to construct a general or purely descriptive formalism,
one would have to make that architecture reflective on its own.

None of these conclusions stand as criticisms of 3-Lisp. They
are entailed by fundamental facts about computation and seman-
tics—not limitations of the particular theory or dialect I propose
(i.e., they would, and necessarily so, be equally true of any other
proposed architecture).

This is one reason, among many, why I view 3-Lisp not as the

such as providing support for a routine to run exactly once per second), un-
less X is also real-time. So, to adopt a convenient way of speaking, I would
say that being real-time “cross implementation boundaries downwards”
(that is: that from a system’s being real-time, one can conclude that the sys-
tem on or in which it is implemented is also real-time—and hence all such
systems below it, down to the hardware). Conversely, “being a finite state
machine” is a property that crosses implementation boundaries upwards,
since there is no way to implement a machine with an indefinitely un-
bounded store on top of one that has no such store. Needless to say, it does
not cross implementation boundaries downwards; you can perfectly well
implement a finite state machine in Lisp, which is not one.

 The present point is that semantical properties in general—and thus
reflection in particular—do not cross implementation boundaries in either
direction. From neither X nor Y’s being reflective, in the above example,
can one deduce anything about whether the other is reflective.

 For further discussion see «Ref aos».

158 Indiscrete Affairs · I

contribution made in this dissertation, but rather as an example to
exhibit its contribution: the conceptual structure of how to design
and build a reflective architecture. Thus it is my hope that what
would be useful from this dissertation for Doyle, or for anyone
else in a parallel circumstance, is the detailed structure of a reflec-
tive system that I have attempted to explicate here—an architec-
ture and a concomitant set of theoretical terms to help such a per-
son analyse and structure whatever architecture they design, adopt, or
embrace. Thus I would count the present contribution a success if
it proved useful, for Doyle or anyone else, to make use of:

1. The φ/ψ distinction;
2. The relationship between semantical levels and reflective

levels;
3. The encoding of the reflective model within the calculus;
4. The strategy of adopting a virtually infinite tower of proc-

essors as a finite model for level-shifting;
5. The semantic flatness and uniformity of a normalising

processor;
6. The elegance of category-alignment;

And so forth. It is in this sense that I hope that the theory and
understanding that 3-Lisp embodies will contribute to problem-
solving research (and to programming language research), rather
than the particular formalism I have developed and demonstrated
by way of illustration.x

 x As mentioned in the commentary included at the beginning of the POPL

paper «ref», I believe it is fair to say that these hopes were entirely in vain.
Dan Friedman, of Indiana University, was one of the most enthusiastic pro-
ponents of reflection in the programming language community; I owe him
a debt of gratitude for the enthusiasm and support he offered subsequent
of the publication of the POPL paper introducing 3-Lisp (reproduced here
as chapter ■■). However as perhaps best illustrated in his own paper with
Mitchell Wand (Friedman & Wand, 1984), the first thing that most people
did, in bringing reflection into their own work, was to dismiss every one of
these six claims.

 For some of the reasons for this dismissal see the discussion cited above.
Fundamentally I believe that it stems from a lack of theoretical concourse
between the representational tradition (logic, data bases, knowledge rep-

 2b · Reflection & Semantics · Introduction

 159

The second type of research with which this project has strong
ties is the general tradition of providing formalisms to be used as
languages and vehicles for a variety of other projects—including
the formal statement of theories, the construction of computa-
tional processes, the analysis of human language, and so forth. I
take this tradition to be sufficiently broad (in particular, to in-
clude logic and the λ-calculus, plus virtually all programming lan-
guage research) that it is difficult to say very much that is specific,
though a few comments can be made.

First, I of course owe a tremendous debt to the Lisp tradition
in general,29 and also to the recent work of Steele and Sussman.30
Particularly important is their Scheme dialect—in many ways the
most direct precursor of 2-Lisp.31 Second, my explicit attempt to
unify the declarative and procedural aspects of this tradition has
already been mentioned—a project that is (as far as I know) with-
out precedent. Note, as mentioned in the Introduction, that I do
not consider PROLOG32 to count as having done this, since it
provides two calculi together, rather than presenting a single cal-
culus under a unified theory. Finally, as documented throughout
the text, inchoate reflective behaviour can be found in virtually all
comers of computational practice; the Smalltalk language,33 to
mention just one example, includes a meta-level debugging system
which allows for the inspection and incremental modification of
code in the midst of a computation.

The third and fourth classes of previous work listed above have to
do with general semantics and with self-reference. The first of
these is considered explicitly in chapter 3, where I compare my

resentation languages, etc., and the programming language community).

 29 References to specific Lisp dialects arc given in note ■■, above; more
general accounts may be found in Allen (1978), Weisman (1967),
Winston and Horn (1981), Charniak et al. (1980), McCarthy et al. (1965),
and McCarthy and Talbott (forthcoming).

 30 Steele (1976), Steele & Sussman (1976, 1978b).
 31 In an early version of the dissertation I called Scheme “1.7-Lisp,” since it

takes what I see as approximately half of the step from Lisp 1.6 to the se-
mantically rationalised 2-Lisp.

 32 Clark and McCabe (1979), Roussel (1975), and Warren et al. (1977).
 33 Goldberg (1981); Ingalls (1978).

160 Indiscrete Affairs · I

approach to this subject with model theories in logic, semantics of
the λ-calculus, and the tradition of programming language seman-
tics; no additional comment is required here. Similarly, the rela-
tionship between the notion of reflection I present and traditional
concepts of self-reference are taken up in more detail in chapter
5;x here I merely comment that my concerns, perhaps surpris-
ingly, are constrained almost entirely to computational formal-
isms. Unless a formal system embodies a locus of active agency—an
internal processor (i.e., process) of some sort—the entire ques-
tion of causal relationship between an encoding of self-referential
theory and what I consider a genuine reflective model cannot even
be asked.

We often informally think of a natural deduction “process” or
some other kind of deductive apparatus making inferences over
first-order sentences, as a heuristic in terms of which to make
sense of the formal notion of derivability. Strictly speaking, how-
ever, in the purely declarative tradition derivability is no more
than a formal relationship that holds between certain sentence types;
no activity is involved. There are no notions of next or of when a
certain deduction is made. If one were to specify an active deduc-
tive process over such first-order sentences, then it is imaginable
that one could include sentences (relative to some axiomatisation
of that deductive process) in such a way that the operations of the
deductive process were appropriately controlled by those sen-
tences (this is the suggestion explored briefly in §2b). The result-
ing machine, however—not merely in its reflective incarnation,
but even prior to that, by including an active agency—cannot
fairly be considered simply logic, but rather a full computational
formalism of some sort.

Needless to say, I believe that a reflective version of such a de-
scriptive system could be built.34 My position with respect to such
an image rests on two observations: (i) the result would be an in-
herently computational artefact, in virtue of the addition of inde-
pendent agency, and (ii) 3-Lisp, although reflective, is not yet
such a formalism, since it is purely procedural.

 x See also my “Varieties of Self-Reference,” included here as Chapter ■■.

 34 In fact it is my intent to develop just such an architecture in the future.

 2b · Reflection & Semantics · Introduction

 161

I conclude with one final comparison. The formalism closest in
spirit to 3-Lisp is Richard Weyhrauch’s FOL system,35 although
my project differs from his in several important technical ways.
First, like Doyle’s system, FOL is a problem solver: it embodies a
theorem-prover, although it is possible (through the use of FOL’s
meta-levels) to give it guidance about the deduction process. In
spite of those facilities, however, FOL is not a programming lan-
guage. Furthermore, FOL adopts—in fact explicitly endorses—the
distinction between declarative and procedural languages (first
order logic and Lisp, in particular), using the procedural calculus
as a simulation structure rather than as a descriptive or designa-
tional language. Weyhrauch claims that the power that emerges
from combining—but maintaining as distinct—these “language-
simulation-structure” pairs, as he calls them (“L-S pairs”), at each
level in his meta hierarchy, is one of his primary contributions. It
is my own claim, in contrast, that the greatest power will arise
from dismantling the difference between procedural and declara-
tive calculi.

There are other differences as well. I take the interpretation
function that maps terms onto objects in the world outside the
computational systems (φ) to be foundational. It would appear in
Weyhrauch’s systems as if that particular semantical relationship
is abandoned in favour of internal relationships between one for-
mal system and another. A more crucial distinction is hard to
imagine—though there is some evidence36 that this apparent dif-
ference may have to do with our respective uses of terminology,
rather than with deep ontological or epistemological beliefs.

In sum, FOL and 3-Lisp are technically quite distinct, and the
theoretical analyses on which they are based almost unrelated. At
a more abstract level, however, they are clearly based on similar—
and perhaps parallel, if not identical—intuitions. Furthermore, I
would argue that 3-Lisp represents merely a first step in the de-
velopment of a fully reflective calculus based on a fully integrated
theory of computation and representation; how such an eventual
system, once it were defined, would differ from FOL remains to be

 35 Weyhrauch (1978).
 36 I am indebted to Richard Weyhrauch for personal communication on

these points.

162 Indiscrete Affairs · I

seen. It seems likely that the resulting unified calculus, rather
than the dual-calculus nature, would be the most obvious techni-
cal distinction, although the actual structure of the descriptive
language, semantical meta-theories, and so forth, are also likely to
differ both in substance and in detail.

One remaining difference is worth exploring in part because it
reveals a deep but possibly distinctive character of my treatment
of Lisp. It is clear from Weyhrauch’s system that he considers the
procedural formalism to represent a kind of model of the world—
in the sense of an (abstract) artefact whose structure or behaviour
mimics that of some other world of interest. Under this approach
the computational behaviour can be taken in lieu of or in place of
the real behaviour in the world being studied. Consider for exam-
ple the numeral addition that is the best approximation a com-
puter can make to actually “adding numbers” (whatever that
might be). When we type ‘(+ 1 2)’ into a Lisp processor, and it
returns ‘3’, we are liable to take those numerals not so much as
designators of the respective numbers, but instead as models.
There is no doubt that the input expression ‘(+ 1 2)’ is a linguistic
artefact; on the view I will adopt in this dissertation there is no
doubt that the resultant numeral ‘3’ is also a linguistic artefact. I
do want to admit, however, that there is a not unnatural tendency
to think of the latter as “standing in place of” the actual number,
in a different sense from standard designation or naming. It is
this sense of simulation rather than description that, as far as I un-
derstand it, underlies Weyhrauch’s use of Lisp.

I fundamentally believe that this is a limited view, however—
and go to considerable trouble to maintain an approach in which
all computational structures are taken to be semantical in some-
thing like a linguistic sense, rather than (being taken as) serving as
models. Many issues are involved—having to do with such issues
as truth, completeness, and so forth—that a simulation stance
cannot deal with. At worst, moreover, adopting a simulation
stance can lead to a view of computational models that runs in
danger of being either radically solipsistic or even, I believe, nihil-
ist. It is exactly the connection between a computational system
and the world that motivates my entire approach; a connection
that I believe can be ignored only at considerable peril. I in no
way rule out computations that in different respects mimic the

 2b · Reflection & Semantics · Introduction

 163

behaviour of the world they are about; it is clear that certain
forms of human analysis involve just this kind of thinking (“step-
ping through” the transitions of some mechanism in one’s head,
for example, to “be sure that one understands it”). My point is
only that such simulation is still a kind of thinking about the world;
it is not the world being thought about.x

 6b The Mathematical Meta-Language
Throughout the dissertation I will employ an informal meta-
language, built up from a rather eclectic combination of devices
from quantificational logic, the lambda calculus, and lattice the-
ory, extended with some straightforward conventions (such as
expressions of the form “if P then A else B” as an abbreviation for
“[P ⊃ A] ⋀ [¬P ⊃ B]”). Notationally I will use set-theoretic devices
(union, membership, etc.), but these should be understood as de-

 x It was not until 1987 that Rodney Brooks first made his famous statement

that the “representation” should be discarded in Artificial Intelligence sys-
tems—in favour of a view that, in his words, treated “the world as its own
best model” (Brooks 1987); see also his “Intelligence Without Reason” and
“Intelligence Without Representation” (Brooks 1991a & 1991b).

 What I take to be significant about the widely-heralded “sea-change” to
which Brooks’ and others work led is the fact that it betrays what I am here
attributing to Weyhrauch: a somehow tacit but deep assumption that “rep-
resentation” meant constructing within the machine a replica of the world
as a whole, which could be used in its place—as opposed to what cognitive
scientists and philosophers of mind take a representational theory of mind
to involve, which is that a person “represents” the world only in the sense
of employing some interpreted symbols or structures with semantic content
involving facts, entities, and states of affairs in the world. Even an internal
structure with content along the lines of “Make sure you look out con-
stantly and check intersection to make sure that it is empty!” would count
as a representation on the latter, but apparently not the former, view.

 It is hardly surprising that the “full simulation” view of representation
needed to be eschewed—though to take that as a rejection of representa-
tion altogether is both an extreme and a binaristic reaction. Brooks later
softened his view, saying that AI systems should use representation “only
when necessary”—which opens the door to what representation had origi-
nally meant. For more on Brooks, what the circumstances are in which “rep-
resentation is necessary,” etc., see my “Rehabilitating Representation,” in-
cluded «ref; second volume?»

164 Indiscrete Affairs · I

fined over domains in the Scott-theoretic sense, rather than over
unstructured sets. The notations should by and large be self-
explanatory; a few standard conventions worth noting are these:

1. ‘[A → B]’ refers to the domain of continuous functions
from A to B;

2. ‘F : [A → B]’ means that F is a function whose domain is A
and whose range is B;

3. ‘<S1, S2, … Sk>’ designates the mathematical sequence con-
sisting of the designata of “S1”, “S2”, … “Sk”;

4. ‘S1’ refers to the i’th element of S, assuming that S is a se-
quence (thus <A, B, C>2 is B);

5. ‘[S × R]’ designates the (potentially infinite) set of all tuples
whose first member is an element of S and whose second
member is an element of R;

6. ‘A*’ refers to the power domain of A:
 [A ∪ [A × A] ∪ [A × A × A] ∪ …]

7. Parentheses and brackets are used interchangeably to indi-
cate scope and function application in the standard way.

8. Standard currying is employed to deal with functions of
several arguments. Thus:

 λA1,A2,…Ak . E means λA1.[λA2.[… . [λAk . E]…]]
 λ<A1,A2,…Ak> . E means λA1.[λA2.[… . [λAk . E]…]]
 F(B1,B2,…Bk) means ((…((F(B1))B2)…)Bk)

If I wanted to be more precise, I would be stricter about the use
of domains rather than sets, in order that function continuity be
maintained, and so forth. It is not my intent here to make the
mathematics rigorous, but I trust that it would be straightfor-
ward, given the accounts I set down, to take this extra step to-
wards formal adequacy.

 6c Examples and Implementations
A considerable number of examples are presented throughout the
dissertation, which can be approximately divided into two
groups: (i) formal statements about Lisp and about semantics,
expressed in the meta-language; and (ii) illustrative programs and

 2b · Reflection & Semantics · Introduction

 165

structures expressed in Lisp itself (most of the latter are in one of
the three Lisp dialects, though a few are in standard dialects as
well). As the preceding discussion suggests, the meta-linguistic
characterisations have not been checked by formal means for con-
sistency or accuracy; the proofs and derivations were generated by
the author using paper and pencil. The program examples, on the
other hand, were all tested on computer implementations of 1-
Lisp, 2-Lisp, and 3-Lisp developed in the MacLISP and “Lisp Ma-
chine” Lisp dialects of Lisp at MIT.37 Thus, although the examples
in the text were typed in by the author as text—i.e., the lines of
characters in this document are not actual photocopies of com-
puter interaction—each was nevertheless verified by these im-
plementations. However the implementation presented in the
Appendix is a photocopy of the actual computer program listing.
Any residual errors (it is hard to imagine every one has been
eliminated) must have arisen either from typing errors or from
mistakes in the implementation itself.x

37A complete program listing of the third of these—a MacLISP implemen-
tation of 3-Lisp —is given in the Appendix.

 x This dissertation was written in 1981 on the Xerox Alto minicomputer—
arguably the first “personal computer"—developed at the Xerox Palo Alto
Research Center (PARC) in the 1960s. It used Bravo, the first “WYSIWYG”
(“what you see is what you get”) document preparation system. The 3-Lisp
implementation was developed in MacLISP , a dialect of Lisp implemented
under “ITS” (“Incompatible Time-Sharing System”) at the Artificial Intelli-
gence Laboratory at MIT, running on Digital Equipment Corporation PDP-6
and PDP-10.

166 Indiscrete Affairs · I

 References (original)
Allen, Jon, Anatomy of LISP. New York: McGraw-Hill (1978).
Bobrow Daniel G., (ed.) Artificial Intelligence, 13:1,2 (Special Issue on

Non-Monotonic Reasoning), (1980).
Bobrow, Daniel G., and Winograd, Terry, “An Overview of KRL: A

Knowledge Representation Language,” Cognitive Science 1:3–46 (1977)
Bobrow, Daniel G., Winograd, Terry et al., “Experience with KRL-O: One

Cycle of a Knowledge Representation Language,” Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, Cambridge, Mass
(August 1977) pp. 213–22.

Bobrow, Daniel G., and Wegbreit, Ben, “A Model and Stack Implementa-
tion of Multiple Environments,” Communications of the ACM 16,
10:591–603 (Oct 1973).

Brachman, Ronald, “Recent Advances in Representation Languages,” in-
vited presentation at the First Annual National Conference on Artificial
Intelligence, Stanford, California, (August 1980), sponsored by the
American Association for Artificial Intelligence.

Brachman, Ronald and Smith, Brian Cantwell, (eds.), Special Issue on
Knowledge Representation, SIGART Newsletter, 70 (February 1980).

Charniak, Edward, Riesbeck, Chris, and McDermott, Drew, Artificial
Intelligence Programming, Hillsdale, NJ: Lawrence Erlbaum (1980).

Church, Alonzo, The Calculi of Lambda-conversion, Annals of Mathematics
Studies 6, Princeton, NJ: Princeton University Press (1941).

Clark, K.L., McCabe F. (1979). Programmer’s guide to IC-Prolog. CCD Re-
port 79/7, London: Imperial College, University of London.

Davis, R. “Applications of Meta Level Knowledge to the Construction,
Maintenance, and Use of Large Knowledge Bases,” PhD thesis, Stan-
ford University, Stanford, California; also in Davis, R., and Lenat, D.,
(eds.), Knowledge-Based Systems in Artificial Intelligence, New York:
McGraw-Hill (1980a).

———, “Meta-Rules: Reasoning about Control”, M.I.T. Artificial Intelli-
gence Laboratory Memo AIM-576 (1980b); also Artificial Intelligence
15:3, December 1980, pp. 179–222.

deKleer, Johan, Doyle, Jon, Steele, Guy L. Jr., and Sussman, Gerald J., “Ex-
plicit Control of Reasoning,” Proceedings of the ACM Symposium on Ar-
tificial Intelligence and Programming Languages, Rochester, N.Y. (1977);
also M.I.T. Artificial Intelligence Laboratory Memo AIM-427 (1977).

Donnellan, Kennett, “Reference and Definite Descriptions,” Philosophical
Review 75:3 (1966), pp. 281–304.; reprinted in Rosenberg and Travis
(eds.), Readings in the Philosophy of Language, Prentice-Hall (1971).

Doyle, Jon, “A Truth-Maintenance System,” Artificial Intelligence 12:231–
272 (1979).

———, A Model for Deliberation, Action, and Introspection, doctoral disser-

 2b · Reflection & Semantics · Introduction

 167

tation submitted to the Massachusetts Institute of Technology; also
M.I.T. Artificial Intelligence Laboratory Memo AIM-TR-581 (1980).

Dreyfus, Hubert, What Computers Can’t Do, New York: Harper and Row
(1972).

Fodor, Jerry, The Language of Thought, New York: Thomas Y. Crowell,
Company (1975): paperback version, Cambridge: Harvard University
Press, 1979.

———, “Tom Swift and his Procedural Grandmother,” Cognition 6
(1978); reprinted in Fodor, Jerry, Representations, Cambridge: Bradford,
1981.

———, “Methodological Solipsism Considered as a Research Strategy in
Cognitive Psychology,” The Behavioral and Brain Sciences 3:1 (1980) pp.
63–73; reprinted in John Haugeland (ed.), Mind Design, Cambridge:
Bradford, 1981, and in Jerry Fodor, Representations, Cambridge: Brad-
ford 1981.

———, The Modularity of Mind, Cambridge: Bradford (forthcoming).
Frege, Gottlob, Die Grundlagen der Arithmetik: Eine logisch-mathematische

Untersuchung über den Begriff der Zahl (Breslau, 1884); reprinted in The
Foundations of Arithmetic, A logico-mathematical Inquiry into the Concept
of Number, English translation by John L. Austin, Evanston, IL: North-
western University Press (1950).

Galley, S. W., and Pfister, G., The MDL Language, Programming Technol-
ogy Division Document SYS.11.01. Laboratory of Computer Science,
M.I.T. (1975).

Genesereth, Michael and Lenat, Douglas B. “Self-Description and Modifi-
cation in a Knowledge Representation Language,” Report of the Heuris-
tic Programming Project of the Stanford University Computcr Science
Dept., HPP-80-10 (1980).

Goldberg, Adele et al. “Introducing the Smalltalk-80 System,” and other
Smalltalk papers, Byte 6:8, (August 1981).

Gordon, Michael J. C., “Models of Pure LISP,” Dept. of Machine Intelli-
gence, Experimental Programming Reports No. 30, University of Edin-
burgh (1973).

———, Operational Reasoning and Denotational Semantics,” Stanford
University Computer Science Dept. Deport No. STAN-CS-75-506.
(1975a)

———, “Toawards a Semantic Theory of Dynamic Binding,” Stanford
University Artificial Intelligence Laboratory, Memo 265, Stanford Uni-
versity Computer Science Dept. Report No. STAN-CS-75-507 (1975b).

———, The Denotational Description of Programming Languages: An In-
troduction, New York: Springer-Verlag (1979).

Greiner, R., and Lenat, D. B., “A Representation Language Language”, Pro-
ceedings of the First Annual National Conference on Artificial Intelligence,
Stanford Univ., (August 1980), pp. 165–169.

168 Indiscrete Affairs · I

Haugeland, John, “The Nature and Plausibility of Cognitivism,” The Brain
and Behavioral Sciences 1 (1978).

Hayes, Patrick J., “In Defense of Logic,” in Proc. Fifth International Joint
Conference on Artificial Intelligence, Massachusetts Institute of Technol-
ogy (August 1977) pp. 559–65; available from Carnegie-Mellon Uni-
versity, Pittsburgh. PA.

——— “The Naive Physics Manifesto”, unpublished manuscript (May
1978).

———, Personal conversations on the GOLUM deduction system (1979).
Hewitt, Carl, “Description and Theoretical Analysis (using Schemata) of

PLANNER: A Language for Proving Theorems and Manipulating Mod-
els in a Robot,” MIT Artificial Intelligence Laboratory TR-258 (1972).

———, “Viewing Control Structures as Patterns of Passing Messages,”
Artificial Intelligence, 8:3. (June 1977) pp. 324–64.

Hewitt, Carl et al. “Behavioral Semantics of Non-recursive Control Struc-
tures,” Proc. Colloque sur la Programmation, B. Robinet (ed.), in Lecture
Notes in Computer Science, 19, pp. 385–407 Berlin: Springer-Verlag
(1974).

Ingalls, Daniel H. “The Smalltalk-76 Programming System: Design and
Implementation,” Conference Record of the Fifth Annual Symposium on
Principles of Programming Languages, Tucson, Arizona (January 1978)
pp. 9–16.

Kleene, Stephen, Introduction to Metamathematics, Princeton: D. Van Nos-
trand (1952).

Kowalski, Robert A., “Predicate Logic as a Programming Language,” Pro-
ceedings IFIP, Amsterdam: North Holland (1974) pp. 569–74.

———, “Algorithm = Logic + Control”, CACM (August 1979).
Kripke, Saul, “Outline of a Theory of Truth,” Journal of Philosophy,

72:690–716 (1971).
Lewis, David, “General Semantics,” in Davidson and Harman (eds.), Se-

mantics of Natural Languages, Dordrecht, Holland: D. Reidel (1972),
pp. 169–218.

Maturana, Humberto, and Varela, Francisco, AutojJoietic SysletnS, in Bos-
ton studies in the philosophy of science. Boston: D. Reidel, (1978);
originally issued as B.C.L. Report 9.4, Biological Computer Laboratory,
University of Illinois, 1975.

McAllester David A. “A Three-Valued Truth Maintenance System,” MIT
Artificial Intelligence Laboratory Memo AIM-473 (1978).

McCarthy, John, “Programs With Common Sense,” in Marvin Minsky
(ed.), Semantic Information Processing. Cambridge: MIT Press (1968),
pp. 403–18.

McCarthy, John et al., LISP 1.5 Programmer’s Manual, Cambridge, Mass.:
MIT Press (1965).

McCarthy, John and Talbott, Carolyn, LISP: Programming and Proving,

 2b · Reflection & Semantics · Introduction

 169

Cambridge, Mass.: Bradford (forthcoming).
McDermott, Drew, and Doyle, Jon, “Non-Monotonic Logic I,” M.I.T. Ar-

tificial Intelligence Laboratory Memo AIM-486 (1978).
McDermott, Drew, and Sussman, Gerald, “The CONNIVER Reference

Manual,” M.I.T. Artificial Intelligence Laboratory Memo AIM-259a,
Cambridge, Mass. (1973).

Minsky, Marvin, “Matter, Mind, and Models”, in Semantic Information
Processing, M. Minsky (ed.), Cambridge: MIT Press (1968).

———, “A Framework for the Representation of Knowledge”, in P.
Winston (ed.), The Psychology of Computer Vision, New York: McGraw-
Hill (1975) pp. 211–77.

Montague, Richard, “The Proper Treatment of Quantification in Ordinary
English,” in J. Hintikka, J. Moravcvcsik, and P. Suppes (eds.), Ap-
proaches to Natural Language: Proceedings of the 1970 Stanford Workshop
on Grammar and Semantics, Dordrecht: Reidel (1973) pp. 221–42; re-
printed in Thomason (1974).

———, “Pragmatics and Intensional Logic”, Synthese 22 (1970) pp. 68–
94; reprinted in R. H. Thomason (ed.), Formal Philosophy: Selected Pa-
pers of Richard Montague, New Haven: Yale Univ. Press, 1974.

Moon, David, “MacLISP Reference Manual”, M.I.T. Laboratory tor Com-
puter Science, Cambridge, Mass. (1974).

Moses, J., “The Function of FUNCTION in LISP,” ACM SIGSAM Bulletin,
pp. 13–27, (July 1970); also M.I.T. Artificial Intelligence Laboratory
Memo AIM-199 (1970).

Newell, Allen, and Simon, Herbert, “The Logic Theory Machine: a Com-
plex Information Processing System”, IEEE Transactions on Information
Theory, Vol. IT-2, No.3, pp. 61-79.

———. “GPS, a Program that Simulates Human Thought”, in B. A. Fei-
genbaum and J. Feldman (eds.). Computers and Thought, New York:
McGraw-Hill (1963).

Nilsson, Nils, “Artificial Intelligence: Engineering, Science, or Slogan?”
manuscript (to be published), (April 1981).

Pitman, Ken, “Special Forms in LISP”, Conference Record of the 1980 LISP
Conference, Stanford University (August 1980), pp. 179–87.

Quine. Willard von Orman, Mathematical Logic, [New York: Norton,
1940], Cambridge: Harvard University Press, 1947; revised edition,
Cambridge, Harvard University Press (1951).

———, “Identity, Ostension, and Hypostasis,” in From a Logical Point of
View, Cambridge: Harvard University Press, (1953a); reprinted in pa-
perback by Harper Torchbooks, 1963.

———, “On What There Is,” in Quine, W. V. 0., From a Logical Point of
View, Cambridge: Harvard University Press, (1953b); reprinted in pa-
perback by Harper Torchbooks, 1963.

———, “Three Grades of Modal Involvement”, in The Ways of Paradox,

170 Indiscrete Affairs · I

and Other Essays, Cambridge: Harvard Univ. Press (1966). Quine, W.
V. 0., and Ullian, J. S., The Web of Belief, New York: Random House
(1978).

Reiter, Ray, “On Reasoning by Default,” Proc. Second Conference on Theo-
retical Issues in Natural Language Processing, University of Illinois at
Champaign-Urbana (1978) pp. 210–18.

Rogers, Hartley Jr., Theory of Recursive Functions and Effective Computabil-
ity, New York: McGraw-Hill (1967).

Roussel, P., “PROLOG: Manuel de Reference et d’Utilisation”, Groupe
d’Intelligence Artificielle, Universite d’Aix-Marseille, Luminy (1975).

Russell, Bertrand, “Mathematical Logic as Based on the Theory of Types,”
American Journal of Mathematics 30:222–62 (1908); reprinted in Van
Heijenoort, J. (ed), From Frege to Gödel: A Source Book in Mathematical
Logic, 1879-1931, Cambridge, Mass.: Harvard (1967).

Searle, John R., Speech Acts: An Essay in the Philosophy of Language, Cam-
bridge: Cambridge Univ. Press (1969).

———, “Minds, Brains, and Programs,” The Behavioral and Brain Sciences
3:3 (1980) pp. 417–57; reprinted in John Haugeland (ed.), Mind De-
sign, Cambridge: Bradford 1981, pp. 282-306.

Stallman, Richard M., and Sussman, Gerald J., “Forward Reasoning and
Dependency-Directed Backtracking in a System for Computer-Aided
Circuit Analysis,” Artificial Intelligence 9:2 (1977) pp. 135–96; also in
Artificial Intelligence: An MIT Perspective, Volume 1, Patrick H.
Winston and Richard H. Brown (eds.), pp. 31-91, Cambridge: M.I.T.
Press (1979).

Steele, Guy, “LAMBDA: The Ultimate Declarative,” M.I.T. Artificial Intel-
ligence Laboratory Memo AIM-379 (1976).

———, “The Definition and Implementation of a Computer Program-
ming Language Based on Constraints,” Ph.D. Dissertation, M.LT. Arti-
ficial Intelligence Laboratory, Report AIM-595 (1980).

Steele, Guy and Sussman, Gerald. “LAMBDA: The Ultimate Imperative,”
M.LT. Artificial Intelligence Laboratory Memo AIM-353 (1976).

———, “The Revised Report on SCHEME, A Dialect of LISP”, M.I.T. Ar-
tificial Intelligence Laboratory Memo AIM-452 (1978a).

———, “The Art of the Interpreter, or, The Modularity Complex (Parts
Zero, One, and Two)”, M..I.T. Artificial Intelligence Laboratory Memo
AIM-453, Cambridge, Mass. (1978b).

———, “Constraints”, M.I.T. Artificial Intelligence Laboratory Memo
AIM-502 (1979).

Stefik, Mark J., “Planning with Constraints (MOLGEN, Part 1)”, Artificial
Intelligence 16:2 (July 1981a) pp. 111–39.

———, “Planning and Meta-Planning (MOLGEN: Part 2)”, Artificial Intel-
ligence 16:2 (July 1981b) pp. 141–69.

Stoy, Joseph, Denotational Semantics: The Scott-Strachey Approach to Pro-

 2b · Reflection & Semantics · Introduction

 171

gramming Language Theory, Cambridge: MIT Press (1977).
Sussman, Gerald, and Steele, Guy, “SCHEME: An Interpreter for Extended

Lambda Calculus,” M.I.T. Artificial Intelligence Laboratory Memo
AIM-349 (1975).

———, “CONSTRAINTS: A Language for Expressing Almost-
Hierarchical Descriptions,” Artificial Intelligence 14:1 (August 1980) pp.
1-39.

Sussman, Gerald, et al. “Micro-PLANNER Reference Manual” M.I.T. Arti-
ficial Intelligence Laboratory Memo AIM-203a (1971).

Tarski, Alfred, “The Concept of Truth in Formalized Languages” (1936),
in Tarski, Alfred, Logic, Semantics, Metamathematics, Oxford (1956).

———, “The Semantic Conception of Truth and the Foundations of Se-
mantics”. Philosophical and Phenomenological Research 4:341–76 (1944);
reprinted in Linksy (ed.), Semantics and the Philosophy of Language, Ur-
bana: University of Illinois, 1952, pp. 13-47.

Teitelman, Warren, “InterLISP Reference Manual,” Palo Alto: Xerox Palo
Alto Research Center (1978).

Tennent, R.D., “The Denotational Semantics of Programming Languages”,
Communication of the ACM 19:8 pp. 437-453 (Aug. 1976).

Thomason, Rich, (ed.), Formal Philosophy: Selected Papers of Richard Mon-
tague, New Haven: Yale University Press (1974.)

Warren, David, Pereira, Luis, and Pereira, Fernando, “PROLOG: The Lan-
guage and its Implementation Compared with LISP”, Proc. Symposium
on AI and Programming Languages, Rochester, New York, ACM
SIGPLAN/SIGART Notices, 12:8 (August 1977) pp. 109-115.

Weissman, Clark, LISP 1.5 Primer, Belmont: Dickenson Press (1967).
Weinreb, Dan, and Moon, David, LISP Machine Manual, Cambridge:

Massachusetts Institute of Technology (1981).
Weyhrauch, Richard W., “Prolegomena to a Theory of Mechanized For-

mal Reasoning”, Stanford University Artificial Intelligence Laboratory,
Memo AIM-315 (1978); °also Artificial Intelligence 13:1.2 (1980) pp.
133-170.

White, John L., “NIL - A Perspective”, Proceedings of the MACSYMA Users’
Conference, Washington, D. C. pp. 190-199 (June 1979). Available from
The Laboratory for Computer Science, M.I.T., Cambridge, Mass.

Winograd, Terry, Understanding Natural Language, Academic Press
(1972).

———, “Frame Representation and the Declarative-Procedural Contro-
versy,” in D. G. Bobrow and A. Collins, (eds.), Representation and Un-
derstanding: Studies in Cognitive Science, New York: Academic Press
(1975) pp. 185–210.

Winston, Patrick H and Horn, Bertold K. P., LISP, Reading, Mass: Ad-
disonWesley (1981).

172 Indiscrete Affairs · I

 References (added)
Brooks, Rodney A., “Intelligence Without Representation,” Preprints of

the Workshop in Foundations of Artificial Intelligence, Endicott House,
Dedham, MA, June, 1987; final version published in Artificial Intelli-
gence Journal (47), 1991a, pp. 139–159.

———, “Intelligence Without Reason”, in the Proceedings of 12th inter-
national Joint Conference on Artificial Intelligence, Sydney, Australia,
August 1991b, pp. 569–95.

Dennett, Daniel, The Intentional Stance, Cambridge, Mass.: MIT
Press, 1987.

Dennett, Daniel … on original/derivative etc.
Dixon, Mike … on Amala
Fodor, Jerry A., “Methodological solipsism considered as a research

strategy in cognitive psychology”, Behavioral and Brain Sciences, 3,
1980; pp. 63-73. Reprinted in Rosenthal, D., ed., The Nature of
Mind, Oxford: Oxford University Press, 1990.

Friedman, Daniel P. and Wand, Mitchell, “Reification: Reflection with-
out metaphysics,” Proceedings of the 1984 ACM Symposium on
LISP and functional programming, Austin, Texas, United States, pp.
348–55).

Haugeland, John … on original/derivative etc.
Searle, John … on original/derivative etc.

————————————————•• ————————————————

3 · Refl ection & Semantics in LISP

173

3 — Refl ection and Semantics in LISP

Brian Cantwell Smith*
University of Toronto

†© Brian Cantwell Smith 2009 Last edited: December 17, 2009
Draft only (version 0.80) Please do not copy or cite.
Comments welcome brian.cantwell.smith@utoronto.ca
Edited version of a paper fi rst published in the Conference Record of the
Elev-enth Annual acm Symposium on Principles of Programming Languages
(popl), Salt Lake City, Utah, Jan. 1984, pp. 23–35. Th e original version was
also published as Report No. csli-84-8, Stanford University Center for the
Study of Language and Information, July 1984.
*Faculty of Information, University of Toronto, 90 Wellesley St W, Toronto,
Ontario m5s 1c5 Canada.

 1 Abstract
A general architecture is presented, called procedural refl ection,
designed to support self-directed reasoning in a serial programming
language. Th e architecture, illustrated in a revamped dialect of Lisp
called 3-Lisp, involves three steps: (i) reconstructing the semantics of
a language so as to deal with both declarative and procedural aspects
of program meaning; (ii) embedding a theory of the language—in-
cluding of its semantics—within the language; and (iii) defi ning an
infi nite tower of procedural self-models in terms of this embedded
theory, very much like a tower of metacircular interpreters, except
causally-connected to each other in a simple but crucial way. In a
procedurally refl ective architecture, any aspect of process state that
can be described in terms of the theory can be rendered explicit, in

Indiscrete Affairs · I174

structures accessible for program examination and manipulation.
Procedural refl ection enables a user to defi ne complex programming
constructs by writing, within the programming language, direct an-
alogues of those metalinguistic semantical expressions that would
normally be used to describe them.

It is argued that the concept of procedural refl ection should be
added to any language designer’s tool kit.

2010 Perspective�1

The work reported here, on procedural refl ection and 3-Lisp, started out as what

I expected to be a small design study—part of a (hopelessly ambitious) project I

had undertaken, as a graduate student in the 1970s, to develop a fully refl ective

knowledge representation system. That project, to have been called Mantiq,�
2

never saw the light of day, most pointedly due to my encounter with the funda-

mental inability of Artifi cial Intelligence and computer science to deal adequately

with the challenges of real-world ontology (the nature of objects, ambiguity and

vagueness, relationality and process, etc.). But there were other challenges as

well: another goal was to defi ne the Mantiq structural fi eld (effectively: its object

or memory system—see p. ■■) at a suffi ciently high level of abstraction so as to

be able to “fuse” meta-structural and intensional identity, so that structural iden-

tity could be identifi ed with (and thus used to determine) identity of meaning.
�3

 The idea was to employ a computationally-intensive background relaxation

algorithm to implement the “structural fi eld” (memory system), loosening opera-

tional identity criteria to the point that, for example, the Mantiq analogues of

(�x,y . x+y) and (�a,b . b+a) would appear to be structurally indistinguishable.

I still think that this issue of intensional identifi cation would be a worthwhile

goal to pursue, especially since processing power today would make approximat-

ing it more computationally feasible than it was thirty years ago. At any rate,

against this background of unrealistic dreams, the 3-Lisp project�4
 was intended

as a site to work out the design details of refl ection’s self-referential structure. In

particular, the idea of understanding level-shifting in terms of an idealized un-

bounded “tower” of referential layers struck me then (and still does now) as at

least a good initial idea about the structure of refl ection.�
5
 So I set out to explore

it within the familiar context of Lisp, the “lingua franca” programming language

3 · Refl ection & Semantics in LISP

175

 1 Introduction
Among programming languages, Lisp is famous for (among other
things) providing inchoate self-referential capabilities: standard
coding of programs as data structures (s-expressions), a primitive
quotation function (QUOTE), explicit access to interpreter procedures
(EVAL and APPLY), support for meta-circular interpreters, etc. Yet
these capacities have not led to a general understanding of what it is
for a computational system to reason, in substantial ways, about its
own operations and structures.

Th ere are several reasons we have not developed such an account.
First, there is more to reasoning than reference; one also needs a
theory, in terms of which to make sense of the referenced domain.
A computer system able to reason about itself—what I will call a
refl ective system—will therefore need an account of itself embed-
ded within it. Second, there must be a systematic, causally eff ec-
tive relationship between that embedded account and the system
it describes. Without such a connection, the account would be
useless—as disconnected as the words of a hapless drunk who car-
ries on about the evils of inebriation, without realising that his story
applies to himself. Traditional language embeddings in Lisp (meta-
circular interpreters and implementations of other languages) are
inadequate in just this way; they provide no means for the implicit
state of the Lisp process to be refl ected, moment by moment, in the
explicit terms of the embedded account. Th ird, a refl ective system
must be given an appropriate vantage point at which to stand, far
enough away to have itself in focus, and yet close enough to see the
important details.

Th is paper presents a general architecture, called procedural
refl ection, to support self-directed reasoning in a serial program-
ming language. Th e architecture, illustrated in a revamped Lisp
dialect called 3-Lisp, solves all three problems with a single mecha-
nism. Th e basic idea is to defi ne an infi nite tower of procedural self-
models, very much like metacircular interpreters,1 except connected
to each other in a simple but critical way. In such an architecture,
any aspect of a process’ state that can be described in terms of the
theory can be rendered explicit, in program accessible structures, at
an arbitrary points throughout a computation. Furthermore, as I

1. Steele and Sussman (1978b).

Indiscrete Affairs · I176

will demonstrate, this apparently infi nite architecture can be fi nitely
and effi ciently implemented.

Th e architecture allows the user to defi ne complex programming
constructs (such as escape operators, deviant variable passing pro-
tocols, and debugging primitives) by writing, within the language,
direct analogues of the metalinguistic semantical expressions that
would normally be used to describe them. As is always true in se-
mantics, the metatheoretic descriptions must be phrased in terms
of some particular set of concepts; in the 3-Lisp case I use a theory
based on environments and continuations. A 3-Lisp program, there-
fore, at any point during a computation, can easily obtain represen-
tations of the environment and continuation characterising the state
of the computation at that point. As a result, such constructs as THROW
and CATCH, which must otherwise be provided primitively, can be eas-
ily defi ned in 3-Lisp as user procedures (and defi ned, furthermore,
in code that is almost isomorphic to the �-calculus equations one
normally writes, in the metalanguage, to describe such constructs).
Moreover, these and other analogous control constructs can be de-
fi ned without having to write the entire program in a continuation-
passing style, of the sort illustrated in Steele (1976).

Th e point is not to decide at the outset what should and what
should not be explicit, in other words (in Steele’s example, continua-
tions must be passed around explicitly from the beginning).a Rather,

a) (Note: footnotes indicated with letters rather than numerals, and sans-serif
font, as in this case, are annotative notes added in 2010, rather than material
that appeared in the original paper.)

 This phrasing is somewhat disingenuous, since in a procedurally refl ective dia-
lect of the sort presented here the language designer must decide, advance,
what aspects of the language will be able to be made explicit to user code;
those aspects must then be dealt with, explicitly, in the metatheory in terms
of which the refl ective processor and dialect are themselves defi ned, and then
provided for in the implementation. The original paper would have been bet-
ter phrased if written as follows: “Although the metatheory (and refl ective
processor) must deal explicitly with all of those aspects of the language that
can, at any point, be made explicit, any user code that does not want to deal
with them need not deal with them explicitly. In Steele’s dialect, in contrast, in
order for an aspect to be referred to explicitly at any point, it must be explicit
throughout the program. In a sense, therefore, refl ection can be understood
as providing something like contextual information hiding—or perhaps more

3 · Refl ection & Semantics in LISP

177

the refl ective architecture provides a method of making some as-
pects of the computation explicit, right in the midst of a computa-
tion, even if they were implicit a moment earlier—and in such a
way that they can be made implicit once again, a moment later. It
provides a mechanism, in other words, when circumstances warrant
it, of stepping back, “pulling information out of the sky,” dealing with
that information appropriately, and then returning into the regular
implicit fl ow of the program.

Th e thesis on which the 3-Lisp defi nition rests is the following:

 Refl ection is simple to build [R]
 on a semantically sound base.

By “semantically sound” I mean more than that the semantics be
carefully formulated. Rather, it is assumed throughout that compu-
tational structures have a semantic signifi cance that transcends their
behavioural import—or, to put this another way, that programs and
computational structures are about something, over and above the
causal eff ects they have on the systems they inhabit. Lisp’s NIL, for
example, evaluates to itself forever—that is its procedural impact.
In addition, however, in some contexts—and partially independent-
ly—it also stands for falsehood. It is that sense of “meaning false” that
I take to be its declarative import. To be considered “semantically
sound,” a reconstruction of Lisp semantics must deal explicitly with
both of these dimensions of the overall signifi cance of computation-
al structures—both procedural and declarative.2

In what follows I will use the phrases “procedural result” (or “what
it returns”) to name that to which its eff ective treatment gives rise,
and “declarative import” for what a structure designates, declaratively.
As well as distinguishing result and import, I will also discriminate

2. Th is distinction between the procedural and declarative aspects of a pro-
gram’s meaning diff ers from the traditional distinction in programming
language theory between operational and denotational semantics. It is a
reconstruction developed within a view that programming languages are
properly to be understood in the same theoretical terms used to under-
stand natural language and mind—not just other computer languages.

accurately, contextually-dependent explicitization of otherwise implicit infor-
mation.”

The next sentence in the text is more accurate, and more useful.

Indiscrete Affairs · I178

entities, such as numerals and numbers, that are isomorphic but not
identical, if they diff er in respect of either import or result.3 Both dis-
tinctions are instances of the general intellectual hygiene of avoiding
use/mention errors. Lisp’s basic notion of evaluation, I will argue, is
fundamentally confused on both counts—and should be replaced
with independent notions of designation and simplifi cation. Th e
result will be illustrated in a semantically rationalised dialect, called
2-Lisp, based on a simplifying (designation-preserving) term-reduc-
ing processor.

Th e practical import of thesis [R] is demonstrated in a two-stage
argument:

Th e semantically rationalised 2-Lisp is more elegant and 1.
theoretically cleaner than any prior Lisp dialect (including
both Lisp 1.5 and Scheme); and

Th e refl ective dialect 2. 3-Lisp can be very simply defi ned on
top of 2-Lisp—whereas a refl ective version of a non-seman-
tically-rationalised Lisp dialect would be inelegant in a spate
of ways: gratuitously challenging to design, architecturally
baroque, and much more diffi cult to understand.

Th e strategy of presenting the general architecture of procedural re-
fl ection by developing a concrete instance of it was selected on the
grounds that a genuine theory of refl ection (perhaps analogous to
the theory of recursion) would be diffi cult to motivate or defend
without taking this fi rst, more pragmatic, step. In section 10, how-
ever, I will sketch a general “recipe” for adding refl ective capabilities
to any serial language; 3-Lisp is the result of applying this conversion
process to the non-refl ective 2-Lisp.

It is sometimes said that there are only a few constructs from
which programming languages are assembled—including, for ex-
ample, predicates, terms, functions, composition, recursion, abstrac-
tion, a branching selector, and quantifi cation. Th ough diff erent from
these notions (and not defi nable in terms of them), refl ection is per-
haps best viewed as a proposed addition to that family. Given this
view, it is helpful to understand refl ection by comparing it, in particu-

3. Numerals denote numbers, but (at least in ordinary circumstances) num-
bers do not denote at all, not being symbols.

3 · Refl ection & Semantics in LISP

179

lar, with recursion—a construct with which it shares many features.
Specifi cally, recursion can seem viciously circular to the uninitiated,
and can easily lead to confused implementations if poorly under-
stood. Careful theoretical analysis, however, backed by mathemati-
cal theory, underwrites our ability to use recursion in programming
languages without doubting its fundamental soundness (in fact, for
many programmers, without understanding much about the formal
theory at all). Refl ective systems, similarly, are initially likely to seem
viciously circular (or at least infi nite), and are correspondingly dif-
fi cult to implement without an adequate understanding. Th e intent
of this paper, however, is to argue that refl ection is in fact as well-
tamed a concept as recursion, and potentially as effi cient to use. Th e
long-range goal is not to force programmers to understand the intri-
cacies of designing a refl ective dialect, but rather to enable them to
use refl ection and recursion with equal abandon.

 2 Motivating Intuitions
Before taking up technical details, it will help to layout some moti-
vations and assumptions.

By ‘refl ection’ in its most general sense, I mean the ability of an
agent to reason not only introspectively, about its self and internal
thought processes, but also externally, about its behaviour and situ-
ation in the world. Ordinary reasoning is external in a simple sense:
most of what we think about (chairs, other people, bank accounts,
houses, politics, etc.) is external to us. Th e point of refl ection is to
give an agent a more sophisticated stance from which to consider its
own presence in that embedding world. Th ere is a growing consensus4
that refl ective abilities underlie much of the plasticity with which
we deal with the world, both in language (such as when one says
“Do you understand what I mean?”) and in thought (such as when
one wonders how to be compassionate about delivering bad news).
Common sense suggests that refl ection enables us to master new
skills, cope with incomplete knowledge, defi ne terms, examine as-
sumptions, review and distill experiences, learn from unexpected
situations, plan, check for consistency, and recover from mistakes.

Although this paper focuses on refl ection in programming

4. See Doyle (1980), Weyrauch (1980), Genesereth and Lenat (1980), and
Batali (1983).

Indiscrete Affairs · I180

languages, most of the driving intuitions on which it is based are
grounded in considerations of human rationality and language.
Tentative steps towards computational refl ection, however, are
emerging in computational practice, and have also had a motivat-
ing impact here. Debugging systems, trace packages, dynamic code
optimizers, runtime compilers, macros, metacircular interpreters,
error handlers, type declarations, escape operators, comments, and
a variety of other programming constructs in one way or another in-
volve structures that refer to or deal with other parts of a computa-
tional system. Th ese practices suggest. as a fi rst step towards a more
general theory, defi ning a limited and rather introspective notion of
“procedural refl ection”: self-referential behaviour in procedural lan-
guages, in which expressions are primarily used instructionally, to
engender behaviour, rather than assertionally, to express judgments
or make claims. It is the hope that the lessons learned in this smaller
task will serve well in the larger account.b

I mentioned at the outset that the general task, in defi ning a refl ec-
tive system, is to embed a theory of the system in the system in such
a way as to support smooth shifting between reasoning directly
about the world and reasoning about that reasoning. Because the
subject matter is reasoning, moreover, not merely language, an ad-
ditional requirement is placed on this embedded theory, also already
mentioned, beyond its being descriptive and true: it must also be
what I will call causally connected, so that the refl ective accounts
of objects, events and states of aff airs are directly tied to those self-
same objects, events and states of aff airs. Th is causal relationship
must run both directions: from event to description, and from de-
scription back to event. Th e goal is almost that of creating a magic
kingdom, where from a cake you can automatically obtain a recipe,
and from a recipe automatically produce a cake.

b) In part this is a reference to Mantiq, but I had also planned to develop a next
dialect in the series, to be called “4-Lisp,” which was to include semantically-
rationalized data structures for (external) reference to the real-world, but
otherwise to retain 3-Lisp’s basic style and control structure. Like Mantiq,
4-Lisp never materialized, due to the challenges of developing representa-
tional regimens adequate to real-world ontology.

3 · Refl ection & Semantics in LISP

181

Existing logical and mathematical cases of self-reference, includ-
ing both self-referential statements, and models of syntax and proof
theory, involve no causation at all, since there is no temporality or
behaviour (neither logical nor mathematical systems, per se, run).
Eff ective causation is a critical part of any refl ective agent, however.
As a human example, suppose you were to capsize while canoeing
through diffi cult rapids, and were to swim to shore to fi gure out
what you did wrong. In terms of what I will call “upwards” causal
connection, you would need a description of what you were doing at
the moment the mishap occurred; in the concrete exigencies of that
circumstance, merely having a name for yourself, or even a gener-
al description of yourself, would be useless. Similarly, in order for
your on-shore refl ections to be of any subsequent paddling use, you
would need “downwards” causal connection as well; no good will
come from your merely contemplating a disconnected theory of a
wonderfully improved you. As well as stepping back and being able
to think about your behaviour, in other words, you must also be able
to “step forwards,” as it were—to embrace a revised theory of self
and “dive back in under it,” adjusting your behaviour so as to satisfy
the new account. And fi nally, as already mentioned, when you take
the step backwards, to refl ect, you need a place to stand that has just
the right combination of connection and detachment to make this
whole process eff ective and effi cient (it is not an accident that the
moment of self-contemplation is like to occur on shore).

Refl ective computational systems, similarly, must provide both
directions of causal connection, and an appropriate vantage point.
For example, consider a debugging system that accesses stack frames
and other implementation-dependent representations of processor
state, in order to give the user an account of what a program is up to
in the midst of a computation. Note, fi rst, that stack-frames and im-
plementation byte-codes really are just descriptions, in a rather inel-
egant language, of the state of the process they describe. Like any de-
scription, they make explicit some of what was implicit in the process
itself (this is one reason they are useful in debugging). Furthermore,
because of the nature of implementation—because, that is, they are
constitutively enabling descriptions, not detached observations—
they are always available in the implementing code, and always true.
Th ey have these properties because they play a causal role in the

Indiscrete Affairs · I182

very existence of the process they implement, and therefore auto-
matically solve the “reality-to-description” direction of causal con-
nection. Second, debugging systems must solve the “description-to-
reality” problem, by providing a way of making revised descriptions
of the process true of that process. Th ey carefully provide facilities
for altering the underlying state, based on the user’s description of
what that state should be (i.e., “return from this stack frame immedi-
ately”). Without this “map to reality” direction of causal connection,
the debugging system, like an abstract model, could have no eff ect on
the process it was examining. And fi nally, programmers who write
debugging systems wrestle with the problem of providing a proper
vantage point. In this case, practice has been particularly atheoreti-

cal; it is typical to arrange,
very cautiously, for the de-
bugger to tiptoe around its
own stack frames, in order
to avoid control challenges,
variable clashes and other
unwanted interactions.

As will be evident in the
design of 3-Lisp, all of these
concerns can be dealt with
in a refl ective language in

ways that are simple, theoretically elegant, and implementation-in-
dependent. Th e procedural code in the metacircular processor serves
as the “theory” discussed above; the causal connection is provided
by a mechanism whereby procedures at one level in the refl ective
tower are run in the process one level above (a clean way, essentially,
of enabling a program to defi ne subroutines to be run in its own
implementation). In one sense it is all straightforward; the subtlety
of 3-Lisp has to do not so much with the power of such a mecha-
nism, which once presented is evident, but with how such power can
be fi nitely provided—a question addressed in section 9.

Some fi nal assumptions. I assume a simple serial model of compu-
tation, illustrated in fi gure 1, in which a computational process as a
whole is divided into an internal assemblage of program and data
structures I will collectively call the structural fi eld, coupled with

P
Processor

Structural Field

Figure 1 — A Serial Model of Computation

3 · Refl ection & Semantics in LISP

183

an internal process that examines and manipulates these structures.
In computer science this inner process (or ‘homunculus’) is typically
called the interpreter; in order to avoid confusion with semantic no-
tions of interpretation, I will call it the processor. While models of
refl ection for concurrent systems could undoubtedly be formulated,
the claim I make here is only that the architecture I will describe is
general for calculi of this serial (i.e., single processor) sort.

I will use the term ‘structure’ for elements of the structural fi eld,
all of which are assumed to be inside the machine; the word will
never be used for abstract mathematical or other “external” entities,
such as numbers, functions, or radios.5 Consequently, I call meta-
structural any structure that designates another structure, reserv-
ing metasyntactic for expressions designating linguistic entities or ex-
pressions.6 Given an interest in internal self-reference, it is clear that
both structural fi eld and processor, as well as numbers and functions
and the like, must be part of the semantic domain. Note also that
the property of being metastructural is to be distinguished from the
orthogonal property of being higher-order, in which terms and argu-
ments may designate functions of any degree (2-Lisp and 3-Lisp will
have both properties).7

5. Although this terminology may be confusing for semanticists who think
of a “structure” as a model, I want to avoid calling internal ingredients ex-
pressions, since the latter term connotes linguistic or notational entities.
What I am aiming for is a concept covering both (i) what we would tra-
ditionally call data structures, and (ii) the “internal representation” of the
program, which we can indirectly use to categorize what we would in ordi-
nary English call the structure of the overall process or agent.

6. Because of the constraints of appropriate causal connection, the meta-
structural capability must be provided by primitive quotation mechanisms,
as opposed simply to being able to model or designate syntax—something
virtually any calculus can do, using for example Gödel numbering.

7. Most programming languages, such as Fortran and Algol 60, are neither
higher-order nor metastructural; the �-calculus is the former but not the
latter, whereas Lisp 1.5 is the latter but not the former (dynamic scoping is
a contextual protocol that, coupled with the meta-structural facilities, al-
lows Lisp 1.5 partially to compensate for the fact that it is only fi rst-order.
At least some incarnations of Scheme, on the other hand, are both higher-
order and metastructural (although Scheme’s metastructural powers are
expressly limited). As will emerge, 3-Lisp’s combination of metastructural
and higher-order properties are essential to its refl ective capabilities.

Indiscrete Affairs · I184

 3 A Framework for Computational Semantics
Given this background, turn fi rst to questions of semantics. In the
simplest case, semantics is taken to involve a mapping, possibly con-
textually relativized, from a syntactic to semantic domain, as shown
in fi gure 2. Th e mapping � is typically called an interpretation func-
tion (to be distinguished, as noted above, from the standard com-
puter science notion of an “interpreter”). Interpretation functions
are usually specifi ed inductively, with respect to the compositional

structure of the ele-
ments of the syntac-
tic domain, which in
turn is typically taken
to be a set of enti-
ties of a syntactic or

linguistic sort. Semantic domains may be of any type whatsoever,
including domains of behaviour; in refl ective systems they will typi-
cally include the syntactic and structural domains as proper parts.
In this paper, to minimize confusion, I will use a variety of diff erent
meta-theoretic variables for diff erent kinds of semantic relationship;
in the general case, I will use the variable s and its cognates (s1, s2, s’,
etc.) to denote symbols or signs, and for any semantic value d will
say that s signifi es d, or conversely that d is the signifi cance or inter-
pretation of s.

It is a fundamental tenet of the proposed approach to refl ection
to recognize that, in a computational setting, there are several dif-
ferent semantic relationships—not diff erent ways of characterizing
one and the same relationship (as operational and denotational
semantical accounts are sometimes taken to be, for example), but
genuinely distinct relationships. Th ese diff erent relationships make for
a more complex semantic framework than is standard in logic and
model theory, as do ambiguities in the use of words like ‘program.’
In many settings, such as in purely extensional functional program-
ming languages, such distinctions are relatively inconsequential, and
can be harmlessly glossed or elided. But in cases of refl ection, self-
reference, and metastructural processing, these distinctions, which
in other circumstances may seem minor, play a much more impor-
tant role.

Since the semantical theory adopted to analyse 3-Lisp will be at

Syntactic Domain Semantic DomainS D

Figure 2 — Simple Semantic Interpretation

3 · Refl ection & Semantics in LISP

185

least partially embedded within 3-Lisp, choice of semantical frame-
work aff ects the formal architecture and design. My approach, there-
fore, will be to start with basic and simple intuitions, and to identify
a fi ner-grained set of distinctions than are usually employed. I will
briefl y consider the issue of how the contemporary practice of pro-
gramming language semantics would be reconstructed in its terms,
but the complexities involved in answering that question adequately
would take us beyond the scope of the present paper.

Given these preliminaries, I will distinguish three things:

Th e 1. external objects and events in the world in which a com-
putational process is embedded—including both real-world
objects such as cars and caviar, and set-theoretic abstractions
such as numbers and functions (that is: I will adopt a kind
of pan-Platonic idealism about mathematical entities);
Th e 1. internal elements, structures, or processes inside the
computer, including data structures, program representa-
tions, execution sequences and so forth (these are all formal
objects, in the sense that computation is formal symbol ma-
nipulationc); and
Notational 2. or communicational expressions, in some externally
observable and consensually established medium of inter-
action, such as strings of characters, streams of words, or
sequences of display images on a computer terminal.

Th e third set—of expressions—are assumed to include the constit-
uents of communication with the computational process (by human
agents or other computational processes); the middle set are the in-
gredients of the process with which those communicating external
agents and processes interact; and the fi rst (at least presumptively)
are the elements of the world or “subject matter” about which that
communication is held. In the human case, the three domains would
correspond, respectively, to world, mind, and language.

c) Even at the time this paper was published I was critical of the idea that com-
putation could adequately be understood as formal symbol manipulation; I
believe that the phrasing “in the sense that” was meant to signal (rather inef-
fectively) some distancing of my own view from that then-universal assump-
tion. It was not until 1986 that I explicitly argued against such a construal. See
«ref “From Symbols to Knowledge”, and AOS.»

Indiscrete Affairs · I186

It is a theoretical truism that the third domain of objects—the
elements of communication—are semantic, in the sense of being
meaningful, serving as vehicles of meaning, carrying information, or
some such. In this work I will take the middle set to be semantic

as well—i.e. will assume that inter-
nal structures are bearers of mean-
ing, information, and/or content.
Distinguishing between the seman-
tics of communicative expressions
and the semantics of internal struc-
tures will be one of the main features
of the framework I adopt. It should
be noted, however, that in spite of my
endorsing the reality of internal struc-
tures, and assuming the reality of the
embedding world, it is nonetheless
true that in the cases I will consider
(i.e., ignoring sensors and manipula-
tors), the only things that actually
happen with computers are commu-
nicative interactions. For example,
in a case that I might informally de-

scribe as “asking my Lisp machine what the square root of two is,”
what in fact happens, concretely, is that I type an expression such as
(SQRT 2.0) at the computer, and receive back some other expression,
probably quite like 1.414, by way of response. What matters, for our
purposes, is that the interaction is carried out entirely in terms of
expressions; no structures, numbers, or functions are part of the in-
teractional event (in particular, it is metaphysically precluded, given
the presumed philosophy of mathematics, for a computer to return
the square root of two). Th e denotation or participation or relevance
of any of more abstract objects, such as numbers, must be inferred
from, and mediated through, the communicative act.

I will begin to analyse this complex of relationships using the ter-
minology suggested in fi gure 3. By �, very simply, I will refer to the
relationship between external notational expressions and internal
structures; by ‘�’ I will refer to the processes and behaviours those

Structural Field

Figure 3 — Semantic Relationships
in a Computational Process

3 · Refl ection & Semantics in LISP

187

structural fi eld elements engender (thus ‘�’ is inherently temporal);
and by ‘�’ I will to the entities in the world that they designate. For
mnemonic convenience, relations ‘�’ and ‘�’ have been named to sug-
gest philosophy and psychology, respectively, since a study of ‘�’ is a
study of the relationship between structures and the world, whereas
a study of ‘�’ is a study of the relationships among symbols, all of
which are “within the head” (of person or machine).

Since computation is inherently temporal, the semantic analysis
must deal explicitly with relationships across the passage of time. In
fi gure 4, therefore, I have unfolded the diagram of fi gure 3 across a
unit of time, so as to get at a full confi guration of these relationships.
Entities nl and n2 are intended to be linguistic or communicative en-
tities, as described above;8 sl and s2 are internal structures over which
internal processing is defi ned. Th e relationship �, which I will call
internalisation (and its inverse, �-1, externalisation) relates these
two kinds of object, as is appropriate given the device or process in

question (thus
I will say, in
addition, that
nl notates sl).
For example, in
fi rst order logic
nl and n2 would
be expressions,
written with
letters, spaces,
‘�’ and ‘�’ signs,
etc.; to the ex-
tent that sl and
s2 could be said
to exist, in log-

ic, they would be something like abstract derivation tree types of the
corresponding fi rst-order formulae. In Lisp, as we will see, nl and n2
would be the input and output expressions, written with letters and
parentheses, or perhaps with boxes and arrows; sl and s2 would be
the corresponding cons cells in the s-expression heap.

8. Th at is: the variable ‘n1’ and its cognates are used in this text is as a meta-
level variable to denote a linguistic or communication expression; etc.

Structure S1Structure S1

-1

Notation N1 Notation N2

Figure 4 — A Framework/or Computational Semantics

Indiscrete Affairs · I188

In contrast, dl and d2 are elements or fragments of the embed-
ding world, and � is the relationship that internal structures bear
to them. �, in other words, is semantics’ so-called “interpretation
function” that makes explicit what I will call the designation of
internal structures (not, note, the designation of linguistic expres-
sions or terms, which would be described by ⋶ º ⋶). Th e relationship
between my mental token repre senting T. S. Eliot, for example, and
the poet himself, would be formulated as part of ⋶, whereas the re-
lationship between the public name ‘T. S. Eliot’ and the poet would
be expressed as ⋶(⋶(“T. S. Eliot”)) = T. S. Eliot. Similarly, ⋶ would
relate an internal “numeral” structure (say, the numeral 3) to the cor-
responding number—if I can be permitted to use the word ‘numeral’
to refer to internal structures as well as to external expressions. As
mentioned at the outset, my focus on ⋶ is evidence of the permeating
semantical assumption that all structures have designations—or, to
put it another way, that in the computational realm I am consider-
ing, all structures are taken to be symbols.9

In contrast to ⋶ and ⋶, the relation ⋶ always (and necessarily, since
it does not have access to anything else) relates some internal struc-
tures to others, or to behaviours over them. To the extent that it
would make sense to talk of a ⋶ in logic, it would be approximately
the formally computed derivability relationship (⋶); in a natural
deduction or resolution schemes, ⋶ would be a subset of the deriv-
ability relationship, picking out the particular inference procedures
those regimens adopt. In a computational setting, however, ⋶ would
be the function computed by the processor (i.e., in traditional Lisp
it is evaluation).

9. For what I might call declarative languages, there is a natural account of the
relationship between linguistic expressions and in-the-world designations
that need not make crucial reference to issues of processing (to which I will
turn in a moment). It is for such languages, in particular, that the composi-
tion ⋶ º ⋶ (call it ⋶'), would be formulated. For obvious reasons, it is ⋶' that is
typically studied in mathematical model theory and logic, since those fi elds
do not deal in any crucial way with the active use of the languages they study.
In logic, for example, ⋶' would be the interpretation function of standard
model theory. In what I will call computational languages, on the other hand,
questions of processing (⋶) do arise for all aspects of signifi cance—and so,
in a vaguely Wittgensteinian sense, ⋶' cannot in general be explicated inde-
pendent of ⋶.

3 · Refl ection & Semantics in LISP

189

Th e relationships ⋶, ⋶, and ⋶ have diff erent relative importance in
diff erent semiotic disciplines, and relationships among them have
been given diff erent names. For example, ⋶ is usually ignored in
logic, and there is little tendency to view the study of ⋶, called proof
theory, as semantical, although it is always related to semantics, as in
proving soundness and completeness.10 In addition, there are a vari-
ety of “independence” claims that have arisen in diff erent fi elds. Th at
⋶ does not uniquely determine ⋶, for example, is the “psychology
narrowly construed” and concomitant methodological solipsism of
Putnam, Fodor, and others.11 Th at ⋶ is usually specifi able composi-
tionally and independently of ⋶ or ⋶ is essentially a statement of the
autonomy thesis for language. Similarly, when ⋶ cannot be specifi ed
independently of ⋶, computer science will say that a programming
language “cannot be parsed except at runtime” (a property exempli-
fi ed by Teco and the fi rst versions of Smalltalk12).

A thorough analysis of these semantic relationships, however,
and of the relationships among them, is the subject of a diff erent
paper. For present purposes I need not take a stand on which of ⋶,
⋶, or ⋶ has a prior claim on being “semantics,” but it will help to have
some English terminology for some of these relations, in order not
to have to devolve into formalism. For discussion, therefore, I will
refer to the “⋶” of a structure as its declarative import, and to its
“⋶” as its procedural consequence.d It is also convenient to identify
some of the situations when two of the six entities (nl, n2, sl, s2, dl and
d2) are identical. In particular, I will say that sl is self-referential if

10. Soundness and completeness can be expressed as ⋶(s1,s1) ƛ [⋶(s1) # ⋶(d1)], if
one takes ⋶ to be a relation, and ⋶ to be an inverse satisfaction relationship
between sentences and possible worlds that satisfy them.

11. See Fodor (1980).
12. Teco (“text editor and corrector”) was a string-processing language which

ran on the “Incompatible Time Sharing Systems” (its) at the mit Artifi cial
Intelligence Lab in the 1970s. It is now remembered primarily as the pro-
gramming language in which the initial versions of the still-popular text
editor emacs were written. Smalltalk, an object-centered, dynamically-
typed, “refl ective” programming language, was developed at the Xerox Palo
Alto Research Center (parc) by Alan Kay and his colleagues, also during
the 1970s.

d) «This was already said. Check that—but also check all the terminology used
for these relations; there is redundancy and confusion throughout.»

Indiscrete Affairs · I190

sl = dl, that ⋶ de-references sl if s2 = dl, and that ⋶ is designation-
preserving (at sl) when dl = d2 (as it always is, for example, in the
⋶-calculus, where at least in the standard model ⋶—some combina-
tion of ⋶ and ⋶-reduction—does not alter the interpretation).

It is natural to ask what a program is, what programming language
semantics gives an account of, and how (this is a related question) ⋶
and ⋶ relate in the programming language case. An adequate answer
to this, however, introduces a maze of complexity that I will have
to defer to future work. To appreciate some of the diffi culties, note
that there are two diff erent ways in which we can conceive of a pro-
gram, suggesting diff erent semantical analyses.e On the one hand, a
program can be viewed as a linguistic object that describes or signifi es
a computational process consisting of the data structures and activi-
ties that result from (or arise during) its execution. In this sense a
program is primarily a referential or communicative entity—not so
much playing a causal role within a computational process so much
as existing outside the process and representing it. Putting aside for
a moment the question of whom it is meant to communicate to, I
would simply that on such a reading a program is in the domain of
⋶, and, roughly, that ⋶ º ⋶ of such an expression would be the compu-
tation described. Th e same characterization would, of course, apply
to a specifi cation; indeed, the only salient diff erence might be that a
specifi cation would avoid using non-eff ective concepts in describing
behaviour. One would expect specifi cations to be stated in a declara-
tive language (in the sense defi ned in footnote ■■), since specifi ca-
tions are not, per se, intended to be executed or run, even though
they speak about behaviours or computations. Th us, for program
or specifi cation b describing computational process c, we would
have (for the relevant language) something like ⋶(⋶(b))=c. If b were
a program, there would be an additional constraint that the program
somehow play a causal role in engendering the computational pro-
cess c that it is taken to describe.

Th ere is an alternative conception, however, which places the

e) «This may be the fi rst occurrence of my on-going attention to the differenc-
es between and among specifi cational, ingrediential, and communicational
views of programs. Refer back to the 2010 perspective at the outset; and for-
ward to the places where I have the pictures, etc.»

3 · Refl ection & Semantics in LISP

191

program inside the machine, as a causal participant in the behav-
iour that results. Th is view is closer to the one implicitly adopted
in fi gure 1, and I believe that it is closer to the way in which a Lisp
program must be semantically analysed if we are to understand Lisp’s
emergent refl ective properties. In some ways this diff erent view has
a von Neumann character, in the sense of equating program and
data. On this view, the more appropriate equation would seem to be
⋶(⋶(b))=c, since one would expect the processing of the program to
yield the appropriate behaviour. One would seem to have to recon-
cile this equation with that in the previous paragraph, although it is
not clear that this would be possible.f

Disentangling these points will require further work. What I can
say here is that programming language semantics seems to focus on
what, in the terminology I am using, would seem be an amalgam of
⋶ and ⋶. For our purposes I need only note that we will have to keep
⋶ and ⋶ strictly separate, while recognising (because of context rela-
tivity and non-local eff ects) that just because they are distinct does
not mean they are independent. Formally, I would need to specify
a general signifi cance function ⋶,13 which recursively specifi es ⋶ and
⋶ together. In particular, given any structure s1, and any state of the
processor and the rest of the fi eld (encoded, say, in an environment,
continuation, and perhaps a store), ⋶ will specify the structure, con-
fi guration, and state that would result (i.e., it will specify the use of
s1), and also the signifying relationship that s1 bears to the world. For
example, given a Lisp structure of the form (+ 1 (PROG (SETQ A 2) A)), ⋶
would specify that the whole structure designated the number three,
that it would “return” (i.e., that its procedural consequence would
be) the numeral 3, and that the machine would be left in a state in
which the binding of the variable A was changed to the (structural)

13. Th is is what was done in «ref tr».
f) «I believe this last sentence is either confused or wrong. Think about it and fi x

as appropriate.»

g) Computer science talks about a variable being “bound to” something—
namely, to its value—though, as evident in the semantical reconstruction be-
ing carried out here, that usually means to a co-referential structure. Strictly
speaking, that is, a programming language variable would be bound to a
numeral, not to a number—and should be so described, in contexts in which
the differences between numerals and numbers are signifi cant. In mathemat-

Indiscrete Affairs · I192

numeral 2.g

Before leaving semantics completely, it is instructive to apply these
various distinctions to traditional Lisp. I said above that all interac-
tion with computational processes is mediated by communication;
this can be stated in the present terminology by noting that ⋶ and
⋶-1 (internalization and externalization) are a part of any interaction.
Th us Lisp’s “READ-EVAL-PRINT” loop is mirrored in this analysis as an
iterated version of ⋶-1 º ⋶ º ⋶ (i.e., if n1 is an expression that you type as
input to a Lisp system, returning n2 as output, then n2 = ⋶-1(⋶(⋶(n1))).
Th e Lisp structural fi eld, as it happens, has an extremely simple
compositional structure, based on a binary directed graph of atomic
elements called cons-cells, extended with atoms, numerals, and so
forth. Th e linguistic or communicative expressions that we use to
represent Lisp programs—the formal language objects that we edit
with our editors and print in books and on terminal screens—is a
separate lexical (or sometimes graphical) entity with its own syntax
(parentheses and identifi ers in the lexical case; boxes and arrows in
the graphical).

In Lisp there is a relatively close correspondence between ex-
pressions and structures; it is one-to-one in the graphical case, but
the standard lexical notation is both ambiguous (because of shared
tails) and incomplete (because of its inability to represent cyclical
structures). Th e correspondence need not have been as close as it
is; the process of converting from external syntax or notation to in-
ternal structure could involve arbitrary amounts of computation, as
evidenced by read macros and other syntactic or notational devices.
But the important point is that it is structural fi eld elements, not no-
tations, over which most Lisp operations are defi ned. If you type
“(RPLACA '(A . B) 'C)”, for example, the processor will (as expected)

ics and logic, variables are likely, if bound to anything, to be bound to num-
bers—i.e., to what is here being called declarative import. Moreover, it is also
more common in logic and mathematics to describe a variable as “bound by”
something—namely, bound by quantifi ers, scoping constructs, etc. This is just
one small instance of the general phenomenon of computer science’s using,
as technical terminology, vocabulary and phrasings derived from logic, but in
its own distinct ways. Sometimes, as here, the differences are subtle, and not
usually distracting; sometimes, as with the word ‘semantics,’ they are major,
and cause of considerable confusion. See AOS.

3 · Refl ection & Semantics in LISP

193

fi rst create and then change the CAR (fi rst element) of a fi eld structure;
it will not back up your terminal and erase the eleventh character of
the expression that you typed as input (if that were even physically
possible). Similarly, Lisp atoms are fi eld elements, not to be con-
fused with their lexical representations (sometimes called ‘P-names’
or “print-names”). Again, quoted forms such as (QUOTE ABC) designate
structural fi eld elements, not input strings. Th e form (QUOTE ___), in
other words, is a structural quotation operator; notational quotation
is diff erent, usually notated with string quotes (as in “ABC”).14

 4 Evaluation Considered Harmfulh

Th e claim that all three relationships (⋶, ⋶, and ⋶) fi gure crucially in
an account of Lisp is not a formal one. It makes an empirical claim
on the minds of programmers, and cannot be settled by pointing
to any current theories or implementations. Arguments in its be-
half would point to the fact that Lisp’s numerals are universally
taken to designate numbers, and that the atoms T and NIL (at least
in predicative contexts) are similarly understood to stand for truth
and falsity—no one could learn Lisp without learning these facts,
and the behaviour of Lisp systems is only intelligible on such an

14. Th e string “(QUOTE ABC)” notates a structure that designates another struc-
ture that in turn could be notated with the string “ABC”. Th e string “ “ABC“ ”,
on the other hand, notates a structure that designates the string “ABC” di-
rectly.

h) This section title is a play on Edsger W. Dijkstra’s legendary “GO TO Statement
Considered Harmful” (Communications of the ACM, Vol. 11, No. 3, March
1968, pp. 147–48). No computer scientist in the 1980s would have failed
to recognize the illusion; the Communications of the ACM (Association for
Computing Machinery) was the première professional computer science jour-
nal at the time, and Dijkstra’s letter was widely taken to have inaugurated
serious theoretical analysis of programming. Cf. this note from the History of
Computing Project:

“In 1968 Edsger Dijkstra laid the foundation stone in the march towards
creating structure in the domain of programming by writing, not a schol-
arly paper on the subject, but instead a letter to the editor entitled “GO TO
Statement Considered Harmful”. (Comm. ACM, August 1968) The move-
ment to develop reliable software was underway.”

See http://www.thocp.net/biographies/dijkstra_edsger.htm

i) «Put in a pointer to (and discussion of) the “normatively governed effective
mechanism” construal of logic and other intentional systems in other papers.»

Indiscrete Affairs · I194

assumption.i In what follows I will therefore state, without qualifi ca-
tion, that ‘3’ (i.e., the structural numeral notated by the string char-
acter “3”) designates three; that T designates truth, that (EQ 'A 'B)

designates falsity, etc. In a similar spirit, I will
claim that the structure (CAR '(A . B)) desig-
nates the atom A; this is manifested by the fact
that people, in describing Lisp, use expres-
sions such as “If the CAR of the list is LAMBDA,
then it is a procedure,” where the ingredient
term “the CAR of the list” is used as an English
referring expression—specifi cally as a singular
term—not as a quoted fragment of Lisp (and
English, or natural language generally, is by
defi nition the locus of what designation is).
(QUOTE A), or 'A, is another way of naming or
designating the atom a; that is just what quo-
tation is. By the same token, I will take such
atoms as CAR and + to name or designate the
obvious corresponding functions.

What, then, is the relationship between the
declarative import (⋶) of Lisp structures and
their procedural consequence (⋶)? Inspection

of the superfi cially rather bewildering data given in fi gure 5 shows
that Lisp obeys the following constraint, where S is the domain of
structural fi eld elements (more must be said about ⋶ in those cases
where ⋶(⋶(s)) = ⋶(s), since the identity function would satisfy this
equation):

 ⋶s ⋶ S if ⋶(s) ⋶ S then ⋶(s) = ⋶(s) [1]
 else ⋶(⋶(s)) = ⋶(s)

All Lisps, including Scheme,15 in other words, de-reference any struc-
ture whose designation is another structure, but will return a co-
designating structure for any whose designation is external to the
machine. Th is regularity, which generates the variety of cases illus-
trated in fi gure 5, is depicted in fi gure 6. Whereas evaluation is often

15. Steele and Sussman (1978a).

(EQ 'A 'B) NIL

falsity!

CDR

the CDR function

???

'X

X

3

three

'3

A

(CAR '(A . B))

T

truth!

3(+ 1 2)

three

Figure 5 — Lisp Evaluation vs.
Designation: Some Examples

3 · Refl ection & Semantics in LISP

195

thought to correspond to
the semantic interpretation
function ⋶, in other words,
and therefore to have type
expressions values, evalua-
tion in Lisp is often a desig-
nation-preserving operation.
In fact, it is a metaphysical
fact that no computer can
evaluate a structure such
as (+ 2 3), if that means “re-
turning what is designated,”
at least on the Platonist
understanding of number I
am working with, any more
than it can evaluate the
name Hesperus, or than it is

likely to be able to evaluate the name peanut butter.
I take it as self-evident that obeying equation [1] is anomalous.

It implies, among other things, that even if in a case in which one
knows what y is, and knows that x evaluates to y, one still does not
know what x designates. It also licenses such semantic anomalies as
(+ 1 '2), which—contrary,
I would argue, both to
common and to theoreti-
cal sense—will evaluate
to (the structure!) 3 in all
extant Lisps. Informally, I
will say that Lisp’s evalua-
tor crosses semantical levels,
and therefore obscures the
diff erence between sim-
plifi cation and designation. Given that processors cannot always
de-reference (since by assumption the co-domain is limited to the
structural fi eld), the only semantically consistent non-level-crossing
behaviour they can exhibit in general is to preserve designation. It
seems, therefore, that they should always simplify, and therefore
obey the following constraint (diagrammed in fi gure 7):

Internal Structures

… edge of the machine

External World

Figure 6 — Lisp’s “De-reference
if You Can” Evaluation Protocol

S1 S2

D

Normal Form

Figure 7 — A Normalisation Protocol

Indiscrete Affairs · I196

⋶s ⋶ S ⋶(⋶(s)) = ⋶(s) ⋶ normal-form(⋶(s)) [2]

Th e content of this equation clearly depends entirely on the content
of the predicate “normal-form” (if “normal-form” were lx.true, then
⋶ could be the identity function). In the ⋶-calculus, the notion of
normal-formedness is defi ned in terms of the processing protocols
(⋶- and ⋶-reduction), but I cannot use any such defi nition here, on
threat of circularity. Instead, I will say that a structure is in normal
form if and only if it satisfi es the following three independent condi-
tions:

It is 1. context-independent, in the sense of having the same
declarative (⋶) and procedural (⋶) import independent of
the context of use;

It is 2. side-effect-free, implying that the processing of the
structure will have no eff ect on the structural fi eld, proces-
sor state, or external world; and

It is 3. stable, meaning that it must simplify to itself in all con-
texts, so that ⋶ will be idempotent.

We would then have to prove, given a language specifi cation, that
equation [2] is satisfi ed (as it is in the case of 2-Lisp and 3-Lisp)

Two notes. First, I
will not use the terms
‘evaluate’ or ‘value’ for
expressions or struc-
tures, referring instead
to normalisation for
⋶, and designation for
⋶. I will sometimes call
the result of normalis-
ing a structure its re-
sult or what it returns.
Th ere is also a prob-
lem with the terms ‘ap-
ply’ and ‘application.’ In

standard Lisps, APPLY is (the name of) a function from structures
and arguments onto values, but like ‘evaluate’, its use is rife with use/

FD function
designator AD argument

designator VD value
designator

F function A argument V value

Application

Reduction

Figure 8 —Application vs. Reduction

3 · Refl ection & Semantics in LISP

197

mention confusions. As illustrated in fi gure 8, I will use ‘apply’ for
mathematical function application—i.e., to refer to a relationship
between a function, some arguments, and the value of the func-
tion applied to those arguments—and the term ‘reduce’ to relate
the three structures that designate functions, arguments, and values,
respectively. Note that this terminological practice retains use of the
term ‘value’ (as, for example, in the previous sentence), but only to
name that entity onto which a mathematical function maps its argu-
ments.

Second, the idea of a normalising processor depends on the idea
that symbolic structures have a semantic signifi cance prior to, and
independent of, the way in which they are treated by the processor.j
Without this assumption we could not even ask about the semantic
character of the Lisp (or any other) processor, let alone suggest a
cleaner version. Without such an assumption, more generally, one
cannot say that a given processor is correct, or coherent, or inco-
herent; it would merely be what it is. Given one account of what
it did (such as an implementation), one could compare that to an-
other account (such as a specifi cation). One could also prove that
it had certain properties, such as that it always terminated, or that
it used resources in certain ways. One could even prove properties
of programs written in the language it runs (from a specifi cation of
the algol processor, for example, one might prove that a particular
program sorted its input). However, none of these questions deal
with the question I am taking to be more fundamental: about the se-
mantical nature of the processor itself. I am not satisfi ed to say that
the semantics of (CAR '(A . B)) is A because that is how the processor is
defi ned; rather, I want to say that the processor was defi ned that way
because A is what (CAR I (A . B)) designates. Semantics, in other words,
should be a tool with which to judge systems, not merely a method
of describing them.

 5 2·Lisp: A Semantically Rationalised Dialect
Having torn apart the notion of evaluation into two constituent no-
tions (designation and simplifi cation), we need to start at the be-

j) «Talk about this in relation to Amala, Mike Dixon’s thesis, errors in the defi ni-
tion of factorial, etc.—and to subsequent semantical inquiry (also to logic).»

Indiscrete Affairs · I198

ginning, and build Lisp over again. What I am calling 2-Lisp is a
proposed result. Some summary comments can be made.

First, I have reconstructed what I call the category structure
of Lisp, requiring that the categories into which Lisp structures are
sorted, for various purposes, “line up” (giving the dialect a property
I will call category alignment). More specifi cally, Lisp expressions
are sorted into categories by notation, structure (atoms, cons pairs,
numerals), procedural treatment (the “dispatch” inside the traditional
EVAL), and declarative semantics (the type of object designated). As
illustrated in fi gure 9, these categories are traditionally not aligned;
lists, a derived structure type, include some of the pairs and one atom
(NIL); the procedural regimen (⋶) treats some pairs (those with LAMB-
DA in the CAR) in one way, most atoms (except T and NIL) in another,
and so forth. In 2-Lisp, in contrast, I have required the notational,
structural, procedural, and semantic categories to correspond, as
much as practicable, one-to-one, as illustrated in fi gure 10 (this is
a bit of an oversimplifi cation, since atoms and pairs—representing

Lexical Structural Procedural Declarative

Numerals
Labels

Dotted pairs

Numerals
Atoms
Pairs
Lists

T or NIL
Numerals

Atoms
(Lambda…)
(quote …)

Lists
Applications

Truth values
Numbers

Functions
S-expressions

Sequences“Lists”

✘

Figure 9 — Th e Category Structure of Lisp 1.5

Lexical Structural Procedural Declarative

Digits
$T or $F

{closure…}

Numerals
Boolens
Closures

Rails Rails
Handles
Atoms
Pairs

Atoms
Pairs

Normal-form
Normal-form

Normal-form

Normal-form

Truth values
Numbers

Functions

Structures
Sequences

'…
[A1 … Ak]

alphanumeric
(A1 . A2)

Figure 10 — Th e Category Structure of 2-Lisp and 3-Lisp

3 · Refl ection & Semantics in LISP

199

arbitrary variables and arbitrary function application structures or
redexes—can designate entities of any semantic type).

2-Lisp is summarized in the sidebar (“An Overview of 2-Lisp,”
starting below); some additional comments can be made here. Like
most mathematical and logical languages, 2-Lisp is almost entire-
ly “declaratively extensional”. Th us (+ 1 2), an abbreviation for
(+ . [1 2]), designates the value of the application of the function
designated by the atom + to the sequence of numbers designated by
the rail [1 2]. In other words, (+ 1 2) designates the number three,
of which the numeral 3 is the normal-form designator; (+ 1 2) there-
fore normalises to the numeral 3, as expected. 2-Lisp is also usually
call-by-value (what we might call “procedurally extensional”), in
the sense that procedures by and large normalise their arguments.
Th us the structure (+ 1 (BLOCK (PRINT “HELLO”) 2) will normalise to 3,
printing out “HELLO” in the process.

Many properties of Lisp that must normally be posited in an ad

An Overview of 2-Lisp
Begin with objects. Ignoring input/output categories such as characters, strings,
and streams, there are seven 2-Lisp structure types, as illustrated in Table 1.
Th e numerals (notated as usual) and the two Boolean constants (notated ‘$T’
and ‘$F’) are unique (i.e., canonical), atomic, normal-form designators of num-
bers and truth-values, respectively. Rails (notated ‘[Al A2 … Ak]’) designate se-
quences; they resemble standard Lisp lists, but are distinguished from pairs
in order to avoid category confusion, and are given their own name in order
to avoid confusion with sequences, vectors, and tuples, all of which are normally
taken to be Platonic ideals.

All atoms are used as variables (i.e., as context-dependent names); as a
consequence, no atom is normal-form, and no atom will ever be returned as
the result of processing a structure (although a designator of an atom may
be). Pairs (sometimes also called redexes—notated ‘(A1 . A2)’—designate the
value of the function designated by their CAR (i.e., A1) applied to the arguments
designated by their CDR (A2). By taking notational form ‘(Al A2 … Ak)’ to abbre-
viate ‘(Al . [A2 … Ak])’ instead of Lisp’s traditional ‘(Al . (A2 . … (Ak . NIL)…)))’,
we preserve the standard look of Lisp programs, without sacrifi cing category
alignment. (Note that 2-Lisp has no distinguished atom NIL, and ‘()’ is a nota-
tional error—corresponding to no structural fi eld element.) Closures (notated

Indiscrete Affairs · I200

hoc way fall out directly from this analysis. For example, it normally
requires explicit statement that some atoms, such as T and NIL and
all numerals, are self-evaluating; in 2-Lisp, the fact that the Boolean
constants are self-normalising follows directly from the fact that
they are normal-form designators. Similarly, closures are a natural
category, and distinguishable from the functions they designate
(there is ambiguity, in Scheme, as to whether the value of + is a func-
tion or a closure). Finally, because of category alignment, if X desig-
nates a sequence of the fi rst three numbers (i.e., it is bound to the
rail [1 2 3]), then (+ . X) will designate the number fi ve and norma-
lise to the numeral 5; no metatheoretic machinery is needed for this
“un-currying” operation (in regular Lisps one must use (APPLY '+ X);
in Scheme, (APPLY + X)).

Numerous properties of 2-Lisp will be ignored in this paper. Th e
dialect is defi ned in Smith (1982) to include side-eff ects, intensional
procedures (procedures which do not normalise their arguments),

‘{CLOSURE: … }’) are normal-form function designators, but they are not ca-
nonical, since it is not in general decidable whether two structures designate
the same function. Finally, handles are unique normal-form designators of all
structures; they are notated with a leading single quote mark (thus 'A notates
the handle of the atom notated A, and '(A . B) notates the handle of the pair
notated (A . B), etc. Because designation and simplifi cation are orthogonal,
quotation is a structural primitive, not a special procedure (although QUOTE is
easy to defi ne as a user function in 3-Lisp).

Turn next to the functions (and use ‘⇒’ to mean ‘normalises to’). Th ere are
the usual arithmetic primitives (+, -, *, and /). Identity (signifi ed with ‘=’) is
computable over the full semantic domain except functions; thus (= 3 (+ 1 2))
⇒ $T, but (= + (LAMBDA [X] (+ X X))) will generate a processing error, even though
it designates truth. Th e traditionally rather atheoretical diff erence between EQ
and EQUAL turns out to be an expected diff erence in granularity between the
identity of mathematical sequences and their syntactic designators; thus:†

 (= [1 2 3J [1 2 3]) ⇒ $T
 (= '[1 2 3] '[1 2 3]) ⇒ $F
 (= [1 2 3J '[1 2 3]) ⇒ $F

1ST and REST are the CAR/CDR analogues on both sequences and rails (i.e.,

An Overview of 2-Lisp (cont’d)

3 · Refl ection & Semantics in LISP

201

and a variety of other sometimes-shunned properties, in part to
show that this semantic reconstruction being argued for here is
compatible with the full gamut of features found in real program-
ming languages. Recursion is defi ned with respect to an analysis
using explicit fi xed-point operators. 2-Lisp is an eminently usable
dialect (it subsumes Scheme but is more powerful, in part because
of the metastructural access to closures), although it is ruthlessly
semantically strict.

 6 Self-Reference in 2·Lisp
Turn now to matters of self-reference.

Traditional Lisps provide names (EVAL and APPLY) for the primitive
processor procedures; the 2-Lisp analogues are NORMALISE and REDUCE.
Ignoring for a moment context arguments such as environments. and
continuations, (NORMALISE '(+ 2 3)) designates the normal-form struc-
ture to which (+ 2 3) normalises, and therefore returns the handle

have overloaded defi nitions); thus (1ST [10 20 30]) ⇒ 10;
and (REST [10 20 30]) ⇒ [20 30]. CAR and CDR are defi ned over
pairs; thus (CAR '(A . B)) ⇒ 'A (because it designates A), and
(CDR '(+ 1 2)) ⇒ '[1 2]. Th e pair constructor is called PCONS
(thus (PCONS 'A 'B) ⇒ '(A . B); the corresponding constructors
for atoms, rails, and closures are ACONS, RCONS, and CCONS, respec-
tively. Th ere are eleven primitive characteristic predicates—
seven for the internal structural types (ATOM, PAIR, RAIL, BOOLEAN,
NUMERAL, CLOSURE, and HANDLE) and four for the external types
(NUMBER, TRUTH-VALUE, SEQUENCE, and FUNCTION). Th us:

Numerals Booleans Handles Closures Rails Atoms Pairs

Yes
Yes

Some

CCONS

{closure …}'structure$T or $F [s1 … s2] (s1 . s2)

RCONS ACONS PCONS

No
No

Numbers

Digits Alphanumerics

Truth values Structures Functions Sequences (of bndg) (value of app)Designation

Type

Normal

Constructor

Canonical

Notation

N/A

N/A

Table 1 — Th e 2-Lisp (and 3-Lisp) categories

Indiscrete Affairs · I202

'5. Similarly:
 (NORMALISE '(CAR '(A. B))) ⇒ ''A
 (NORMALISE (PCONS '= '[2 3J)) ⇒ '$F
 (REDUCE '1ST '[10 20 30J) ⇒ '10

More generally—and entirely intuitively—the basic idea is that
⋶(NORMALISE) = ⋶, to be contrasted with ⋶(), which is approximately ⋶,
except that because is a partial function we have ⋶(º NORMALISE) = ⋶.
Given these equations, the behaviour illustrated in the foregoing ex-
amples is forced by general semantical considerations.

In any computational formalism able to model its own syntax and
structures,16 it is possible to construct what are commonly known

16. Virtually any language has the requisite power to do this kind of model-
ling. In a language with metastructural abilities, the metacircular proces-
sor can represent programs for the mcp as themselves—this is always done

 (NUMBER 3) ⇒ $T
 (NUMERAL '3) ⇒ $T
 (NUMBER '3) ⇒ $F
 (FUNCTION +) ⇒ $T
 (FUNCTION '+) ⇒ $F

Procedurally intensional IF and COND are defi ned as usual; BLOCK (as in Scheme)
is like standard Lisp’s PROGN. BODY, PATTERN, and ENVIRONMENT are the three selec-
tor functions on closures. Finally, functions are usually “defi ned” (i.e., conve-
niently designated in a contextually relative way) with structures of the form
(LAMBDA SIMPLE ARGS BODY) (the term SIMPLE will be explained presently); thus
(LAMBDA SIMPLE [X] (+ X X)) normalises to a closure that designates a function
that doubles numbers:

 ((LAMBDA SIMPLE [X] (+ X X)) 4) ⇒ 8

2-Lisp is higher-order, and therefore lexically scoped, like the ⋶-calculus and
Scheme. As mentioned earlier, however, and illustrated with the handles in
the previous paragraph, it is also metastructural, providing an explicit abil-
ity to name internal structures. Two primitive procedures, called UP and DOWN
(usually abbreviated ‘ ’ and ‘ ’, respectively) help to mediate this metastruc-

An Overview of 2-Lisp (cont’d)

3 · Refl ection & Semantics in LISP

203

as metacircular interpreters, which I will call metacircular proces-
sors (or mcps)—“meta” because they operate on (and therefore
terms within them designate) other formal structures, and “circu-
lar” because they do not constitute a defi nition of the processor in a
prior, independently-understood language—but rather “defi ne” the
processor only in terms of itself. Th is circularity takes two forms.
First, on the procedural side, mcps must be run by the processor in
order to yield any sort of behaviour (strictly speaking, that is, mcps

in Lisp mcps—but we need not defi ne that to be an essential property.
Th e term ‘metacircular processor’ is by no means strictly defi ned; there
are various constraints that one might or might not put on it. My gen-
eral approach has been to view as metacircular any non-causally connected
model of a calculus within itself; thus the 3-Lisp refl ective processor is not
meta-circular, by my lights, because it does have the requisite causal con-
nections, and is therefore an essential (not additional) part of the 3-Lisp
architecture.

tural hierarchy (there is otherwise no way to add or remove quotes—'2 will
normalise to '2 forever, never to 2. Specifi cally, STRUC designates the normal-
form designator of the designation of STRUC; i.e., STRUC designates what STRUC
normalises to (therefore (+ 2 3) ⇒ '5). Th us (note that ‘ ’ is call-by-value but
not declaratively extensional):

 (LAMBDA SIMPLE [X] X) — designates a function
 '(LAMBDA SIMPLE [X] X) — designates a pair or redex
 (LAMBDA SIMPLE [X] X) — designates a closure

Similarly, STRUC designates the designation of the designation of STRUC, pro-
viding that the designation of STRUC is in normal-form (therefore '2 ⇒ 2).

STRUC is always equivalent to STRUC, in terms of both designation and result;
so is STRUC when it is defi ned. Th us if DOUBLE is bound to (the result of
normalising) (LAMBDA [X] (+ X X)), then (BODY DOUBLE) generates an error, since
BODY is extensional and DOUBLE designates a function, but (BODY DOUBLE) will
designate the pair (+ X X).

†In the last case one structure designates a sequence and one a rail.

Indiscrete Affairs · I204

are programs, not processors). Second, the behaviour they would
thereby engender—which is to say, the behaviour they must also
therefore designate—can be discerned from them only if one knows
beforehand what that behaviour is (i.e., what the processor does).17
Nonetheless, such processors are pedagogically illuminating, and
play a critical role in the development of procedural refl ection.

Th e role of mcps is illustrated in fi gure 11, showing how, if we
ever replace p in fi gure 1 with a process that results from p process-
ing the metacircular processor mcp, it would still correctly engender

the behaviour of any overall
program. Taking processes
to be functions from struc-
tures onto behaviour, there-
fore (whatever behaviour
is—functions from initial
to fi nal states, say), and call-
ing the primitive processor
p, we should be able to prove
that p(mcp) ≈ p, where by
‘≈’ we mean behaviourally
equivalent in some appropri-
ate sense. Th e equivalence,

of course, is in a certain sense global, or at the level of types; by and
large the primitive processor and the processor resulting from the
explicit running of the mcp cannot be arbitrarily mixed. If a vari-
able is bound by the underlying processor p, it will not be able to
be looked up by the metacircular code, for example. Similarly, if the
metacircular processor encounters a control-structure primitive,
such as a THROW or a QUIT, it will not cause the metacircular proces-
sor itself to exit prematurely, or to terminate. Rather, the point is
that if an entire computation is run by the process that results from
the explicit processing of the mcp by p, the results will be the same
(modulo time) as if that entire computation had been carried out
by p directly. mcps, to put this in language to be used in providing

17. Standard fi xed point techniques are of no help in discharging these kinds
of circularity, since what is at issue here is essentially self-mention, whereas
although that terminology is commonly applied to recursive defi nitions, it
would be more accurate to characterise recursion in terms of self-use.

P

S

P

S

MCP
…

Figure 11 — Meta-Circular Processors

3 · Refl ection & Semantics in LISP

205

genuine refl ection, are not causally connected with the systems they
model.

Th e reason that we cannot mix code for the underlying proces-
sor and code for the mcp and the reason that we ignored context
arguments in the defi nitions above both have to do with the state of
the processor p. In very simple systems (unordered rewrite rule sys-
tems, for example, and hardware architectures that put even the pro-
gram counter into a memory location), the processor has no internal
state, in the sense that it is in an identical confi guration at every
“click point” during the running of a program (i.e., all information
is recorded explicitly in the structural fi eld). But in more complex
circumstances, there is always a certain amount of state to the pro-
cessor that aff ects its behaviour with respect to any particular em-
bedded fragment of code. In writing an mcp one must demonstrate,
more or less explicitly, how the processor state aff ects the process-
ing of object-level structures. By “more or less explicitly” I mean that
the designer of the mcp has options: the state can be represented in
explicit structures that are passed around as arguments within the
processor, or it can be “absorbed” into the state of the processor run-
ning the mcp.18

Th e state of a processor for a recursively embedded functional
language, of which Lisp is an example, is typically represented in an
environment and a continuation, both in mcps and in the standard
metatheoretic accounts. (Note that these are notions that arise in
the theory of Lisp, not in Lisp itself; except in self-referential or self-
modelling dialects, user programs do not traffi c in such entitles.)
Most mcps make the environment explicit. Th e control part of the
state, however, encoded in a continuation, must also be made explic-
it in order to explain non-standard control operations, but in many
mcps (such as that in McCarthy (1965) and in Steele and Sussman’s

18. I say that a property or feature of an object language is absorbed in a
metalanguage or theory just in case the metatheory uses the very same
property to explain or describe the property of the object language. Th us
conjunction is absorbed in standard model theories of fi rst-order logics,
because the semantics of p ⋶ q is explained simply by conjoining the expla-
nation of p and q—specifi cally, in such a formula as “ ‘p ⋶ q’ is true just in
case ‘p’ is true and ‘q’ is true”.

«Add a note pointing to “Th e Correspondence Continuum”»

Indiscrete Affairs · I206

mcp for Scheme19) control context is absorbed.
Two versions of the 2-Lisp metacircular processor, one absorbing

and one making explicit the continuation structure, are presented in
sidebars on the following pages. Note that in both cases the underly-
ing agency or anima is not reifi ed; the “activity itself ” remains entire-
ly absorbed by the processor of the mcp. Nothing I have yet said (or
in this paper will say) provides us with either name or mechanism
to designate process itself (as opposed to structures and functional

19. See for example Sussman and Steele (1978b).

Non-Continuation-Passing 2-LISP Metacircular Processor
(defi ne READ-NORMALISE-PRINT
 (lambda simple [env stream]
 (block (prompt&rep1y (normalise (prompt&read stream) env)
 stream)
 (read-normalise-print env stream))))

(defi ne NORMALISE
 (lambda simple [struc env]
 (cond [(normal struc) struc]
 [(atom struc) (binding struc env)]
 [(rail struc) (normalise-rail struc env)]
 [(pair struc) (reduce (car struc) (cdr struc) env)])))

(defi ne REDUCE
 (lambda simple [proc args env]
 (let [[proc! (normalise proc env)]]
 (selectq (procedure-type proc!)
 [simple (let [[args! (normalise args env)]]
 (if (primitive proc!)
 (reduce-primitive-simple proc! args!)
 (expand-closure proc! args!)))]
 [intensional (if (primitive proc!)
 (reduce-primitive-intensional proc! �args env)
 (expand-closure proc! �args))]
 [macro (normalise �(expand-closure proc! �args) env))]))))

(defi ne NORMALISE-RAIL
 (lambda simple [rail env]
 (if (empty rail)
 (rcons)
 (prep (normalise (1st rail) env)
 (normalise-rail (rest rail) env)))))

(defi ne EXPAND-CLOSURE
 (lambda simple [proc! args!]
 (normalise (body proc!)
 (bind (pattern proc!) args! (environment proc!)))))

3 · Refl ection & Semantics in LISP

207

behaviour over structure), and no method of obtaining causal ac-
cess to an independent locus of active agency has been (or will be)
provided.20

20. Th e reason being that, as computer scientists, we as yet have no real
theory of what processes are.

«Add a comment on this lack—and foreshadow work to come?»

Continuation-Passing 2-LISP Metacircular Processor
(defi ne READ-NORMALISE-PRINT
 (lambda simple [env stream]
 (normalise (prompt&read stream) env
 (lambda simple [result]
 (block (prompt&reply result stream)
 (read-normalise-print env stream))))))

(defi ne NORMALISE
 (lambda simple [struc env cant]
 (cond [(normal struc) (cont struc)]
 [(atom struc) (cont (binding struc env»]
 [(rail struc) (normalise-rail struc env cant)]
 [(pair struc) (reduce (car struc) (cdr struc) env cant)])))

(defi ne REDUCE
 (lambda simple [proc args env cant]
 (normalise proc env
 (lambda simple [proc!]
 (selectq (procedure-type proc!)
 [simple (normalise args env
 (lambda simple [args!]
 (if (primitive proc!)
 (reduce-primitive-simple proc! args! cont)
 (expand-closure proc! args! cont))]
 [intensional (if (primitive proc!)
 (reduce-primitive-int proc! �args env cont)
 (expand-closure proc! �args cant))]
 [macro (expand-closure proc! �args
 (lambda simple [result]
 (normalise �result env cant)))])))))

(defi ne NORMALISE-RAIL
 (lambda simple [rail env cant]
 (if (empty rail)
 (cant (rcons))
 (normalise (1st rail) env
 (lambda simple [fi rst!]
 (normalise-rail (rest rail) env
 (lambda simple [rest!]
 (cant (prep fi rst! rest!)))))))))

(defi ne EXPAND-CLOSURE
 (lambda simple [proc! args! cant]
 (normalise (body proc!)
 (bind (pattern proc!) args! (environment proc!))
 cant)))

Indiscrete Affairs · I208

 7 Procedural Refl ection and 3·Lisp
Given the metacircular processors defi ned above, 3-Lisp can be non-
eff ectively defi ned in a series of steps.

First, imagine a dialect of 2-Lisp, called 2-Lisp1, where user pro-
grams are not run directly by the primitive processor, but by that
processor running a copy of an mcp. Next, imagine 2-Lisp2, in which
the mcp in turn is not run by the primitive processor, but instead by
the primitive processor running another copy of the mcp. And so
on and so forth. 3-Lisp is essentially 2-Lisp∞, except that the mcp is
changed in a critical way in order to provide the proper connection
between levels. 3-Lisp, in other words, is what I will call a refl ective

tower, defi ned as equivalent to an infi nite
number of copies of an mcp-like program,
run at the “top” by an (infi nitely fl eet) pro-
cessor. Th e claim that 3-Lisp is well-found-
ed is the claim that the limit exists—that
is, that both sides of the following equation
are sound:

Lim3-Lisp ≈ n ∞ 2-Lisp∞

I will explain the revised mcp presently, but
fi rst some general properties of this tower
architecture. A rough idea of the levels of
processing is given in fi gure 12: at each level
the processor code is processed by an ac-
tive process that interacts with it (locally

and serially, as usual), but each processor is in turn composed of a
structural fi eld fragment in turn processed by a refl ective processor
on top of it. What I will show is that the implied infi nite regress is
not problematic, and that the architecture can be effi ciently realised,
since only a fi nite amount of information is encoded in all but a
fi nite number of the bottom levels.

Th ere are two ways to think about refl ection. On the one hand, on
what I will call the “shifting view,” one can think of there being a
primitive and noticeable refl ective act, which causes the processor,
in the sense of the basic locus of animating activity, to shift levels
rather markedly either up or down, in what logicians and philoso-

Level 1 code

Level 2 code

Level 3

L 4

Figure 12 — Th e 3-Lisp Refl ective Tower

3 · Refl ection & Semantics in LISP

209

phers might think of as semantic ascent and semantic descent (this is
the explanation that best coheres with some of our pre-theoretic
intuitions about refl ective thinking, in the sense of contemplation).
On the other hand, in what we might instead call the “tower view,”
which accords better with the explanation given in the previous
paragraph, the model is instead of an infi nite number of levels of
refl ective processors, each implementing the one below, without any
shifting going on.21 On this tower view, it is not coherent either to ask
about what level the tower is running at, or to ask how many refl ective
levels are running: on the tower view they are all running at once. Th e
same situation obtains when you use an editor implemented in apl.
It is not as if the editor and the apl interpreter are both running
together, either side-by-side or independently; rather, the one (the
apl interpreter), being “interior” to the other, supplies the anima or
agency of the outer one (the editor). To put this another way, when
you implement one process in another process, you might want to
say that you have two diff erent processes, but you do not thereby
have concurrency; the relation is is more like one of part and whole.
It is just this sense in which the higher levels in our refl ective hier-
archy are always running: each of them is in some sense within the
processor at the level below, so that it can thereby engender it.

I will not take a principled view on which account—a single lo-
cus of agency stepping between levels, or an infi nite hierarchy of
simultaneous processors—is correct, since they turn out to be be-
haviourally equivalent. Indeed, one way to characterise the model of
refl ection being proposed is as the following suggestion:

 The semantically cleanest and most [T]
 elegant way to understand a shifting refl ective
 process is to model it as a tower.

(One pragmatic rule of thumb: the simultaneous infi nite tower of
levels is often the better way to understand processes, whereas the
shifting-level viewpoint is sometimes the better way to understand
programs.)

21. Curiously, there are also intuitions about contemplative thinking, where
one is both detached and yet directly present at the same time—which fi t
more closely with this view.

Indiscrete Affairs · I210

If we view 3-Lisp on the tower model, as an infi nite refl ective tower
based on 2-Lisp, the code at each level can be understood as like the
continuation-passing 2-Lisp mcp presented earlier,22 but extended
in an essential way: to provide a mechanism whereby the user’s pro-
gram can gain access to fully-articulated descriptions of that pro-
gram’s operations and structures. Th us extended, and appropriately
located in a refl ective tower, I will call this code the 3-Lisp refl ective
processor procedure (RPP). Programs gain refl ective access to the
articulated descriptions of the program’s operations and structures
by using what I will call refl ective procedures—procedures that,
when invoked, are: (i) run not at the level at which the invocation
occurred, but one level higher, at the level of the refl ective processor
running the program; and (ii) given as arguments those structures
being passed around in the refl ective processor. I.e., refl ective pro-

22. “Continuation-Passing 2-Lisp Metacircular Processor” sidebar, page ■■.

Programming in 3-Lisp
For illustration, we will look at a handful of simple 3-Lisp programs. Th e fi rst
merely calls the continuation with the numeral 3; thus a call to it (with no
arguments) it is semantically identical to the simple numeral:
 (defi ne THREE
 (lambda refl ect [[] env cant]
 (cant '3)))

Th us (THREE) ⇒ 3; (+ 11 (THREE)) ⇒ 14. Th e next example is an intensional
predicate, true if and only if its argument (which must be a variable) is bound
in the current context:
 (defi ne BOUND
 (lambda refl ect [[var] env cont]
 (if (bound-in-env var env)
 (cont ‘$T)
 (cont ‘$F))))

or equivalently
 (defi ne BOUND
 (lambda refl ect [[var] env cant]
 (cant (bound-in-env var env))))

Th us (LET [[X 3]] (BOUND X)) ⇒ $T, whereas (BOUND X) ⇒ $F in the global con-
text. Th e following quits the computation, by discarding the continuation
and simply “returning”:

3 · Refl ection & Semantics in LISP

211

cedures are essentially analogues of subroutines to be run “in the
implementation,” except that:

Th ey are written in the same dialect as that being imple-1.
mented;

Th ey can use all the power of the implemented language in 2.
carrying out their function—i.e., refl ective procedures can
themselves make use of further refl ective procedures, with-
out limit;23 and

Because they are within, not external to or “underneath” the 3.
architecture being implemented, they avoid all of the inel-
egance, implementation-dependence, and other deleterious

23. Th e tower is not a tower of diff erent languages. Th ere is a single dialect
(3-Lisp) all the way up. What the tower is a tower of is processors—nec-
essary because there is diff erent processor state at each refl ective level.

 (defi ne QUIT
 (lambda refl ect [[] env cant]
 'QUIT!))

Th ere are a variety of ways to implement a THROW/CATCH pair; the following
defi nes the version used in Scheme:
 (defi ne SCHEME-CATCH
 (lambda refl ect [[tag body] catch-env catch-cant]
 (normalise
 body
 (bind tag
 (lambda refl ect [[answer] throw-env throw-cont]
 (normalise answer throw-env catch-cont))
 catch-env)
 catch-cant)))

For example:
 (let [[x 1]]
 (+ 2 (scheme-catch punt
 (* 3 (/ 4 (if (= x l)
 (punt 15)
 (- X 1)))))))

would designate seventeen and return the numeral 17.
Th e refl ection mechanism is so powerful that many traditional primitives

can be defi ned; LAMBDA, IF, and QUOTE are all non-primitive (user) defi nitions in
3-Lisp, defi ned as follows:

Indiscrete Affairs · I212

aspects of traditional code that has to “reach into the imple-
mentation” to do its work.

Refl ective procedures are “defi ned” (in the sense described earlier)
using the form

(LAMBDA REFLECT ARGS BODY)

where ARGS—typically the rail [ARGS ENV CONT]—is a pattern that
should match a 3-element designator of, respectively, the argu-
ment structure at the point of call, the environment, and the con-
tinuation. Some simple examples are given in the “Programming
in 3-Lisp” sidebar, above, including a fully functional defi nition of
Scheme’s CATCH. Th ough simple, these defi nitions would be impos-
sible in a traditional language, since they make crucial access to the
full processor state at point of call. Note also that although THROW
and CATCH deal explicitly with continuations, the code that uses them
need know nothing about such subtleties. More complex routines,

 (defi ne LAMBDA
 (lambda refl ect [[kind pattern bodyJ env contJ
 (cont (ccons kind env pattern body))))

 (defi ne IF
 (lambda refl ect [[premise then elseJ env contJ
 (normalise premise env
 (lambda simple [premise!]
 (normalise (ef premise! then else) env cant)))))

 (defi ne QUOTE
 (lambda refl ect [[argJ env contJ (cant arg)))

Some comments. First, the defi nition of LAMBDA just given is, of course, cir-
cular; a noncircular but eff ective version is given in Smith and des Rivières
(1984); the one given above, if executed in 3-Lisp, would leave the defi nition
unchanged, except that it is an innocent lie: in real 3-Lisp KIND is a procedure
that is called with the arguments and environment, allowing the defi nition of
(LAMBDA MACRO …), etc. CCONS is a closure constructor that uses SIMPLE and REFLECT
to tag the closures for recognition by the refl ective processor described in sec-
tion 6. EF is an extensional conditional that normalises all of its arguments;
the defi nition of IF defi nes the standard intensional version that normalises

Programming in 3-Lisp (cont’d)

3 · Refl ection & Semantics in LISP

213

such as utilities to abort or redefi ne calls already in process, are al-
most as simple. In addition, the refl ection mechanism is so powerful
that many traditional primitives can be defi ned, rather than having
to be provided primitively: LAMBDA, IF, and QUOTE are all non-primitive
(i.e., user) defi nitions in 3-Lisp, again illustrated in the sidebar. A
simplistic break package is also presented, to illustrate the use of the
refl ective machinery for debugging purposes. It is noteworthy that
no refl ective procedures need be primitive; even LAMBDA can be built
up from scratch.

Th e power and simplicity of these examples stems from the fact
that the 3-Lisp refl ective processor is causally connected in the right
way, so as to allow the refl ective procedures to run in the system in
which they defi ned, rather than being models of another system.
And, since refl ective procedures are fully integrated into the system
design (their names are not treated as special keywords), they can
be passed around in the normal higher-order way. Finally, there is a

only one of the second two, depending on the result of normalising the fi rst.
And the defi nition of QUOTE will yield (QUOTE A) ⇒ 'A.

Finally, we have a trivial break package, with ENV and CONT bound in the
break environment for the user to see, and RETURN bound to a procedure that
will normalise its argument and pass that out as the result of the call to
BREAK:
(defi ne BREAK
 (lambda refl ect [[argJ env contJ
 (block (print arg primary-stream)
 (read-normalise-print “»”
 (bind* ['env envJ
 ['cant contJ
 ['return (lambda refl ect [[a2J e2 c2]
 (normalise a2 e2 cont))]
 env)
 primary-stream))))

If viewed as models of control constructs in a language being implemented,
these defi nitions will look innocuous; what is important to remember is that
they work in the very language in which they are defi ned.

Indiscrete Affairs · I214

sense in which 3-Lisp is simpler than 2-Lisp, as well as being more
powerful; there are fewer primitives, and 3-Lisp provides much
more compact ways of dealing with a variety of intensional issues
(like macros).

 8 The 3- Lisp Refl ective Processor
3-Lisp is best understood through a close inspection of the 3-Lisp
refl ective processor—the promised modifi cation of the continua-
tion-passing 2-Lisp metacircular processor mentioned above.

Th e code for the rpp is presented in a fi nal sidebar, above. NORMALISE
(line 7) takes a structure, environment, and continuation, and: (i)

The 3-Lisp Refl ective Processor Program (RPP)

1 (defi ne READ-NORMALISE-PRINT
2 .. (lambda simple [level env stream]
3 (normalise (prompt&read level stream) env
4 (lambda simp1e [result] ; C-REPLY
5 (block (prompt&reply result level stream)
6 (read-normalise-print level env stream))))))

7 (defi ne NORMALISE
8 .. (lambda simple [struc env cont]
9 (cond [(normal struc) (cont struc)]
10 [(atom struc) (cont (binding struc env))]
11 [(rail struc) (normalise-rail struc env cont)]
12 [(pair struc) (reduce (car struc) (cdr struc) env cont)]))

13 (defi ne REDUCE
14 .. (lambda simple [proc args env cont]
15 (normalise proc env
16 (lambda simple [proc!] ; C-PROC!
17 (if (refl ective proc!)
18 (�(de-refl ect proc!) args env cont)
19 (normalise args env
20 (lambda simple [args!] ; C-ARGS!
21 (if (primitive proc!)
22 (cont �(�proc! . �args!))
23 (normalise (body proc!)
24 (bind (pattern proc!) args! (environment proc!))
25 cont))))))))

26 (defi ne NORMALISE-RAIL
27 .. (lambda simple [rail env cont]
28 (if (empty rail)
29 (cont (rcons))
30 (normalise (1st rail) env
31 (lambda simple [fi rst!] ; C-FIRST!
32 (normalise-rail (rest rail) env
33 (lambda simple [rest!] ; C-REST!

3 · Refl ection & Semantics in LISP

215

returns the structure unchanged (i.e., sends it to the continuation)
if it is in normal form; (ii) looks up the binding if it is an atom; (iii)
normalises the structure’s elements if it is a rail;24 and (iv) otherwise
reduces the CAR (procedure) with the CDR (arguments). REDUCE (line
13) fi rst normalises the procedure, with a continuation (C-PROC!) that
checks (line 17) to see whether it is refl ective.25 If it is not refl ective,
C-PROC! normalises the arguments, with a continuation that either
expands the closure (lines 23–25) if the procedure is non-primitive,
or else executes it directly (line 22) it if it is primitive.

As an example, consider (REDUCE '+ '[X 3] ENV ID), assuming that
X is bound to the numeral 2 and + to the primitive addition closure
in ENV. At line 22, PROC! will designate the primitive addition closure,
and ARGS! will designate the normal-form rail [2 3]. Since addition
is primitive, we must simply do the addition. (PROC! . ARGS!) would
not work, because PROC! and ARGS! are at the wrong level; they des-
ignate structures, not functions or arguments. For a brief instant,
therefore, we dereference them (with), do the addition, and then
regain our meta-structural viewpoint with .26 If the procedure is

24. NORMALISE-RAIL is 3-Lisp’s tail-recursive continuation-passing analogue of
Lisp 1.5’s EVLIS.

25. I adopt a convention of using exclamation point suffi xes on atom names
used as variables to designate normal form structures.

26. One way to understand this is to realize that the refl ective processor sim-
ply asks its processor to do any primitives that it encounters—i.e., it passes
responsibility for the execution of primitives up to the processor running
it. In other words, each time one level uses a primitive, its processor runs
around setting everything up, fi nally reaching the point at which it must
simply do the primitive action, whereupon it asks its own processor for
help. But, of course, that processor—i.e., the processor running the pro-
cessor in question—will also come racing towards the edge of the same
cliff , and will similarly duck responsibility, handing the primitive up yet
another level.

Th e net result, from the “tower” perspective, is that every primitive ever
executed is handed all the way to the (infi nitely remote) top of the tower.
Th ere is then a magic moment, when the thing actually happens—and then
the answer fi lters all the way back down to the level that started the whole
procedure. It is as if the deus ex machina, living at the top of the tower,
sends a lightning bolt down to some level or other, once every intervening
level gets appropriately lined up (rather like the sun, at Stonehenge and the
Pyramids, reaching down through a long tunnel at just one particular mo-
ment during the year).

Indiscrete Affairs · I216

refl ective, however (line 18), it is called directly, not processed, and
given the obvious three arguments (ARGS, ENV, and CONT) that are being
passed around. (DE-REFLECT PROC!) is merely a mechanism to “purify”
the refl ective procedure so that it does not refl ect again, and to de-
reference it to be at the right level (we want to use, not mention, the
procedure designated by PROC!). Note that line 18 is the only place
that refl ective procedures can ever be called; this is why they must
always be prepared to accept exactly those three arguments.

Th is leads to an important point:

 Refl ective processor program
 line line 18 is the essence of 3-Lisp.

Line 18 alone engenders the full refl ective tower, for it says that some
parts of the object language—the code processed by this program—
are called directly in this program. It is as if an object level fragment
were included directly in the meta language, which raises the ques-
tion of who is processing the meta language. Th is is where the tower
enters the picture: the claim underlying 3-Lisp is that an exactly
equivalent refl ective processor is processing this code, too—and that
this fact can be true without vicious threat of infi nite ascent.

Th e result is to allow a refl ective procedure “to be executed in the
middle of the processor context.” It is handed, as arguments, envi-
ronment and continuation structures that designate the process-
ing of the code below it, but it is run in a diff erent context, with
its own (implicit) environment and continuation, which are in turn
represented in structures passed around by the processor one level
above it. In this way a refl ective procedure is given causal access to
the state of the process that was in progress (answering one of the
three initial requirements for refl ection); as a result, it can cause any
eff ect it wants since it has complete access to all future processing of
that code. Furthermore, it has a safe place to stand, where it will not

Except, of course, that nothing ever happens, ultimately, except primi-
tives. In other words the enabling agency, which must fl ow down from the
top of the tower, consists of an infi nitely dense series of these lightning
bolts, with something like 10 of the ones that reach each level being al-
lowed through that to the level below (and then 10 of those reaching to
the level below it, etc.).

All infi nitely fast.
«Th is should be edited to refer to the Implementation paper.»

3 · Refl ection & Semantics in LISP

217

confl ict with the code being nm below it (thereby meeting the third
criterion).

Th ese various protocols illustrate a general point. As mentioned
at the outset, part of designing an adequate refl ective architecture
involves a trade-off between being so connected that one steps all
over oneself (as in traditional implementations of debugging utili-
ties), and so disconnected (as with metacircular processors) that one
has no eff ective access to what is going on. Th e suggestion made
here is that the 3-Lisp refl ective tower provides just the right balance
between these two extremes, solving the problem of vantage point as
well as of (both directions of) causal connection.

Th e 3-Lisp refl ective processor unifi es three traditionally indepen-
dent capabilities in Lisp: (i) the explicit availability of EVAL and APPLY,
(ii) the ability to support metacircular processors, and (iii) explicit
operations provided for debugging purposes (such as MacLisp’s
RETFUN and Interlisp’s FRETURN). It is striking that the latter facilities
are required in traditional dialects, in spite of the presence of the
former, especially since they depend crucially on implementation
details, violating portability and other natural aesthetics. In 3-Lisp,
in contrast, all information about the state of the processor is fully
available within the language itself—suggesting that its refl ective ar-
chitecture constitutes something of an appropriate theoretical unifi -
cation of the kinds of extension that have heretofore had to be made
in ad-hoc and non-transportable ways.

 9 Threats of Infi nity and Finite Implementations
Th e argument as to why 3-Lisp is fi nite is complex in detail, but
simple in outline and substance. In brief: the proof relies on showing
that the refl ective processor is tail-recursive in two senses:

It runs programs tail-recursively, in that it does not build up 1.
records of state for programs across procedure calls (only on
argument passing); and

It itself is fully tail-recursive, in the sense that all recursive 2.
calls within it (except for unimportant subroutines) occur in
tail-recursive position.

27. «Refs?»

Indiscrete Affairs · I218

As a result, the refl ective processor can be executed by a simple fi nite
state machine. In particular—and this is the crucial point—it can
run itself without using any state at all. Once the limiting behaviour
of an infi nite tower of copies of this processor has been determined,
therefore,28 that entire chain of processors can be simulated by an-
other fi nite state machine, of complexity only moderately greater
than that of the refl ective processor itself.29 A full copy of such an
implementing processor30 and a much more substantive discussion
of tractability is provided in Smith & des Rivières (1984).

 10 Conclusions and Morals
Th e use of Lisp as a language in which to explore programming
semantics and refl ection is not essential; the ideas should hold in
any similar circumstance. I have chosen Lisp because it is familiar,
because it has rudimentary self-referential capabilities, and because
there is a standard procedural self-theory (continuation-passing
metacircular “interpreters”). Work has begun, however, on design-
ing refl ective dialects of a side eff ect-free Lisp and of Prolog, and
on studying a refl ective version of the ⋶-calculus (the last being an
obvious candidate to be used as a basis for a mathematical study of
refl ection).k

Th e techniques used here to defi ne 3-Lisp can be generalised
rather directly to these other languages. As suggested at the outset,
in order to construct a refl ective dialect one needs:

To formulate a theory of the language analogous to the met-1.
acircular processor descriptions we have examined;

To embed this theory within the language; and2.

To connect the theory with the underlying language in an 3.
appropriate causally connected way—i.e., so as to allow for

28. Th is has not yet been explained in this paper; see «refer to the implemen-
tation paper.»

29. It is an interesting open research question whether that “implementing”
processor can be algorithmically derived from the refl ective processor
code.

«Note that this has yet to be done … »
30. Consisting (including all utilities) of only about 200 lines of 2-Lisp code.

k) «May put in a sidebar on the result? I have it somewhere...»

3 · Refl ection & Semantics in LISP

219

both “upwards” and “downwards” connection—by allow-
ing refl ective procedures invocable in the object language
the ability to run (non-refl ectively) in the processor (as was
done in line 18 of the 3-Lisp refl ective processor program).

It remains to implement the resulting infi nite tower; a discussion
of general techniques, which again would readily generalize to lan-
guages other than 3-Lisp, is presented in des Rivières and Smith
(1984).

It is partly a consequence of using Lisp that I have used non-
data-abstracted representations of functions and environments; this
facilitates side eff ects to processor structures without introducing
unfamiliar machinery. It is clear that environments could be readily
abstracted, although it would remain open to decide what modi-
fyonlylling operations would be supported (changing bindings is
one, but one might wish to excise bindings completely, splice in new
ones in, etc.). In standard l-calculus-based metatheory there are no
side eff ects (and no notion of processing); environment designators
must therefore be passed around (“threaded”) in order to model en-
vironment side eff ects. It should be simple to defi ne a side eff ect-free
version of 3-Lisp with an environment-threading refl ective proces-
sor, and then to defi ne SETQ and other such routines as refl ective
procedures. Similarly, I have assumed in 3-Lisp a single structural
fi eld commonly visible from all code; one could defi ne an alternative
dialect in which the structural fi eld, too, was threaded through the
processor as an explicit argument, as in standard metatheory.

Th e representation of procedures as closures is troublesome.31 I
would be the fi rst to admit that 3-Lisp provides too fi ne-grained
(i.e., too metastructural) access to function designators—including
continuations and the like. Given an appropriately abstract notion
of procedure, it would be natural to defi ne a refl ective dialect that
used abstract structures to encode procedures, and then to defi ne
refl ective access in such terms. While I did not follow this direction
here, in order to avoid taking on another very diffi cult problem, an-
other intent of future work is to move in this direction.

31. Closures are failures, in a sense, in that they encode far more information
than should be required in order to identify a function in intension; the
problem being that we do not yet know what a function in intension might
be.

Indiscrete Affairs · I220

Th ese considerations all illustrate a general point: in designing a
refl ective processor, one can choose to bring into view more or less
of the state of the underlying process. Fundamentally, it reduces to a
design choice of what one wants to reify or make explicit, and what
one wants to absorb. As currently defi ned, 3-Lisp reifi es (i) the en-
vironment and (ii) the continuation, thereby making explicit those
two implicit dimensions of processing one level below. It absorbs
(iii) the structural fi eld and (iv) the global environment; in addi-
tion, as mentioned earlier, it completely absorbs (v) the animating
agency of the whole computation. If one were to defi ne a refl ective
processor based on a metacircular processor that also absorbed the
representation of control (in the style of the non-continuation-pass-
ing 2-Lisp mcp,32 which embedded the control structure of the code
being processed with the control structure of the processor), then
refl ective procedures would not have access to, and therefore could
not aff ect, a base program’s control structure. In any real application,
it would need to be determined just what parts of the underlying
dialect required reifi cation.

More interestingly, one might be able to design a refl ective lan-
guage in which individual refl ective procedures could specify, with
respect to a very general meta-theory, which aspects they wanted
explicit access to (simply environment in one case, animating agency
in another, control structure but not agency in a third, etc.). In such
a design, operations that needed only environmental access, such as
BOUND?, would not need to traffi c in continuations. While a modifi ca-
tion of 3-Lisp that provides such “contextually optional” access to
environment, continuation, and structural fi eld, a full exploration of
this possibility remains for future work.

One fi nal point. Th roughout this paper I have talked about se-
mantics, but I have so far presented no mathematical semantical
accounts of any of the dialect presented. To do so for 2-Lisp is rela-
tively straightforward (see des Rivières and Smith (1984)l), but it
remains to develop appropriate semantical equations to describe
3-Lisp. While might initially be tempting to construct such a model

32. Sidebar on p. ■■.
l) «Check; not sure this was ever done? Was it in the manual?»

3 · Refl ection & Semantics in LISP

221

based on the implementation strategy described in des Rivières and
Smith (1984), I believe that doing so would be a failure. Instead,
what is needed is a two-step process:

To construct a mathematical account of the “infi nite tower” 1.
view of 3-Lisp—i.e., to take the limit as n ∞ of 2-Lispn, as
suggested in §■■; and then

To prove, in terms of that model, that the fi nite implemen-2.
tation strategies presented in des Rivières and Smith (1984)
are correct.

Th is awaits further work. Additional future work would include:
(i) exploring what it would be to deal explicitly, in the semantical
account, with anima or agency (rather than simply absorbing it),
which would introduce parallelism into the refl ective act; and (ii)
formulating a more general account of the requisite causal connec-
tion, that are so crucial to the success of any refl ective architecture.
Th ese various tasks will require more radical reformulations of se-
mantics than have been considered here.

 Acknowledgements
I have benefi ted greatly from the collaboration of Jim des Rivières
on these questions, particularly with regard to issues of eff ective
implementation. Th e research was conducted in the Cognitive and
Instructional Sciences Group at the Xerox Palo Alto Research Center
(parc), as part of the Situated Language Program of Stanford’s
Center for the Study of Language and Information (clsi).

 References
Batali, John, “Computational Introspection,” Artifi cial Intelligence Laboratory

Memo aim-tr-701, Massachusetts Institute of Technology, Cambridge,
ma, 1983.

des Rivières, Jim and Smith, Brian Cantwell, “Th e Implementation of
Procedurally Refl ective Languages,” 1984 Conference on lisp and
Functional Programming, Austin, Texas, August 1984. Also available as
Xerox Palo Alto Research Center (parc) Report isl–4, Palo Alto, CA
(1984) and Stanford Center for the Study of Language and Information
Report csli-84-9 (1984). Reprinted here as Chapter ■■.

Doyle, Jon, “A Model for Deliberation, Action, and Introspection,” Artifi cial
Intelligence Laboratory Memo aim-tr-581, Massachusetts Institute of
Technology, Cambridge, ma, 1980.

Indiscrete Affairs · I222

Fodor, Jerry. “Methodological Solipsism Considered as a Research Strategy in
Cognitive Psychology,” Th e Behavioural and Brain Sciences, 3:1 (1980) pp.
63–73; reprinted in Fodor, Jerry, Representations, Cambridge, ma: Bradford,
1981.

Genesereth, Michael and Lenat, Douglas B., “Self-Description and
Modifi cation in a Knowledge Representation Language,” Heuristic
Programming Project Report hpp-80-10, Stanford University Department
of Computer Science, 1980.

McCarthy, John et al., lisp 1.5 Programmer’s Manual. Cambridge, ma: mit
Press, 1965.

Smith, Brian Cantwell, Refl ection and Semantics in a Procedural Language,
Laboratory for Computer Science Report mit-tr-272, 1982. Abstracts,
Prologue, and Chapter 1 reprinted here as Chapter ■■.

Smith, Brian Cantwell and des Rivières, Jim, “Interim 3-Lisp Reference
Manual,” Report isl-1, Xerox Palo Alto Research Center (parc), Palo Alto,
ca (1984…■■).

Steele, Guy, “lambda: Th e Ultimate Declarative,” Artifi cial Intelligence
Laboratory Memo aim-379, Massachusetts Institute of Technology,
Cambridge, ma, 1976.

Steele, Guy and Sussman, Gerald, “Th e Revised Report on scheme, a Dialect
of lisp,” Artifi cial Intelligence Laboratory Memo AIM-452, Massachusetts
Institute of Technology, Cambridge, ma, 1978a.

Steele, Guy and Sussman, Gerald, “Th e Art of the Interpreter, or, Th e
Modularity Complex (parts Zero, One, and Two),” Artifi cial Intelligence
Laboratory Memo aim-453, Massachusetts Institute of Technology,
Cambridge, ma, 1978b.

Weyhrauch, Richard W., “Prolegomena to a Th eory of Mechanized Formal
Reasoning,” Artifi cial Intelligence 13:1,2 (1980) pp. 133–170.

3 · Refl ection & Semantics in LISP

223

of the MIT Artifi cial Intelligence Laboratory, where I was enrolled.

Given the impossibility of bringing Mantiq to fruition, it was fortunate that

3-Lisp and procedural refl ection were able to serve as the focus of a completable

doctoral dissertation—though the advertising was disingenuous, since although

Mantiq was genuinely supposed to be refl ective, 3-Lisp ultimately amounted to

being only what I would later call “introspective.”⋶6
 (Mantiq was also intended

to be descriptively as well as procedurally refl ective; though I did recognize that

3-Lisp was limited to the procedural case.)

Some of the history of Mantiq and 3-Lisp is described in the Preface to the dis-

sertation that resulted, published as a technical report under the name “Refl ection

and Semantics in Procedural Languages” (RSPL), q.v.⋶
7
 Of special relevance here

is the fact that the semantic orientation adopted in the 3-Lisp design, according

to which programs are taken as effective ingredients within computational pro-

cesses, rather than as external specifi cations of (or prescriptions for) them, was

more familiar within knowledge representation (KR) and AI circles than it was

in the programming language community per se. This perspective, which I dub

an “ingrediential” view of programs, derives in part from the fact that I came

to the Mantiq project out of an interest in knowledge representation, and that

the KR community conceives its task as one of developing computer analogues

of the mental structures that underlie active, real-world knowledge and thought

processes—i.e., as they occur during the course of a person’s (or system’s) ongo-

ing life—rather than as statically or once-and-for-all “specifying a mind,” in the

way that one might take to be the task of DNA. This ingrediential stance to re-

fl ection is quite explicit in RSPL, for example in the discussion of what I called the

“Refl ection Hypothesis”:⋶
8

In as much as a computational process can be constructed to reason about

an external world in virtue of comprising an ingredient process (interpreter)

formally manipulating representations of that world, so too a computational

process can be made to reason about itself in virtue of comprising an ingre-

dient process (interpreter) formally manipulating representations of its own

operations and structures.

At the time this 3-Lisp paper was published, I did not appreciate the theoretical

signifi cance, especially as regards semantics, of viewing programs from different

perspectives. Recognition began to dawn soon thereafter, when I encountered

2010 Perspective (cont’d)

Indiscrete Affairs · I224

the incomprehensibility with which my programming language colleagues greet-

ed my approach to 2-Lisp (and thus 3-Lisp) semantics. A particularly telling event

occurred in 1984, when—proud of what I took to be its semantical cleanliness—I

invited Joseph Goguen and Jose Meseguer, programming language theorists at

SRI, to sketch out a “formal denotational semantics” for 2-Lisp. My plan was to

use what they developed as a basis for initiating a mathematical analysis of 3-Lisp

and refl ection. When they generously came back with a proposal, however, I

was—to be frank—astonished. What they took to be a mathematically clean se-

mantical analysis obliterated what I took to be essential to 2-Lisp’s semantical

clarity—confl ating distinctions I had taken such pains to maintain, such as among

handles, numerals, and numbers, and between sequences and rails. Entities I took

to be concrete were treated as abstract; the grounds on which I had rested my

critique of the Lisp conception of evaluation had vanished; and in general their

“theoretically clean” version of 2-Lisp had undergone a transformation that not

only rendered it wholly unfamiliar to me, but that “disappeared” what was—at

least in my eyes—its major contribution. Needless to say, , the proposed collabo-

ration stalled, in spite of great respect on both sides (I mean nothing indicting by

telling this tale; we were simply approach what we took to be a common subject

matter from radically different perspectives). I never did develop a mathematical

account of refl ection—nor, to my knowledge, has anyone else.

Fortunately, in spite of this setback, the work on 3-Lisp and procedural refl ec-

tion itself was kindly received in the larger community. After this paper appeared

at the Principles of Programming Languages conference (POPL) in 1984, interest

in refl ection burgeoned around the world, and a variety of refl ection confer-

ences were held over the subsequent 10 years.⋶
9

But the issues that had surfaced in the interaction with Goguen and Meseguer

were a harbinger of more profound intellectual challenges than at the time I

knew how to resolve. I had staked my dissertation on the fundamental thesis on

which 3-Lisp is based (thesis [R], §1, p. (■■): that refl ection is relatively straight-

forward, if implemented on a semantically sound base. While, in an overall sense,

the topic of procedural refl ection was widely picked up, that orienting thesis,

with no exceptions of which I am aware, was resoundingly ignored.⋶
10

 At fi rst

I was puzzled by people’s blindness to or even dismissal of it,⋶
11

 but I gradually

came to appreciate that the incomprehensibility of this semantical thesis rested

on the considerable conceptual difference of viewing programs as ingredients in

computational processes, rather than as specifi cations or prescriptions of them.

3 · Refl ection & Semantics in LISP

225

As one would expect, the clearer I became on the underlying issues, the more

I was able—especially in conversation—to explain the perspective from which

3-Lisp was designed. As I quickly learned, however, success in describing its ar-

chitectures by and large required that I not use the ingrediential vocabulary I

am employing here—i.e., depended on my not saying that the two dialects were

based on a view of programs as causally effective process-internal ingredients.

Rather, I had to describe them from a viewpoint that at the time felt alien to me:

taking programs to be external, if nevertheless effective, process specifi cations or

descriptions (or even prescriptions). A conversation with Gordon Plotkin (again in

the mid 1980s) at Stanford’s Center for the Study of Language and Information

(CSLI) is illustrative. After failing to communicate anything about what mattered

to me about 2-Lisp using my own terminology, I attempted to adopt his—i.e.,

tried to “inhabit” the specifi cational view—and said that what I was interested in

was “the semantics of the semantics of programs.” The ploy must have worked,

as I recall him nodding and smiling. But the differences remained profound, and

nothing further came of the conversation. Although I made some subsequent

attempts to explain the differences in viewpoints (e.g., in (■■), it seems safe to

say that the 2-Lisp and 3-Lisp approach to semantical clarity—and the idea of

theorizing distinct procedural and declarative aspects of program meaning—was

met with virtual silence when fi rst presented, and then quickly faded into the

background.

Over the intervening 25 years I have developed a much deeper understanding
of these communicative failures, as well as an appreciation of the intellectual
history that gave rise to them. The issues lie deep in the foundations of com-
puting, and derive in part from the ways in which computer science has taken
over technical terminology from philosophical and mathematical logic, but has
used it for different purposes. Of numerous issues, one looms large in the pres-
ent context: for reasons traceable as far back as Turing’s original 1937 paper,
computer scientists in general, and programming language theorists in par-
ticular, use what a classical logician would consider semantical vocabulary and
model-theoretic techniques to analyse what that same logician would think of
as fundamentally syntactic and/or proof-theoretic concerns. Disentangling this
history helps to clarify all manner of communicative failures, theoretical con-
fusions, and contextually incomprehensible behaviours—including such seem-
ingly diverse topics as misunderstandings (on all sides) of Searle’s Chinese Room
thought experiment, the widespread use of constructive mathematics and intu-

Indiscrete Affairs · I226

itionistic logic in theoretical computer science (such as Martin-Löf’s intuitionistic
type theory) the structure of refl ection, the meteoric rise in popularity (perhaps

even the provenance) of Girard’s linear logic,⋶
12

 and the substantial distraction
we have all suffered, in my view, from focusing exclusively on the semantics of

programming languages, rather than on the semantics of individual programs.

Elsewhere I have made some stabs at explaining these issues,⋶
13

 but only brief-

ly, and in passing. One of the goals of The Age of Signifi cance (AOS) project,⋶
14

being launched as this is being written, is to spell out this history in ways that fa-

cilitate understanding across the boundaries of computer science—both “exter-

nally,” as it were, by allowing what matters about computing to be understood

from an external intellectual perspective, and “internally,” by enabling the genu-

ine semantical insights of the logical tradition to be appreciated within computer

science (something that in my opinion has largely not yet occurred).

My exploration of these foundational issues has primarily taken place in my
investigations into the philosophy of computing, and will be reported on as
such. More technically, after the publication of this paper my attention did not
stay focused on programming languages, but turned back towards the issues
that had originally motivated Mantiq: how to generalize the lessons learned
here in the context of people and/or systems able to reason about the concrete,
external world.

I was sobered not only by the daunting challenges of doing justice to real-

world metaphysics and ontology, but also by an inadvertent lesson gained from

the 3-Lisp exercise: the untenable pedantry of excessive semantical strictness. Not

only was it manifest that dealing with real-world ontology was a profoundly

more serious challenge than anything for which the 3-Lisp project provided

preparation, but it also quickly became clear that semantics itself, and any ideal

of “semantical clarity,” would have to be rethought in the most fundamental

way, if we were even to approach, in artifi cial systems, the prowess and facil-

ity with which we people think about and fi nd intelligible the worlds in which

we are embedded. Some initial steps in these directions were reported in “The

Correspondence Continuum” and “Varieties of Self-Reference,” both written in

1986.⋶
15

 But as noted in the annotations to those papers included in this vol-

ume, I ultimately came up against what I came to call an “ontological wall,”⋶16

prompting me to delve even deeper into epistemology and metaphysics—a shift

in emphasis that led to the writing of On the Origin of Objects (O3) in 1996,⋶
17

and that continues to this day.

3 · Refl ection & Semantics in LISP

227

I do not believe it would be impossible to incorporate at least some of the les-

sons of O3 in a refl ective computational system—in part because of not believing

that ‘computational’ is a restrictive property (see AOS). But until such a day—a

day that it is hard to know whether I myself will ever reach—the original motiva-

tions for developing 3-Lisp, the fundamental insights on which it is based, and

the original vision of Mantiq all remain waiting in the wings.

Notes

 ⋶1

Sidebars and footnotes with text in sans-serif font, as in this case, contain comments
and refl ections added in 2010, rather than material that appeared in the original
paper.]

 ⋶2 ‘Mantiq’ () is roughly the Arabic equivalent of the Greek logos (⋶⋶⋶⋶⋶)—mean-
ing speech, manner of speaking, eloquence, or logic «ref: The Hans Wehr Dictionary
of Modern Written Arabic). It is best known in the title Mantiq al-Tayr (),
a book of poems by the Sufi poet Farid al-Din Attar, sometimes translated as “The
Language of the Birds” but more commonly as “The Conference of the Birds.”

 ⋶3 At least what philosophers would call its “narrow” meaning (cf. «ref»). Not only
did I quickly come to realise that a great variety of different things been called the
“meaning” of an expression or idea, over the years, but I have also come to believe
there never will be a “fi nal catalogue” of just which of the infi nite number of as-
pects of an intentional utterance or event can or do matter to its full signifi cance.
Even more challenging, from a design point of view, I believe that what we take
to be the “meaning” of such any such event or occassion (let alone what “type” it
instantiates) is likely contextually dependent not only on facts about the event so
taken, but on the circumstances of the situation in which the meaning is referred
to.

Moreover, whatever eventual story about meaning one were to adopt, it is likely
that a true “fusion” of meaning and structural identity would prove impossible
in the limit, since it is usually possible, given any such view, to construct examples
showing that meaning identity is uncomputable. Still, having some such goal as an
ideal can provide motivation and direction towards “higher-level” archictures of
intentional capacity.

 ⋶4 The fi rst drafts of the report on 3-Lisp were designed to be chapter 13 of the infea-
sible Mantiq dissertation.

 ⋶5 The idea can clearly be generalised, allowing one to “step sideways,” as it were, so
as to be able to see one whole tower as a unity, etc. But I say “fi rst good idea” be-
cause I was interested in a much more radical kind of refl ection, involving a whole-
sale “leap” across a chasm from one locus of intelligibility to another, which (by
defi nition) cannot be “viewed” from a vantage point accessible within the “prior”
epistemic architecture. The merest sketch of such an idea is mentioned in O3 «ref»;

Indiscrete Affairs · I228

I plan to explore it much more fully in Phase II of AOS «ref».

 ⋶6 See “Varieties of Self-Reference,” Chapter ■■.

 ⋶7 Reprinted here as chapter ■■. The dissertation itself was submitted as "Procedural
Refl ection in Programming Languages'; the change in title refl ected not only the
importance of thesis [R] (p. ((), but also my increasing awareness of the importance
of the semantical model on which the refl ective architecture was based.

 ⋶8 Op. cit, pp. ■■.

 ⋶9 «References»

 ⋶10 For example, although the Wikipedia web page on refl ection in computer science
(below) credits the 3-Lisp work as introducing the notion of refl ection into pro-
gramming languages, it makes no mention of the rationalised semantics on which
the 3-Lisp design was based (in spite of discussion throughout the article about the
“subject matter” of programming constructs). Similarly, none of the ten examples
of refl ection in contemporary languages presented at the end of the article are de-
signed in terms of an explicit theorization of subject matter or declarative import.

 http://en.wikipedia.org/wiki/Refl ection_(computer_science)

 ⋶11 Cf. Daniel P. Friedman and Mitchell Wand, “Reifi cation: Refl ection without
Metaphysics,” LISP and Functional Programming Conference, 1984, pp 348-55.

 ⋶12 «References»

 ⋶13 E.g., in “The Foundations of Computing,” reprinted here as chapter ■■.

 ⋶14 See http://www.ageofsignifi cance.org

 ⋶15 See chapter ■■ and chapter ■■.

 ⋶16 E.g., see “The Foundations of Computing,” reprinted here as chapter ■■.

 ⋶17 On the Origin of Objects, MIT Press, Cambridge, MA: 1996.

 229

4 — The Implementation of Procedurally
 Reflective Languages†

Jim des Rivières and Brian Cantwell Smith*
IBM and University of Toronto

 Abstract
In a procedurally reflective programming language, all programs
are executed not through the agency of a primitive and inaccessi-
ble interpreter, but rather by the explicit running of a program that
represents that interpreter. In the corresponding virtual machine,
therefore, there are an infinite number of levels at which programs
are processed, all simultaneously active. It is therefore a substan-
tial question to show whether, and why, a reflective language is
computationally tractable. We answer this question by showing
how to produce an efficient implementation of a procedurally re-
flective language, based on the notion of a level-shifting processor.
A series of general techniques, which should be applicable to re-
flective variants of any standard applicative or imperative pro-
gramming languages, are illustrated in a complete implementa-
tion for a particular reflective LISP dialect called 3-LISP.

 † Slightly revised version of a paper that appeared in the Proceedings of the

1984 ACM Symposium on LISP and Functional Programming. Also published
as Intelligent Systems Laboratory Report No. ISL-4, Xerox Palo Alto Re-
search Center, July 1984; and as Report No. CSLI-84-9, Stanford University
Center for the Study of Language and Information, July 1984.
*Coach House Institute, Faculty of Information, University of Toronto
90 Wellesley St W, Toronto, Ontario M5S 1C5 Canada
†© Brian Cantwell Smith 2010 Last edited: January 14, 2010
Please do not copy or cite Comments welcome
Draft only (version 0.80) brian.cantwell.smith@utoronto.ca

230 Indiscrete Affairs · I

2010 Perspectiveα1

——— to be written ———

Notes

 α1 Sidebars and footnotes with text in sans-serif font, as in this case, contain comments and re-
flections added in 2010, rather than material that appeared in the original paper.

 1 Introduction
As described in (Smith 82a; Smith 84), a reflective computational
system is one in which otherwise implicit aspects of the system’s
structure and behaviour are available for explicit inspection and
manipulation. A procedurally reflective programming language is
a particular architecture for reflection in which all programs are
executed not through the agency of a primitive and inaccessible
interpreter, but rather by the explicit running of a program that
represents that interpreter. Since the latter program, which we call
the reflective processor program (RPP),1 is written in the same
reflective language as the user program, it too must be executed by
the explicit running of a copy of itself. And so on ad infinitum. In
the abstract or virtual machine, in other words, no program is ever
run directly, but instead is run indirectly through the explicit ac-
tion of the running of the RPP.

In the virtual machine, therefore, there are an infinite number
of reflective levels at which programs are processed, all simultane-
ously active (in exactly the same way that a traditional program

 1 We use ‘processor’ in place of ‘interpreter’ in order to avoid confusion

with the semantic (model-theoretic) notion of interpretation. See (Smith
1982a and (Smith 1984).

 4 · Implementation of Reflection

 231

written in some language L and the program that implements lan-
guage L are simultaneously active). Each level has its own local
state distinct from the state of neighbouring levels (i.e., there is one
“control stack” per level). The architecture resembles an infinite
tower of continuation-passing metacircular interpreters,2 except
that (again as discussed in (Smith 84) there are crucial causal
connections between the levels. Specifically, a program running at
one level can provide code to be run at the next higher level—i.e., at
the level of the original program’s processor—thereby gaining ex-
plicit access to the formerly implicit state of the computation.

The situation is analogous to one where a user program is al-
lowed to insert code into the implementation, except that in the re-
flective case the implementation is written in the same language as
the original user program. This facility enables the user to define
new control constructs, implement debuggers, etc., without requir-
ing special hooks into the actual implementation. The technique is
so powerful that large classes of control structures can be straight-
forwardly defined in a reflective language in terms of primitive
data-manipulation procedures.

We believed that reflection is an important tool to add to any
language designer’s toolbox. Even if one decides that reflection is
too powerful to make generally available to users, a designer may
find that the task of producing a correct and complete implemen-
tation (e.g., including debugging facilities) is simplified by adopt-
ing a reflective architecture as an underlying model. As this paper
will show, the issues that arise in implementing a simple reflective
language are remarkably similar to the issues that arise in imple-
menting complex non-reflective languages containing primitive
debugging facilities and fancy control constructs. Also, reflection
has interesting (and unique) properties that are a direct effect of
making it possible to view a computation from more than one van-
tage point at the same time. For example, a purely functional pro-
cedurally reflective language, entirely lacking side effects in its
primitive functions or special constructs, can nevertheless use re-
flection to define an assignment statement.3 In general, reflection

 2 McCarthy (1965), Steele & Sussman (1978b).
 3 Exactly the same principle is employed when giving a denotational semantic

account of a programming language that has assignment statements: the

232 Indiscrete Affairs · I

is a technique whereby a theory of a lan-
guage embedded within a language can
convey otherwise unavailable power.

Given a virtual machine consisting of an
infinite number of levels of processing, it is
clear that one of the most important ques-
tions to ask about a reflective language is
whether, and why, it is computationally
tractable. This paper addresses that prob-
lem by considering the general question of
producing an efficient actual implementa-
tion of a procedurally reflective language.

We show, in other words, how to construct a finite program to
simulate an infinite tower of reflective levels. After presenting gen-
eral principles and techniques that should apply to reflective vari-
ants of any standard applicative or imperative programming lan-
guages, we present an efficient implementation of a particular re-
flective LISP dialect called 3-LISP.4

 2 Towers of Processing
We start by numbering each reflective level: 0 for the level at which
the user’s program is processed, 1 for the level at which the pro-
gram that runs the user’s program is processed, and so on. In gen-
eral, the structures (programs and data and so forth) at any given
level represent the state of the computation one level below; thus
level n+1 is one level “meta” to level n.5 This arrangement, which
we call a tower, is depicted in figure 1. Finite heterogeneous tow-
ers of processing (i.e., a finite number of different languages) are
commonplace—a LISP program running at level 0, run by the LISP
processor (interpreter) which is a machine language program
running at level 1, which, in turn might be run by an emulator, a

state of the computation that was implicit at the level of the program is
made explicit at the level of the mathematical metalanguage in which the ac-
count of the language is formulated.

 4 Smith (1984), Smith & des Rivieres (1984).
 5 Though it is not quite required by the underlying notion, it is natural to

have structures at one level designate (name) structures at the level below.
Again, see (Smith 1982a) and (Smith 1984).

Figure 1 — Levels in a reflective tower

 4 · Implementation of Reflection

 233

microcode program running at level 2.6 What distinguishes pro-
cedurally reflective architectures is that the processing tower is in-
finite and homogeneous. The user’s program (at level 0) is run by
the RPP (running at level 1), which is in turn run by another in-
carnation of that same RPP (at level 2). And so on.7

The claim that a user’s program runs at level 0 is in fact a lie:
the whole point of procedurally reflective languages is to allow
user code also to run at level 1 or higher, thereby giving user pro-
grams explicit access to the data structures encoding their own
state, and therefore power to direct the course of their own compu-
tation. What we are calling the actual implementation (that proc-
ess that mimics the virtual infinite tower) must therefore be able to
provide explicit structures encoding the otherwise implicit state of the
user’s program at any arbitrary level. It is this crucial fact that
makes procedurally reflective systems more difficult to implement
than systems without such “introspective” capabilities.

The first step in providing such an implementation is to discharge
the threat of the infinite. The key observation is that the activity at
most levels—in fact at all but a finite number of the lowest levels—
will be monotonous: the RPP will primarily be used to process the
same old expressions, namely those that make up the RPP itself.
From some finite level k all the way to the “top,” in other words, the
tower will just consist of the processor processing the processor.
Identify as kernel those expressions in the RPP that are used in
the course of processing the RPP which is running one level below.8
Call a processing level boring if the only expressions that are proc-

 6 In a finite tower, there is one level which is run “by the hardware”, at which

point there is no further program, and therefore no question of who runs
it. See (Smith 1982b).

 7 Throughout, we assume that a level implements the level below it, so the
sense of direction is opposite from common practice, where one normally
thinks of an implementation of a language as being below the language im-
plemented. Our usage, however, is in line with the customary view that a
name or designator is above the referent or designation (see note ■■).

 8 There are three classes of expressions that one might think of as the
relevant base for the induction: those that are primitive, those that are sim-
ple (i.e., do not involve reflection), and those that are kernel. In 3-LISP the
three classes overlap but are distinct; as discussed in §4d, it is the kernel
ones that are key to a correct implementation.

234 Indiscrete Affairs · I

essed at that level (in the course of a computation) are kernel ex-
pressions. Define the degree of introspection (∆) of a program to
be the least m such that when the program is run at level 0, all lev-
els numbered higher than m are boring.

All programs consisting entirely of kernel expressions have
∆=0. Normal programs (i.e., standard user programs that do not
use any reflective capabilities) will have ∆=1, meaning that no out-
of-the-ordinary processing is required at level 1. The processing of
the level 0 program, in other words, will not entail running non-
kernel code at level 1. ∆=2 would be assigned to programs that
involve running non-kernel user code at levels 0 and 1, but not at
the second reflective level. And so on. Just as a correct im-
plementation of recursion is not required to terminate when a
procedure recurses indefinitely, a correct implementation of a
procedurally reflective system need terminate only on compu-
tations having a finite degree of introspection. Tractable reflective
programs, in other words, are those with a finite degree of
introspection (∆).
We can now formulate a general plan for implementing a proce-
durally reflective system. Suppose that one has an implementation
processor G (a real, active, processor—not just a program for a
processor) that engenders the behaviour of the processor for the
language provided that the program it is given to run has ∆=1. The
existence of such a G is a reasonable presumption, since G is essen-
tially just a processor for the language in question stripped of its
reflective capabilities. A procedurally reflective language minus
the ability for the user to use reflection is likely to be conventional.
3-LISP minus reflection, for example, is a simple SCHEME-like lan-
guage that will succumb to standard implementation techniques.9

Given G, we can show why any reflective program is tractable by
induction. The crucial observation is that the overall degree of in-
trospection (∆) of an RPP that is running some ∆=n program is it-
self ∆=n–1 (this follows directly from the definition of ∆). So, if
instead of having the user program run directly by G, it is run in-
directly by the RPP which itself is run directly by G, then any ∆=2
user program will be processed correctly. In general, any ∆=n pro-
gram can be run correctly by G provided that n–1 levels of genuine

 9 See for example Allen (1978), Steele (1977a), and Henderson (1980).

 4 · Implementation of Reflection

 235

RPP are placed in between. This result is depicted in figure 2.10
Since it is unlikely that a program’s ∆ can be determined with-

out processing it, the tractability argument just given does not lead
directly to a very useful implementation strategy. But based on its

insight, we can design a series of imple-
mentations, the final version of which is
actually reasonably efficient.

The first approach is simply to start
out with G running at some level, and
then to restart the computation at the
beginning with G at a higher level if the
previous try does not succeed (specifi-
cally: if it fails because of encountering
a reflective request). More formally, as-
sume initially that ∆=1, and give the
program to G to run directly. If G detects
that the program that it is running has
∆>1, start the whole computation over
again, but this time run the user pro-

gram indirectly, with one more level of intervening RPP. Repeat
this last step until G does not protest. This procedure is guaran-
teed to terminate for any computation with a finite degree of intro-
spection; it requires only that G be able to recognize, at some point
during its processing, that a computation has a ∆>1, and that the
computation be re-startable.11 Both of these assumptions are theo-

 10 We talked previously only about a program’s running at a given level; after

introducing G we have described it—an active process, not a program—as
running at some level as well. The relationship is this: if we say that G is
running at level k, we mean that a program at level k is being run by G di-
rectly, without the intervention of any higher levels of RPP.

 11 The re-startability of a computation does not imply that external world
side effects (e.g., input/output) would be out of the question for a proce-
durally reflective system run in this way. All that would be required is for
all interactions with the external world to be remembered by G. Since the
restarted computation will retrace its steps up to the point that G detected
the problem, except now mediated by an extra level of reflective processor
program, the replayed computation is guaranteed to be the same as it was
the last time. The replay up until this point could therefore be performed
without external world interaction—i.e., by blocking output and using re-
membered inputs instead). Then when it reaches this same point, interac-

Figure 2 —Running a Δ∆=n program with
a processor that can only handle Δ∆=1

236 Indiscrete Affairs · I

retically reasonable, even though this whole approach is not espe-
cially practical.

It would be far better, of course, if there were some computation-
ally· tractable way of inferring the instantaneous state of the level
n+1 RPP from the instantaneous state of the level n one. This sug-
gestion, which would mean that computations would not need to
be restarted, is not as unlikely as it might first seem. The process-
ing that goes on at adjacent levels is always strongly correlated
(since, after all, level n+1 essentially “implements” level n). Adja-
cent levels are related by “meta”-ness; it is not as if different levels
have “minds of their own.” If it were possible to make such a step,
one could refine the implementation strategy so as not to restart
the computation when an impasse was reached, but rather to
“manufacture” the state that would have existed one level up, had
the implementation been explicitly running at that level from the
beginning.

In other words, the overall strategy would be improved if the ac-
tual implementation processor could make an instantaneous shift
up, when needed, to where it would have been had an extra level of
explicit RPP been in effect since the start. Call such a modified im-
plementation processor G’. Thus a ∆=n program would be run di-
rectly by G’ until it was discovered that n>1, at which time the in-
ternal state of G’ would be used to create the explicit state that
would be passed to the explicit RPP that would take over running
the user program. After modifying its own internal state to reflect
what would have been the state one level up, G’ could devote its
attention to running the RPP. This means that the original
program will now be run indirectly. It will continue to be run that
way until such time as it is revealed that n>2, at which time G’
would shift up again, and will running the base-level program
double-indirectly. And so on.12

Over the course of the computation, in other words, G’ will
gradually climb to higher and higher reflective levels. Although

tion can be resumed in a normal fashion.

 12 We are assuming (not unreasonably) that the point at which it is deter-
mined that ∆>l is a point at which all upper levels would have been boring so
far, even if they had been run explicitly. A more formal treatment would
make this explicit.

 4 · Implementation of Reflection

 237

its strategy for shifting levels is not very sophisticated, G’ exempli-
fies the fundamentally important idea of a level-shifting imple-
mentation. All of the implementation processors we will discuss in
the rest of the paper are level-shifting as well; they merely have
more complex shifting strategies.

Invariably, each additional level of indirection will degrade the
system’s performance with respect to the bottom level of the user
program. This is not a minor concern, given that processor over-
head is typically measured in orders of magnitude. What we
would really like is an implementation processor that will never
run at any higher level than necessary. Not only should the imple-
mentation be able to shift up easily, in other words; it should also
be able to shift back down whenever it discovers that things are
getting boring—i.e., when it starts processing kernel expressions
again.

To make this formal, we have to define local rather than global
notions of boredom and introspective degree, but those are rela-
tively straightforward extensions. That is, when it appears that the
program that the implementation processor is running directly
has a local ∆=0, the implementation processor should compensate
by absorbing the explicit state of the RPP it was previously running
directly, and proceed to take direct responsibility for running of
the computation formerly one level below. This ensures maximum
utilization of the capability of the implementation processor to di-
rectly run arbitrary ∆=1 computations. An actual implementation
will be called optimal if it never processes a kernel expression indi-
rectly.

There are two subtleties here. First, it may be reasonable to expect
that every RPP will permit the appropriate determination of local
boredom. Once the user has been able to run code at a meta level,
there would seem to be no telling what might have been done there.
Some sort of “time bomb” might have been· planted that will deto-
nate at some later point in time. If, however, the local notion of
boredom just cited can be used to say that a local portion of a pro-
gram is boring, even if some of its embedding context is not, then
the implementation can depend on the fact that it is safe to turn its
back on an arbitrary number of boring levels of processing, just so

238 Indiscrete Affairs · I

long as it can turn around and shift back up the moment any of
them becomes interesting again. In other words, it would seem in
general to be very difficult to determine whether it is safe to shift
down. On the other hand, as the 3-LISP example will show in some
detail, there are some reasonable assumptions and techniques that
enable optimality at least to be approached.

Second, we said above that, when shifting down, the implemen-
tation should absorb the explicit state of the RPP it was previously
running directly. It takes some care to determine just what it is to
absorb this state in such a way that it can later be rendered ex-
plicit, should the need arise, as the discussion of 3-LISP will show.

In broad terms, these considerations lead to an adequate imple-
mentation strategy. A correct implementation is one that engen-
ders the same computation as that specified by the limit, as n→∞, of
a tower of n reflective processor levels run at the top (nth) level by
an actual processor. The base case for an efficient but correct proc-
essor requires an independent specification of the capabilities of
an implementation processor capable of running only ∆=1 pro-
grams. The induction step shows that adding an extra level of
processing engenders exactly the same computation while increas-
ing by one the maximum degree of introspection that can be han-
dled. In order to produce a level-shifting implementation we also
need computationally effective rules for determining when and
how to shift up and back down.

 3 3·LISP: a Reflective Dialect of LISP
Before we can make this all more precise, we need a specific reflec-
tive language to use as an example. 3-LISP13 is a reduction-based,
higher-order, lexically scoped dialect of LISP whose closest ances-
tor is SCHEME.14 Other than its reflective capabilities (described
below), the most significant way in which 3-LISP differs from its
ancestors is that the notion of evaluation is rejected in favour of a
rationalized semantics based on the orthogonal notions of:

 13 Smith (1982a).
 14 «Refs»

 4 · Implementation of Reflection

 239

1. Reference: what an expression designates, stands for, refers
to, names); and

2. Simplification: how an expression is handled by the 3-LISP
processor; what is returned.

Specifically, all 3-LISP expressions are taken as designating some-
thing; the 3-LISP processor then embodies a particular form of
simplification called normalisation, in which each expression is
reduced to a normal-form codesignator. The motivation for and se-
mantics of such a language are discussed in (Smith 84).

In 3-LISP, $T designates truth and $F designates falsity. Expres-
sions of the form [Xl X2 … Xn] designate the abstract sequence of
length n consisting of the objects designated by the Xi in the speci-
fied order. Expressions of the form (F . A) designate the value that
results from applying the function designated by F to the argu-
ment designated by A. The common case of applying a function to
a sequence of n (≥0) arguments (F . [X1 X2 … Xn]) is abbreviated
(F X1 X2 … Xn). The standard sequence operations are named
EMPTY, 1ST, REST, PREP, and SCONS (corresponding to LISP l.5’s NULL,
CAR, CDR, CONS, and LIST, respectively).

As is clearly indicated for any reflective language, 3-LISP con-
tains numerous facilities for quotation and general reference to
other program structures. In general, if X is any expression, the
quoted expression 'X is used to designate X ('X is a primitive nota-
tion; it is not an abbreviation for (QUOTE X)). When one deals with
quotation, one needs names for expressions of various types. We
say that '100 designates the numeral 100 (which in turn desig-
nates the number one hundred); ‘$T designates the boolean $T;
‘[1 2] designates the rail [1 2]; 'FOO designates the atom FOO;
'(X . Y) designates the pair (X . Y). There are also normal form
function designators called closures, which have no adequate
printed representation. The expressions ''FOOO, ''[1], and ''''$F
designate the handles 'FOO, '[1], and '''$F, respectively. The stan-
dard functions NUMERAL, BOOLEAN, RAIL, ATOM, PAIR, CLOSURE, and
HANDLE are characteristic functions for the seven kinds of expres-
sions just listed.

The standard operations on sequences are polymorphic, apply-
ing equally to rails. The additional standard operation RCONS can
be used to construct new rails: (RCONS) designates the empty rail [].

240 Indiscrete Affairs · I

The standard operations on pairs are named PCONS, CAR, and CDR;
(PCONS 'A 'B) designates the pair (A . B); (CAR '(A . B)) desig-
nates the atom A; and (CDR '(A . B)) designates the atom B. The
standard operations on closures are named CCONS, ENVIRONMENT,
REFLECTIVE, BODY, and PATTERN. The standard composite expression
used to designate functions is of the form

 (LAMBDA type pattern body)

where type is usually either SIMPLE (for non-reflective procedures)
or REFLECT (for reflective procedures). Thus

 (LAMBDA SIMPLE [N] (+ N 1))

designates the successor function.
Despite the many minor differences between the languages,

readers familiar with SCHEME should have little difficulty under-
standing 3-LISP programs. The reader is referred to (Smith 84) for
a more complete introduction to both the language and to the in-
tuitions that guided its development. Very much like the metacir-
cular interpreters discussed in the “Lambda papers,”15 we present
in figure 3 the continuation-passing 3-LISP RPP.16

As mentioned above, 3-LISP is based on a notion of expression
reduction, rather than evaluation: the processor (NORMALISE, in
place of the more standard EVAL) returns a co-designating normal-
form expression for each expression it is given; see (Smith 84). We
write X ⇒ Y to mean that X normalises to Y. For example:

 (+ 1 2) ⇒ 3
 (PCONS 'A 'B) ⇒ '(A . B)
 ((LAMBDA SIMPLE [X] (* X X)) 4) ⇒ 16

The code for the 3-LISP RPP is given in figure 3. All the procedures
in the RPP code, other than those explicitly defined, are straight-
forward, side-effect-free, data manipulation functions. None have
any special control responsibilities (except COND, DEFINE, and BLOCK,
whose definitions have been omitted only to shorten the presenta-

 15 Sussman & Steele (1975); Steele & Sussman (1976, 1978a, 1978b, 1980);

Steele (1976, 1977a, 1977b).
 16 Note: variable names ending in ‘!’ are used, by convention, to indicate that

they will always designate normal-form structures.

 4 · Implementation of Reflection

 241

1 (define READ-NORMALISE-PRINT
2 .. (lambda simple [level env]
3 (normalise (prompt&read level) env
4 (lambda simple [result] ; REPLY continuation
5 (block (prompt&reply result level)
6 (read-normalise-print level env))))))
7 (define NORMALISE
8 .. (lambda simple [exp env cont]
9 (cond [(normal exp) (cont exp)]
10 [(atom exp) (cont (binding exp env))]
11 [(rail exp) (normalise-rail exp env cont)]
12 [(pair exp) (reduce (car exp) (cdr exp) env cont)]))
13 (define REDUCE
14 .. (lambda simple [proc args env cont]
15 (normalise proc env
16 (lambda simple [proc!] ; PROC continuation
17 (if (reflective proc!)
18 ((de-reflect proc!) args env cont)
19 (normalise args env
20 (lambda simple [args!] ; ARGS continuation
21 (if (primitive proc!)
22 (cont (proc! . args!))
23 (normalise (body proc!)
24 (bind (pattern proc!) args! (environment proc!))
25 cont))))))))
26 (define NORMALISE-RAIL
27 .. (lambda simple [rail env cont]
28 (if (empty rail)
29 (cont (rcons))
30 (normalise (1st rail) env
31 (lambda simple [first!] ; FIRST continuation
32 (normalise-rail (rest rail) env
33 (lambda simple [rest!] ; REST continuation
34 (cont (prep first! rest!)))))))))
35 (define LAMBDA
36 .. (lambda reflect [[kind pattern body] env cont]
37 (cont (ccons kind env pattern body)))))
38 (define IF
39 .. (lambda reflect [[premise c1 c2] env cont]
40 (normalise premise env
41 (lambda simple [premise!] ; IF continuation
42 (normalise (ef premise! c1 c2) env cont)))))

Figure3 — The 3-LISP Reflective Processor Program (RPP)

242 Indiscrete Affairs · I

tion). PROMPT&READ and PROMPT&REPLY issue the system’s ‘level>’ and
‘level=’ prompts, and perform input and output, respectively, but
are otherwise innocuous. and 17 mediate between a structure
and what it designates. Some examples:

 (+ 2 2) ⇒ '4
 (+ 2 2) ⇒ ''4
 ''4 ⇒ '4
 ''(+ 2 2) ⇒ '(+ 2 2)

There are no hidden procedures; user programs may use CCONS
(the closure constructor), BODY, NORMALISE, etc.—even and —
with impunity.

By defining special reflective procedures, using

 (LAMBDA REFLECT …))

the user may augment the processor just shown. These reflective
procedures are handled by line 18 of REDUCE:

 ((dereflect proc!) args eny cont)

Thus suppose foo is bound to a reflective procedure. When the
level 1 processor encounters (foo e1 … en) in the program it is
running, the reflective procedure associated with the name foo is
called at the same level as the processor, with exactly three argu-
ments: a designator of the non-normalised argument structure
'[e1 … e] (from the original level 0 pair), the variable binding
environment, and the continuation. In this way, the user’s pro-
gram may gain access to all of the state information maintained by
the processor that is running it. From this unique vantage point, it
is easy to realize new control constructs, such as CATCH and THROW,
or to implement a resident debugger.

The infinite tower appears to the user exactly as if the system
had been initialized in the following manner:

4) (read-normalise-print 3 global)
3) (read-normalise-print 2 global)
2) (read-normalise-print 1 global)
1>

 17 Notational abbreviations for UP and DOWN, respectively—called NAME and

REFERENT in Smith (1982).

 4 · Implementation of Reflection

 243

The user can verify this by defining a QUIT procedure that returns
a result instead of calling the continuation, thereby causing one
level of processing to cease to exist:

1) (define QUIT (lambda reflect [args eny cont] 'DONE))
1= QUIT

1> (quit) ; QUIT is run as part of the level 1 processor
2= 'DONE ; which it kills
2> (+ 2 (quit)) ; This time QUIT terminates the level 2 processor
3= 'DONE

3> (read-normalise-print 1 global) ; Levels can be re-created
1> (read-normalise-print 2001 global) ; at will; level numbers
2001> (quit) ; are arbitrary.
1= 'DONE

1> (quit)
3= 'DONE

The following code defines (as a user procedure) the SCHEME es-
cape operator CATCH:

(define SCHEME-CATCH
 (lambda reflect [[tag body] catch-enY catch-cont]
 (normalise
 body
 (bind tag
 (lambda reflect [[answer] throw-enY throw-cont]
 (normalise answer throw-env catch-cont))
 catch-env)
 catch-cont)))

For example, the following expression would return 17:
(let [[x 1]]
 (+ 2 (scheme-catch punt
 (* 3 (/ 4 (if (= x 1)
 (punt 15)
 (- x 1)))))))

To some extent, a metacircular processor or RPP can be viewed as
an account of a language (or at least of how it is processed) ex-
pressed within that language. As such, it “explains” various things
about how the language is processed, but depending on the ac-
count, it can account for more or less of what is the case. In par-
ticular, it is important to realize what the above 3-LISP RPP does
and does not explain.

244 Indiscrete Affairs · I

The 3-LISP reflective processor was designed to be similar to
standard Scott-Strachey continuation-based semantic accounts
of λ-calculus based languages.18 Its primary purpose is to explain
the variable binding mechanisms and the flow of control in the
course of error-free computations. The account intentionally does
not say anything about how errors are processed, nor does it shed
any light on how the field of data structures are implemented, nor
on how input/output is carried out. These details are buried in
the primitive procedures, and the reflective processor carefully
avoids accounting for what they actually do. A different theory
that did explain these aspects of the language could be written,
yielding a different RPP, and a different reflective dialect—all of
which would require a different implementation. But the basic ar-
chitecture and strategies we employ would generalize to such
other circumstances.

One of the many things that SCHEME demonstrated was that
lexical scoping and the treatment of functions as first class citizens
resulted in a cleaner LISP that no longer needed to quote its
LAMBDA expressions. 3-LISP goes a step further by showing how to
incorporate, in a semantically principled way, some of the other
hallmarks of real systems, including; constructing programs on-
the-fly; making explicit use of EVAL and APPLY; FEXPRS and
NLAMBDAS; and implementing a debugger within a system.

 4 Levels and Level-Shifting Processors
We explained in section 2 how an implementation of reflection
might work; in this section we present the architecture for such an
implementation in much more detail. Although we will use 3-LISP
as a motivating example, our dependence on its idiosyncrasies will
not be crucial; the actual code for a 3-LISP implementation is de-
ferred until section 5.

 4a Level Shifting in Conventional Implementations
Although procedurally reflective architectures are new, the idea of
level shifting processors is not. Consider for example an implemen-
tation of LISP that supports both interpreted and compiled proce-
dures definitions. In such a system, the non-compiled procedures

 18 E.g., Stoy (1977), Muchnick (1980).

 4 · Implementation of Reflection

 245

will be defined by LISP source code (typically, LAMBDA expressions
represented as list structure), while the compiled ones will be rep-
resented by blocks of instructions acceptable to the machine on
which the LISP system is implemented. Both kinds of procedures
are represented as code, but in different languages: the un-
compiled source code, which will be run by the implementation, is
in LISP, whereas the compiled code, which will be run by the same
processor that runs the implementation (probably the CPU of the
underlying machine—i.e., in machine language).

Given procedures in these two different languages, there are
complexities in having them interact properly—complexities that
the whole system usually smoothes over so well that the user may
never be aware of them. Consider in particular the procedure-call

mechanism, where some procedure A
calls another procedure B. In the sim-
plest case, where both A and B are repre-
sented by compiled code, the linkage is
usually achieved directly using a ma-
chine language branch instruction to
transfer control from A to the first in-
struction of B (after arguments and the
return address are loaded into registers
or pushed on a stack). On the other
hand, when a compiled procedure A
calls a B that has no compiled code asso-
ciated with it, a machine-language

transfer of control must be made not from A to B, but from A to the
block of machine language code that implements the explicit LISP
processor (EVAL) that in turn can examine the list-encoded LAMBDA
expression representation of B.

Once the LISP processor is in control, the situation is reversed.
As long as neither A nor B is compiled, everything is straightfor-
ward; the locus of control at the machine language level remains
within the LISP processor’s code, and that processor implements an
appropriate connection between the LISP code for A and the LISP
code for B. When a non-compiled A calls a compiled B, however,
there will have to be a machine-language level transfer of control
from the code for the LISP processor to the code representing B.

As depicted in figure 4, this can be described as simple level

Figure 4 — Level shifting caused by

calls between compiled and
non-compiled procedures

246 Indiscrete Affairs · I

shifting between a level of direct processing (at the lower level,
where user code is run) and one of indirect processing (at the up-
per level, where processors for user code are run). Shifting up and
down both occur at times corresponding to procedure-to-
procedure calls (and returns). What controls the level-shifting in
this particular case is not the occurrence of reflective procedures,
but rather changes in language.

In particular, we are assuming that all user code is at the lower
level—i.e., that all user code is run at level 0. Some of that code is
in LISP; some is in machine language. At level 1 there is a program,
written in machine language, that is a processor program for LISP;
call this program ML. In this simple model, this is only one of four
possible processor programs one could have; the other three being
a LISP program to process machine language (LM); a machine lan-
guage program to process machine language (MM), and a LISP
program to process LISP (LL)—i.e., a metacircular interpreter for
LISP in LISP. The level shifting strategy adopted by the implemen-
tation is one that enables the implementation to get away with just
(i) the one processor program ML, and (ii) a simple underlying
processor G that knows only how to run machine language pro-
grams. If it adopted a different level-shifting strategy, it might
need some of those other processor programs. For example, if the
implementation were not to shift down when it encountered a
non-compiled A to compiled B procedure call, it would need MM—
a machine language program to interpret machine language.
Similarly, if it were to try to shift up on a non-compiled to non-
compiled procedure call, it would need LL.

The analogy between standard implementations and imple-
mentations of reflection can be pushed even further by considering
how matters are complicated when explicit calls to EVAL are sup-
ported. Suppose that the expression (EVAL '(FOO 10)) is found
within the body of a (non-compiled) procedure named FEE. When
the implementation (specifically, the CPU running the program
ML) encounters this expression while processing a call to FEE, con-
trol within the user’s program must pass to the EVAL procedure,
which, we will assume for the moment, will be defined via LISP
source code (i.e., we will assume that EVAL is bound to LL, the
metacircular processor program for LISP). The net effect will be
that ML will process the code for FOO indirectly specifically—ML

 4 · Implementation of Reflection

 247

will process LL (the code for EVAL), which in turn will process FOO.
So G (the CPU) will be two levels away from the code for FOO.

It is a relatively simple change to the LISP processor program ML
to have it recognize calls to EVAL and treat them in a special way
that avoids this extra level of indirect processing—in fact that is
what most implementations of LISP do (see figure 5). This change
also means that the code LL need not be kept in the system. Notice,
however, that this change is another form of level shift, not between
compiled code and the LISP processor this time, but between the
following two different LISP expressions:

 (EVAL '(FOO 10)) and (FOO 10)

It is no coincidence that there are strong similarities between these
two forms of level shifting—compiled vs. interpreted, on the one

hand, and ordinary expressions vs. argu-
ments to EVAL, on the other. The machine
code for the LISP processor and the compiled
code for EVAL are exactly the same thing: they
are both ML—a program, written in ma-
chine language, to process LISP. The down-
ward shift to avoid an extra level of explicit
processing on calls to EVAL is also the down-
ward shift to run the compiled code for EVAL.
In both cases, the relationship between adja-

cent levels is the same: the computation that happens implicitly at
one level is being carried out explicitly one level above it.

 4b Analysing a Processing Activity
While the simple level shifting techniques described above might
suffice to handle a non-reflective language with explicit access to
its processor, the task of implementing 3-LISP has an additional
complexity; viz., reflective procedures give the user a way of run-
ning procedures at arbitrary levels of the program’s processor, in-
cluding programs that are themselves reflective. In effect, the user
can get access into the middle of NORMALISE (3-LISP ’s counterpart to
EVAL), making the job of “compiling” NORMALISE more difficult than
it would otherwise be. Moreover, if you look carefully at the defini-
tion of 3-LISP and at its RPP, several of the standard control con-
structs, such as LAMBDA and IF, look dangerously circular, since

Figure 5 — Level shifting
caused by calls to EVAL

248 Indiscrete Affairs · I

they are both defined as reflective procedures and also used in the
account of how the processor works. In order to implement a gen-
eralised level-shifting processor of the sort suggested in the last
section, therefore, we first have to analyse the processing activities
that must go on with an eye to implementing some of them di-
rectly, while allowing others to be carried out in virtue of one or
more levels of explicit processing.

In particular, we need to name various relationships between
the code in a processor program and the code that such a program
processes.

First, if an expression or procedure to be applied is primitive, or,
more generally, if within the processor there is code that corre-
sponds exactly to the expression or procedure in question, then
that expression or procedure can be dealt with directly in what
amounts to a single processing step. We will call such expressions
and procedures directly implemented. Small integer arithmetic,
for example, is typically directly implemented in LISP implementa-
tions by the arithmetic capabilities of the underlying machine lan-
guage; primitive data structure operations (like CAR and CONS), at
least in simple implementations, are also directly implemented by
special procedures.

Second, if an expression is not directly implemented, it can
usually be broken down into a series of constituent steps that are
either themselves directly implemented, or can be broken down in
turn, leading in the end to a long series of directly implemented
expressions. Suppose for example we have the following definition
of the 3-LISP procedure 2ND:

(define 2ND
 (lambda simple [x]
 (1st (rest x))))

Then the processing of (2ND [10 20]) can be broken down into
roughly the series of simpler processing activities corresponding to
the processing of (REST [10 20]) and (1ST [20]). We will call this
kind of processing decomposition engendered by the standard
compositional and recursive nature of programs a horizontal de-
composition, to correspond to the way we have been depicting lev-
els of processing. In procedure-based languages, procedure call
boundaries usually serve as the most convenient dividing lines or
“click points” separating these processing units. In general, a

 4 · Implementation of Reflection

 249

lengthy computation is carried out in virtue of its horizontal de-
composition into a series of simple steps, each of which is directly
implemented. (Horizontal decomposition corresponds to the
standard notion of a computation tree, based on a compositional
expression, with the directly implemented steps as the leaves.)

As we have seen, the existence of a metacircular processor pro-
gram provides a third possible way of processing an expression. In
particular, for any expression X, instead of processing X we can do
an upwards vertical conversion, and process instead an expression
that explicitly represents the processing of X. For example, we can
convert (2ND [10 20]) into (NORMALISE '(2ND [10 20]) …). This
upwards vertical conversion can then in turn be horizontally de-
composed, typically into more steps than the original expression
would have been decomposed into. For example, the horizontal
decomposition of

(NORMALISE '(2ND [10 20])))

through NORMALISE and REDUCE, begins (roughly):
01: (COND [(NORMAL ‘(2ND [10 20])) ...]
 …)

02: (NORMAL '(2ND [10 20]))
03: … various internal steps within NORMAL
04: (ATOM '(2ND [10 20]))
05: (RAIL '(2ND [10 20]))
06: (PAIR '(2ND [10 20]))
07: (REDUCE (CAR '(2ND [10 20]))
 (CDR '(2ND [10 20]))
 ENV
 CONT)
08: (CAR '(2ND [10 20]))
09: (CDR '(2ND [10 20]))
10: (NORMALISE '2ND
11: (NORMAL '2ND)
12: … various internal steps within NORMAL
13: (ATOM '2ND)
14: (BINDING '2ND …)
15: …

Some expressions, like (NORMALISE '3 …), can be converted down
(to 3, in this case), although downwards conversion is not always
possible.

250 Indiscrete Affairs · I

In sum, there are three ways in which an implementing processor
can attempt to perform any given processing activity:

1. It can implement it directly;
2. It can perform a horizontal decomposition, and process the

smaller steps; or
3. It can perform an upwards or downwards vertical conver-

sion, and then process the result at a different level.

Given this flexibility, we can make the following observations con-
cerning 3-LISP ’s various kinds of procedures:

1. Primitive procedures, such as 1ST and (UP), cannot be de-
composed horizontally. Moreover, as line 18 the meta-
circular processor shows:

 (CONT (PROC! . ARGS!))

and as common sense would suggest, every primitive is
used in the horizontal decomposition of every (upwards)
vertical conversion of it. Hence the primitives must be per-
formed directly, or else be a part of some larger activity
that is performed directly.

2. Other simple (non-reflective) procedures can be decom-
posed horizontally using the closure associated with the
procedure. However, simple procedures that are part of the
standard system and whose processing can be completely
decomposed a priori (this certainly includes but is not lim-
ited to the kernel procedures) are also candidates for being
implemented directly; e.g., 3-LISP’s BINDING and BIND.

3. Reflective procedure require one level of vertical conversion
(in some sense that is what reflective procedures are), after
which the (corresponding “de-reflected”) procedure can be
decomposed horizontally using the corresponding simple
closure.

 4c Tiling Diagrams
The notions of horizontal decomposition and vertical conversion
suggest an analogy. Imagine a simple tiling game, where the ob-
jective is to find a continuous path from left to right across an infi-

 4 · Implementation of Reflection

 251

nitely tall board consisting of rows of non-overlapping numbered
tiles. You are only allowed to step on tiles with certain numbers,

and you are never allowed to “retreat”
(i.e., to move to the left). As illustrated
by the simple example in figure 6,
each row typically consists of more
tiles than the row below. The best
score is achieved by using the fewest
steps, so the general strategy is to stay
as low as possible on the board. On
the other hand, there are two pitfalls
that must be avoided: (i) you do not
want to end in a dead-end (no fur-
ther steps possible, necessitating a

retreat, which is illegal); and (ii) you do not want to encounter a
situation where you are climbing a spike without a top.

The board shown in figure 6 was constructed according to the
following two rules:

1. Above every tile numbered x is a sequence of tiles yi (listed
in the form {x: yi}):

{1: 1,2} {2: 3,4} {3: 1,5} {4: 3,5} {5: 1,4}
2. In constructing a path across the board, only odd-

numbered tiles may be stepped on.

Given these rules, the best successful path is illustrated by tiles
outlined with heavy lines.

In this example, given the particular way each tile is related to
the tiles above it, it is always possible to find a path, no matter what

the bottom layer of tiles is chosen to
be. Moreover, it can be shown that no
path ever need go higher than three
rows from the bottom (in order to get
over a 2-tile), and that the local strat-
egy of choosing the lowest possible
path will always be optimal and will
never lead to a dead end.

If the rules were made more restric-
tive by forbidding you to step on 3-
tiles, however, the game would still be

Figure 6 — Tiling Game

Figure 7 — Tiling game
(no steps on 3-tiles)

252 Indiscrete Affairs · I

winnable; an optimal path under these conditions is illustrated in
figure 7. However, the same cannot be said of either the 1-tile or
the 5-tile, both of which are unavoidable (note the insurmount-
able “spikes” of 1-tiles, indicated in figure 8).

To implement a reflective language is basically to play a tiling
game, where:

1. Tiles correspond roughly to procedure calls;
2. Tiles above another tile are approximately (the horizontal

decomposition of) an upwards vertical conversion of the
lower tile;

3. Horizontal tiles represent horizontal decompositions; and
4. Tiles that can be stepped on are procedures that have a di-

rect implementation.

Like the designer of a tiling game that admits a winning strategy,
there is a twofold challenge: (i) you must carefully select a collec-

tion of processing activities that will
be implemented directly (correspond-
ing to tiles that can be stepped on);
and (ii) for efficiency, you must play
the game well, which means coming
up with a near-optimal strategy for
achieving any ∆=n (n finite) compu-
tation that, by shifting either up or
down, avoids spikes and dead ends
and crosses the board in a minimum
number of steps.

 4d Direct Implementation of Kernel Procedures

We said earlier that the kernel of a reflective language consists of
those parts of the RPP that are used in the course of processing the
RPP one level below. For 3-LISP, call the six procedures NORMALISE,
REDUCE, NORMALISE-RAIL, LAMBDA, IF, and READ-NORMALISE-PRINT the
primary processor procedures (PPPs), and call their embedded
continuations (the REPLY, PROC, ARGS, FIRST, REST, and IF continua-
tions identified on lines 4, 16, 20, 31, 33, and 41 of the RPP) the
primary processor continuations (PPCs). The 3-LISP kernel then

Figure 8 — Spikes of 1-tiles

 4 · Implementation of Reflection

 253

consists of:

1. The PPPs;
2. The PPCs;
3. The utilities like BINDING, BIND, and NORMAL; and
4. The primitives such as CAR, CDR, , and RCONS.

If the implementation directly implemented (i.e., had “compiled”
versions of) all the kernel procedures, it would be guaranteed that
any ∆=n (n finite) expression could be normalised (the analogous
situation in the tiling game would be one where any tile on rows n
and above could be stepped on). The tiling analogy makes it clear
why it is the kernel procedures, not the primitive procedures, for
which we need direct implementations: since all primitives are
used in the horizontal decomposition of every vertical conversion
of them, primitives will form spikes in the tiling diagram, over
which no shifting strategy will be able to climb.

As we will discuss later, an implementation can be slightly
more minimal (directly implement fewer procedures), but directly
implementing the whole kernel makes for the simplest processor
code, and the simplest shifting strategies. As with the tiling game,
the choice of a basis set cannot be made independently of the strat-
egy for shifting up and down.

 4e When and How to Shift Up
The next important problem is to determine (i) the criteria by
which the implementation processor will decide that it is necessary
to shift up, and (ii) the mechanisms for achieving this transition.
We begin by observing that the state explicitly maintained at each
level of processing by the reflective processor consists of the expres-
sions, environments, and continuations that are passed as argu-
ments among the PPPs. Not captured at any particular level are the
global state of input/output streams and the structural field itself;
fortunately, however, the RPP does not use side effects to remember
state information (except when the program that it is running
forces it to process a side effect).19 As a result, when a shift up oc-

 19 Although 3-LISP has primitive procedures that “smash” structures, in this

paper we will pretend that there are not any. Without this simplifying as-
sumption, bothersome technicalities would tend to obscure the otherwise

254 Indiscrete Affairs · I

curs, only an expression, an environment, and a continuation will
have to be “pulled out of thin air.”

Shifting up will have to occur when control would leave the im-
plementation code that represents the directly implemented kernel.
This can happen at only a handful of places in the RPP: at one of
the continuation calls, (cont …), and on line 18, where reflective
procedures are called using the expression:

 ((de-reflect proc!) args env cont)

The real question is where in the implementation processor
should the shift up take us? In other words, it is one thing to know
where one needs to leave the level below and shift up; it is much
less clear where, in the level above, one should arrive.

Four possibilities suggest themselves. First, it would seem that
the implementation processor could shift from processing (cont
exp) to processing the following upwards vertical conversions of
(cont exp):

 (normalise '(cont exp) e? c?)

Second, on the other hand, inspection of the RPP shows that this is
equivalent to:

 (reduce 'cont '[exp] e? c?)

And if we assume that exp and cont normalise to exp! and the
simple (non-reflective) closure cont!, respectively, both of these are
equivalent to:

 (reduce cont! '[exp] e? c?)
 (reduce cont! [exp!] e? c?)

Since the higher level will in general be finer-grained (go through
more identifiable steps) than the level below it, there is not a de-
finitive choice to made among these. Given our particular choice of
PPPs, all four of these possibilities are acceptable. Pure efficiency
would suggest the last, since it is the “furthest along” in the proc-
essing. This in turn suggests an even more efficient answer, and a
more natural seam, at line 23 in the ARGS continuation at the in-
stant NORMALISE is about to be called on the body of the (simple)

straightforward solution. The interested reader is referred to the Interim
3-LISP Reference Manual (Smith & des Rivieres 1984) which contains a
correct implementation for the unabridged language.

 4 · Implementation of Reflection

 255

cont! closure:
(normalise (body cont!)
 (bind (pattern cont!)
 [exp!]
 (environment cont!))
 c?)

Since exp! and cont! are part of the state of the implementation,
and since this expression does not use an environment, only the
continuation c? needs to be pulled out of thin air. What should
this continuation be? The (somewhat surprising) answer is that
the appropriate continuation is not a function of the current level
of processing; rather, it is a function only of the last processing
done at the next higher level!

Why is this the case? The real answer is that it is because 3-LISP
’s RPP can be processed directly by a finite state machine, but it is
important to see why this is so. There are two critical things to re-
alise.

First, the RPP implements a “tail-recursive” dialect of LISP (e.g.,
SCHEME;20 it is not procedure calls per se that cause the processor
to accumulate state, but rather only embedded procedure calls. For
example, with respect to a call to the procedure represented by
(lambda simple [x] (f (g x))), the call (g x) is embedded in the
first argument position of (f (g x)), and therefore requires the
processor to save state until (g x) returns, just as in a conventional
implementation of procedure calls. The call to f, on the other
hand, is not embedded with respect to the initial call (rather, it
substitutes for it), and can be implemented much like a GO-TO
statement, except that arguments must be passed as well. The fact
that 3-LISP has a tail-recursive processor can be seen by inspecting
the RPP and observing that

1. The number of bindings in an environment is a (more-or-
less) linear function of the static nesting depth of pro-
grams; and

2. When a call to a simple procedure is reduced, the con-
tinuation in effect upon entry to REDUCE is the one passed to
NORMALISE for the body of the called procedure’s closure.

 20 Steele & Sussman (1976a).

256 Indiscrete Affairs · I

The key implication of this is that when one procedure calls an-
other from a non-embedded context, the continuation carried by
the processor upon entry to the called procedure is the same as
what it was upon entry to the calling procedure.

The second crucial property is that the PPPs always call one
another in non-embedded ways. Together with the first observa-
tion, this implies the following property of the reflective processor
processing the RPP itself:

 The continuation carried by the processor upon entry to any
PPP is always the same.

This assertion can be phrased more precisely:

 The (level 2) reflective processor (RPP) processing the (level 1)
RPP processing a (level 0) ∆≤1 structure always carries the
same level 2 continuation at every trip through level 2 REDUCE
when the level 2 PROC is bound to 'NORMALISE.

In other words, if one were to “watch” the level 2 state upon entry to
REDUCE, one would find that CONT was always bound to the same
closure whenever PROC is bound to the atom 'NORMALISE (or
'REDDUCE, or 'CONT, etc.).

Since the points in the RPP where the shift up will happen cor-
respond to non-embedded calls within it—specifically, either to
((de-reflect proc!) args env cont) or to one of the six (cont …)
expressions—the continuation that must be reified is not a func-
tion of the current level of processing. Instead, it is the last
continuation that was explicitly used at that level, which will be
the original REPLY continuation at the next higher level, if user-
defined code has never been run at that level before.

 4g When and How to Shift Down
Deciding when to shift down is similarly straightforward. The
implementation processor should shift down whenever it is asked
to process something that is directly implemented. In practice, it is
not necessary to shift down as soon as possible (i.e., full optimality
need not be achieved); it suffices to recognize only the situation
where the implementation processor is processing calls to PPPs and
PPCs, since all paths through the RPP will pass through these pro-
cedures. The situation can be detected in the code corresponding

 4 · Implementation of Reflection

 257

to the ARGS continuation (i.e., is PROC! bound to the closure for a
PPP or PPC?). It is also essential that the arguments passed to the
PPPs be scrutinized, to ensure that they are “reasonable” (of proper
type and so forth). If they are, the implementation processor can
perform a downwards conversion from (for example):

(normalise (body normalise)
 (bind (pattern normalise)
 args!
 (environment normalise))
 cont)

to
(normalise (1st args!)
 (2nd args!)
 (3rd args!))

The continuation in effect prior to shifting down must be re-
corded in the absorbed state. Typically, it will be a REPLY con-
tinuation—the original one for that level of processing, born
within the call to READ-NORMALISE-PRINT that created that level at the
time of system genesis. However, since it is possible for the user to
write code that calls NORMALISE from an embedded context, it is es-
sential to save the continuation each time a downward shift occurs
so that it may be brought back into play the next time the processor
shifts up to this level.

How is it that we can store away a user-supplied continuation
and shift down, without knowing what behaviour that continua-
tion will engender? The answer is simply that that continuation
will not be called—cannot come into play—until such time as the
computation at the lower level returns a result. Since each PPP
ends in a tail-recursive call, this chain can break down only if
some non-PPP is called which returns a result instead of calling the
continuation passed to it. But it is precisely these calls that always
cause a shift up (see the definition of &&CALL in the next section);
hence, the implementation processor will automatically find its
way back to the appropriate level whenever a non-primary proces-
sor continuation would be called at a higher level.

 5 A 3·LISP Implementation Processor Program
The principal reason that the 3-LISP RPP cannot serve as a model
for a real implementation (i.e., cannot be translated directly into

258 Indiscrete Affairs · I

an appropriate implementation language like machine language
or C) is that it is not a closed program. As indicated in line 18 of
the RPP, the processing of reflective procedures causes the locus of
control to leave the PPPs and venture off into code supplied by the
user. In the last section we gave a general description of how to
write a real implementation that avoided this problem; in this sec-
tion we use those strategies and present a full closed program for a
real implementation of 3-LISP. This program will be expressed in a
conservative subset of 3-LISP; no crucial use will be made of 3-LISP’s
meta-structural, reflective, or higher-order function capabilities.
We have chosen to write this real implementation of 3-LISP in 3-
LISP (i.e., to write a true metacircular processor for 3-LISP) because
it allows us to suppress many implementation details that would
necessarily surface if a different language were chosen. The most
important omissions are the memory representation of the ele-
ments of the structural field, garbage collection, error detection
and handling, and all input/output. While important, these con-
cerns, which 3-LISP shares with other LISP dialects, are not ger-
mane to our particular topic of how to implement procedural re-
flection. What this program will do is to discharge all of the sali-
ent issues having to do with reflection; translating from the code
presented here to an implementation in a more reasonable imple-
mentation language would be straightforward.

 5a The Basic Implementation Processor
As noted in earlier sections, the structure of the 3-LISP implemen-
tation processor program will be based on the structure of the RPP
itself. Specifically, for each PPP there is a corresponding implemen-
tation processor procedure bearing its source’s name prefixed by
‘&&’; e.g., &&NORMALISE implements NORMALISE, As will be discussed
later, each takes an additional parameter named STATE that repre-
sents the absorbed state, which is used only when shifting up or
down (such shifts will be indicated with underlined code). The
following is the code for the implementations of NORMALISE and
REDUCE (&&NORMALISE-RAIL and &&READ-NORMALISE-PRINT, derived in
an analogous manner, are given in the appendix):

 4 · Implementation of Reflection

 259

(define &&NORMALISE
 (lambda simple [state exp env cont]
 (cond [(normal exp) (&&call state cont exp)]
 [(atom exp) (&&call state cont (binding exp env))]
 [(rail exp) (&&normalise-rail state exp env cont)]
 [(pair exp)
 (&&reduce state (car exp) (cdr exp) env cont)])))

(define &&REDUCE
 (lambda simple [state proc args env cont]
 (&&normalise state proc env
 (make-proc-continuation proc args env cont))))

Similarly, for each type of PPC there is a corresponding implemen-
tation processor procedure with names of the form &&xxx-
CONTINUATION. E.g., &&PROC-CONTINUATION implements the “PROC” type
continuations (see lines 16–25 of the RPP), which field the result
of normalising the procedure part of a pair. While the RPP con-
tinuations are closed in an environment in which a handful of
non-global variables are bound, their implementation equivalents
are passed these data as explicit arguments (e.g., &&PROC-
CONTINUATION is passed as arguments the bindings of PROC, ARGS, ENV,
and CONT from the incarnation of &&REDUCE that spawned it).
&&EXPAND-CLOSURE (presented below) implements the last clause of
the “ARGS” continuation, although it does not correspond to a con-
tinuation on its own. Again, two examples (the others are given in
the appendix):

(define &&PROC-CONTINUATION
 (lambda simple [state proc! proc args env cont]
 (if (reflective proc!)
 (&&call state (de-reflect proc!) args env cont)
 (&&normalise state args env
 (make-args-continuation proc! proc args env cont)))))

(define &&ARGS-CONTINUATION
 (lambda simple [state args! proc! proc args env cont]
 (if (directly-implemented proc!)
 (&&call state cont (proc! . args!))x
 (&&expand-closure state proc! args! cont))))

Note that &&ARGS-CONTINUATION simply executes any procedures
which are implemented directly, using the same technique that is
used in the RPP for primitives. If this code were to be translated

 x In the published paper this line was erroneously printed as

 (&&call state cont (proc! . args!))

260 Indiscrete Affairs · I

into a different implementation language, the (proc! . args!)
expression would be turned into appropriate calls, for each di-
rectly implemented procedure, to the procedure that performs the
direct implementation.

As well as defining these implementation procedures to do the
work of the ppcs, the implementation must also contain code to
create instances of the processor continuations exactly as specified
by the RPP —i.e., it must create the exact PPC closures that would
have been created had the RPP been used explicitly. Such con-
tinuations will never be used by the implementation as such, but
since they are visible from user code they must be perfectly simu-
lated.

There are four procedures in the implementation to construct
closures of each of the four types. For example, the

(make-proc-continuation proc args env cont)

expression in &&REDUCE will produce the same closure that lines 16-
25 in REDUCE would, given identical bindings for the four variables.
An example (the others are given in the appendix):

(define MAKE-PROC-CONTINUATION
 (lambda simple [proc args env cont]
 (ccons 'simple (bind '[proc args env cont reduce]
 [proc args env cont reduce]
 global)
 '[proc!]
 '(if (reflective proc!)
 ((de-reflect proc!) args env cont)
 (normalise args env
 (lambda [args!]
 (if (primitive proc!)
 (cont (proc! . args!))
 (normalise (body proc!)
 (bind (pattern proc!)
 args!
 (environment proc!))
 cont))))))))

In many cases the implementation procedures call one another, in
exactly those places where the PPPs in the RPP call other PPPs. For
example, &&NORMALISE calls &&REDUCE in just the place (line 12)
where NORMALISE would call REDUCE. However, in those cases where
it is not possible to determine exactly which procedure to call, the
implementation procedures defer this task to &&CALL. E.g., whereas
in lines 9 and 10 of the RPP NORMALISE calls the procedure desig-

 4 · Implementation of Reflection

 261

nated by the local variable CONT, the corresponding lines in
&&NORMALISE pass the buck to &&CALL, which inspects the closure
designating the function to be called. If the closure is a PPP or a
PPC, the corresponding implementation procedure (&&...) is in-
voked. In the case of PPCs, the non-global bindings captured
within them must be extracted and passed as extra arguments to
the implementation versions, as discussed earlier. (The two shift-
up cases will be discussed below.)

(define &&CALL
 (lambda simple x
 (let [[state (1st x)] [f (2nd x)] [a (rest (rest x))]]
 (cond [(ppp f) (&&call-ppp state fa)]
 [(ppc f) (&&call-ppc state f (1st a))]
 [(directly-implemented f)
 (&&call (shift-up state)
 (reify-continuation state)
 (f . a))]
 [$t (&&expand-closure (shift-up state)
 f a (reify-continuation state))]))))

(define &&CALL-PPP
 (lambda simple [state f a]
 ((select (ppp-type f)
 ['normalise &&normalise]
 ['normalise-rail &&normalise-rail]
 ['reduce &&reduce]
 ['read-normalise-print &&read-normalise-print]
 ['if &&if]
 ['lambda &&lambda])
 . (prep state a))))

(define &&CALL-PPC
 (lambda simple [state f arg]
 (select (ppc-type f)
 ['proc (&&proc-continuation state arg (ex 'proc f)
 (ex 'args f) (ex 'env f) (ex 'cont f))]
 ['args (&&args-continuation state arg (ex 'proc! f)
 (ex 'proc f) (ex 'args f) (ex 'env f)
 (ex 'cont f))]
 ['first (&&first-continuation state arg (ex 'rail f)
 (ex 'env f) (ex 'cont f))]
 ['rest (&&rest-continuation state arg (ex 'first! f)
 (ex 'rail f) (ex 'env f) (ex 'cont f))]
 ['reply (&&reply-continuation state arg (ex 'level f)
 (ex 'env f))]
 ['if (&&if-continuation state arg (ex 'premise f)
 (ex 'c1 f) (ex 'c2 f) (ex 'env f)
 (ex 'cont f))])))

262 Indiscrete Affairs · I

 5b Shifting Up, Shifting Down, & Level Management
The implementation presented so far will correctly process code at
a given level; we need next to examine shifting back and forth be-
tween levels. This will enable us to explain the underlined clauses
in the definition of &&CALL, above.

If an expression with ∆>1 is given to &&NORMALISE, then at some
point a pair involving a user-defined reflective procedure will be
given to &&REDUCE. This in turn will go to &&PROC-CONTINUATION, will
pass the test for reflective closures, and will generate a call to &&CALL
with a (corresponding de-reflected) closure that &&CALL fails to
recognise as one for which there is an implementation equivalent.
The last (underlined) COND clause in &&CALL handles this case,
while ensuring that the locus of control remains within the code of
the implementation processor program. As discussed earlier, the
implementation processor must shift up, altering its internal state
to accurately reflect what would have been happening at the next
higher processing level in the tower.

In order to understand this clause, imagine that instead it was
replaced with the single clause [$t (f . a)]. In some sense this
would “work” (since we are writing the implementation processor
in 3-LISP), but it would violate our goal of making the implementa-
tion be a closed program. The procedure f is intended to be called
at this level, but we cannot afford to use it in the implementation,
because we did not write it and therefore do not know that it stays
within the restricted subset of 3-LISP that the implementation is al-
lowed to use. If, for example, it contained reflective code, that
would cause the implementation processor to reflect, whereas what
we want is for the implementation processor to model (i.e., imple-
ment) that reflection. So instead of using the (f . a) clause, the
implementation processor must instead shift up, effectively con-
verting (f . a) into (REDUCE f a … …). By assumption, we
know that f is bound to a non-reflective, non-primitive closure,
which means we will want to decompose it horizontally, so this
call to REDUCE is equivalent to (&&EXPAND-CLOSURE … f a …). To
make this work we need to supply two missing arguments: a con-
tinuation for the next higher level of processing (the second ‘…’),
and a new STATE argument for all levels above that (the first ‘…’).
As discussed in section 4, the continuation can simply be taken
from the top of the absorbed state stack, which is done by REIFY-

 4 · Implementation of Reflection

 263

CONTINUATION. SHIFT-UP then returns the (saved) states for all levels
above that.

If, on the other hand, f is primitive, kernel, or some other proce-
dure that we have directly implemented, we can simply use (f . a).
This is the case handled by the third (first underlined) clause in
&&CALL. Performing the procedure application is not difficult (ef-
fected with (f . a)); the question to be asked is what to do with
the result that is immediately returned. The answer is that it
needs to be sent to that continuation that is waiting for a result
from this level of processing. We can find that continuation at the
top of the absorbed state stack, which might make us think we
could simply do ((shift-up state) (f . a)). But that would be to
assume that we also have a direct implementation for that
continuation, which will not necessarily be true.x So we first do the
(f . a), and then immediately shift up and recursively ask &&CALL
to figure out how to give the result to the appropriate saved
continuation.

Note that this last case is one where the processor is asked to use
a primitive or kernel procedure, not one where it is asked to process
a primitive or kernel procedure, a situation which is dealt with
straightforwardly in the fourth line of the definition of &&ARGS-
CONTINUATION.

The corresponding shift down operation can occur whenever the
implementation processor finds itself processing a structure that it
knows how to process directly, which will include directly imple-
mented procedures, PPPs, and PPCs. Since the locus of control
must stay within the “&&” procedures, &&EXPAND-CLOSURE, when it de-
tects that the closure it is about to expand is of such a type, can
shift down and call the corresponding implementation processor
procedure directly. This would suggest the following code:

 x As mentioned in the “2010 Perspective” at the beginning, this is the issue

that we recognized that the implementation in (Smith 1984) did not handle
properly.

264 Indiscrete Affairs · I

holder

;;; (define &&EXPAND-CLOSURE
;;; (lambda simple [state proc! args! cont]
;;; (if (or (directly-implemented proc!)
;;; (ppp proc!)
;;; (ppc proc!))
;;; (&&call (shift-down cont state) proc! args!)
;;; (&&normalise state
;;; (body proc!)
;;; (bind (pattern proc!)
;;; args!
;;; (environment proc!))
;;; cont))))

However there are two problems with this definition. First,
&&EXPAND-CLOSURE will never be called with a directly implemented
procedure, since &&ARGS-CONTINUATION and &&CALL check for that
case before calling &&EXPAND-CLOSURE. This is reasonable, because
even though in some sense we could shift down, as explained above
we would immediately have to shift back up again, in order to fig-
ure out what to do with the result. So only the PPPs and PPCs are
relevant. We cannot blindly shift down upon encountering them,
because our implementation versions make rather strong assump-
tions about the arguments they are given, and we therefore need to
check that the arguments we are given explicitly conform to these
assumptions. Note for example that reflective continuations are
well-formed—i.e.:

 (NORMALISE 'x global (lambda reflect [a e c] (c a)))

normalises to
 '[(binding exp env)]

However our implementation versions assume that continuations
are simple closures that normalise their arguments. Since there is
no conceptual problem with not shifting down—all it means is
that processing will be one level more indirect than may be strictly
necessary—we adopt a version of &&EXPAND-CLOSURE that checks
these integrity conditions, and shifts down only if they are met.
Furthermore, we shift down only on NORMALISE and the PPCs; the
other PPPs could be checked, but that would only add complexity
(idiosyncratic argument integrity checks), and, as an inspection of
the RPP shows, there will only be one extra horizontal processing
step before a call to NORMALISE is encountered, so this will not be a
very serious inefficiency.

 4 · Implementation of Reflection

 265

All of these considerations lead us to the following definition.
SHIFT-DOWN is used to absorb the continuation into the absorbed
states of the higher levels.

(define &&EXPANO-CLOSURE
 (lambda simple [state proc! args! cont]
 (cond [(and (= (ppp-type proc!) 'normalise)
 (plausible-arguments-to-normalise args!))
 (&&normalise (shift-down cont state)
 (1st args!) (2nd args!) (3rd args!))]
 [(and (ppc proc!)
 (plausible-arguments-to-a-continuation args!))
 (&&call-ppc (shift-down cont state)
 proc!
 (1st args!))]
 [$t (&&normalise state
 (body proc!)
 (bind (pattern proc!)
 args!
 (environment proc!))
 cont)])))

The only further issue having to do with level shifting is deter-
mining the structure of the continuations saved for each level of
the infinite tower. The initialization process described in section 3
would result in one REPLY continuation per level as the initial
conditions. Since we naturally defer the creation of the level n ini-
tial continuation until such time as the implementation processor
needs to reify it, the absorbed state of the whole tower can in fact be
represented as a (finite) sequence of continuations for the inter-
vening levels from the current level of the implementation proces-
sor up to the highest level reached to date. There is one subtlety;
since each CREPLY continuation is closed in an environment in
which level is bound to the integer level number, we store as the
last element of this continuation sequence the level number for the
next level not yet reached. The implementation processor is started
off at level 1 in the code corresponding to READ-NORMALISE-PRINT;
hence the initial absorbed state, which represents a (virtual) tower
of initial continuations for levels 2 to ∞, consists of the singleton
sequence [2].

(define 3-LISP
 (lambda simple []
 (&&read-normalise-print (initial-tower 2) 1 global)))

266 Indiscrete Affairs · I

(define INITIAL-TOWER
 (lambda simple [level] (scons level))

(define SHIFT-DOWN
 (lambda simple [continuation state]
 (prep continuation state)))

(define REIFY-CONTINUATION
 (lambda simple [state]
 (if (= (length state) 1)
 (make-reply-continuation (1st state) global)
 (1st state))))

(define SHIFT-UP
 (lambda simple [state]
 (if (= (length state) 1)
 (scons (1+ (1st state)))
 (rest state))))

 5c Summary
As was discussed in section 4, as long as the set of implemented
procedures is broad enough to ensure that every call to a kernel
procedure will “top out” at some finite level, there is no need for the
implementation processor to handle every kernel utility procedure
(e.g., NORMAL and BIND). In the code just presented we have included
the appropriate code to handle these kernel utilities as if they were
primitive procedures, but some of them need not have been so in-
cluded. Though there is probably no unique solution, there are no
doubt more “minimal” implementations, in the sense of implemen-
tations that directly implement fewer 3-LISP procedures; it is a bit
of an exercise to figure out exactly how few are minimally neces-
sary. In a real implementation, however, efficiency presses the
other direction, towards implementations that implement more
utilities—a requirement that can usually be met, provided they do
not involve non-standard control constructs, and are not “open” in
the sense of calling user-supplied arguments as procedures (i.e.,
are not higher-order).

Given the code we have presented, it is easy to verify by inspec-
tion that all “&&…” procedures are used in the following restrictive
ways:

1. They are always called from other “&&…” procedures, with
the exception of 3-LISP which is the root procedure;

2. They are always called from non-embedded contexts;
3. They never use, either directly or indirectly, any reflective

 4 · Implementation of Reflection

 267

procedure other that those for the standard control struc-
tures;

4. They are never passed as an argument, or returned as a re-
sult;

5. They are never remembered in a user data structure; and
6. Barring an error, the chain of processing initiated by the

call to 3-LISP is never broken (i.e., it will never return).

It is a relatively straightforward final step to translate such a pro-
gram into one’s favourite imperative language.

 6 Conclusions
It is widely known that complex issues arise in the implementation
of more traditional languages: we have already mentioned a sys-
tem’s treatment of calls between compiled and interpreted code;
micro-code routines that call macro-code routines as subroutines
are a similar example of implicit level-shifting. The general ques-
tion of mediating between implementation structures and user
structures, and the attendant complexities when they are in differ-
ent languages, arises in other contexts as well, as for example in
SMALLTALK-80’s explicit use of a compiled code interpreter for de-
bugging purposes. It is also common experience that providing us-
ers with access to implementation structures, although powerful
for certain purposes, tends to make an implementation unmodular
and difficult to transport onto other architectures.

In (Smith 82a) it was claimed that the reflective capabilities of
3-LISP provide programmers with the power that is normally pro-
vided only by giving them access to the underlying implementa-
tion. We claimed, in other words, that the full power of implemen-
tation access was compatible with a fully abstract, implementa-
tion-independent language. In this paper, in showing how to im-
plement such a reflective language, such notions as level-shifting,
reifying implicit continuation structures, and so forth, make clear
what it is that standard implementations do when they provide
those sorts of facilities. In this sense, a level-shifting implementa-
tion processor for a procedurally reflective language can be viewed
as a rational reconstruction of implementation more generally, just as
reflection itself can be viewed as a rational reconstruction of the
complex programming techniques that use such implementations.

268 Indiscrete Affairs · I

 Epilogue and Acknowledgements
Although our first implementation of 3-LISP was based very
closely on the techniques described in this paper, we have since
shifted to a run-time incremental compiler, that translates 3-LISP
code into byte codes for an underlying SECDX machine. The re-
sulting system, implemented in InterLISP-D, yields a performance
almost exactly the same as that provided by the InterLISP-D inter-
preter (i.e., 3-LISP programs run about as fast as interpreted In-
terLISP-D programs). The arguments presented in this paper, cou-
pled with this experience, lead us to believe that although it is
tricky, reflection is not an inherently inefficient construct to add to
a programming language.

We would like to thank Austin Henderson, Mike Dixon, Dan
Friedman, Hector Levesque, and Greg Nuyens for their helpful
comments on an early draft. This research was conducted in the
Intelligent Systems Laboratory at Xerox Palo Alto Research Cen-
ter (PARC), as part of the Situated Language Program of Stan-
ford’s Center for the Study of Language and Information.

 References
[Allen, 1978] John R. Allen, Anatomy of LISP, McGraw-Hill, 1978.
[Henderson, 1980] Peter Henderson, Functional Programming, Application

and Implementation, Prentice-Hall, 1980.
[McCarthy et al., 1965] John McCarthy, et al., LISP 1.5 Programmer’s Man-

ual, MIT Press, 1965.
[Muchnick & Pleban, 1980] Steven S. Muchnick and Uwe F. Pleban, “A

Semantic Comparison of LISP and SCHEME”, 1980 LISP Conference,
Stanford, 1980.

[Smith, 1982a] Brian C. Smith, “Reflection and Semantics in a Procedural
Language”, M.I.T. Laboratory for Computer Science Report MIT-TR-272,
1982.

[Smith, 1982b] Brian C. Smith, “The Computational Metaphor,” available
from the author, 1982.

 x The SECD machine (for “Stack, Environment, Code, Dump”—its internal

registers) is an abstract virtual machine, originally designed by Peter Landin
to evaluate lambda calculus expressions, which became a standard target
for compilers of functional programming languages.

 4 · Implementation of Reflection

 269

[Smith, 1984] Brian C. Smith, “Reflection and Semantics in LISP,” 1984
ACM POPL Conference, Salt Lake City, Utah, January 1984 (included
here as chapter ■■).

[Smith & des Rivieres, 1984] Brian C. Smith and Jim des Rivières, Interim
3-LISP Reference Manual, Xerox Palo Alto Research Center, Intelligent
Systems Laboratory Report ISL-l, June 1984.

[Steele, 1976] Guy L. Steele, Jr., “LAMBDA: The Ultimate Declarative”,
M.I.T. Artificial Intelligence Laboratory Memo AIM-379, 1976.

[Steele, 1977a] Guy L. Steele, Jr., “RABBIT: A Compiler for SCHEME (A
Study in Compiler Optimization)”, M.I.T. Artificial Intelligence Labora-
tory Technical Report AI-TR-474, 1977.

[Steele, 1977b] Guy L. Steele, Jr., “Debunking the “Expensive Procedure
Call” Myth”, M.I.T. Artificial Intelligence Laboratory Memo AIM-443,
1977.

[Steele & Sussman, 1976] Guy L. Steele, Jr. and Gerald 1. Sussman,
“LAMBDA: The Ultimate Imperative”, M.I.T Artificial Intelligence
Laboratory Memo AIM-353, 1976.

[Steele & Sussman, 1978a] Guy L. Steele, Jr. and Gerald J. Sussman, “The
Revised Report on SCHEME, A Dialect of LISP ”, M.I.T Artificial In-
telligence Laboratory Memo AIM-452, 1978.

[Steele & Sussman, 1978b] Guy L. Steele, Jr. and Gerald 1. Sussman, “The
Art of the Interpreter, or, The Modularity Complex (Parts Zero, One,
and Two)”, M.I.T Artificial Intelligence Laboratory Memo AIM-453,
1978.

[Steele & Sussman, 1980] Guy L. Steele, Jr. and Gerald J. Sussman, “Design
of a LISP-Based Microprocessor”, Communications of the ACM, vol. 23,
No. 11, November 1980.

[Stoy, 1977] Joseph E. Stoy, Denotational Semantics: The Scott-Strachey Ap-
proach to Programming Language Theory, MIT Press, 1977.

[Sussman, Holloway, Steele & Bell, 1981] Gerald 1. Sussman, Jack Hollo-
way, Guy L. Steele, Jr., and Alan Bell, “SCHEME-79—LISP on a Chip”,
IEEE Computer, July 1981.

[Sussman & Steele, 1975] Gerald J. Sussman and Guy L. Steele, Jr.,
“SCHEME: An Interpreter for Extended Lambda Calculus”, M.I.T. Ar-
tificial Intelligence Laboratory Memo AIM-349, 1975.

270 Indiscrete Affairs · I

 Appendix: 3·LISP Implementation Processor
This appendix lists the code for all the procedures required in the
3·LISP implementation processor described in section 5. With very
minor exceptions, this program is compatible with the dialect of 3-
LISP used in the Interim 3-LISP Reference Manual [Smith & des
Rivieres 84].

(define 3-LISP
 (lambda simple []
 (&&read-normalise-print (initial-tower 2) 1 global)))

The implementation of READ-NORMALISE-PRINT is similar to the
RPP version, except that an explicit procedure implements the
REPLY continuation:

(define &&READ-NORMALISE-PRINT
 (lambda simple [state level env]
 (&&normalise state (prompt&read level) env
 (make-reply-continuation level env))))

(define &&REPLY-CONTINUATION
 (lambda simple [state result level env]
 (block (prompt&reply result level)
 (&&read-normalise-print state level env))))

The implementation of NORMALISE is virtually identical to NORMAL-
ISE itself, except that it must &&CALL continuations, and use imple-
mentation version of other PPPs. Similarly, the implementation of
REDUCE is similar to REDUCE itself, except that explicit procedures are
used to implement both the PROC and ARGS continuations.

(define &&NORMALISE
 (lambda simple [state exp env cont]
 (cond [(normal exp) (&&call state cont exp)]
 [(atom exp) (&&call state cont (binding exp env))]
 [(rail exp) (&&normalise-rail state exp env cont)]
 [(pair exp)
 (&&reduce state (car exp) (cdr exp) env cont)])))

(define &&REDUCE
 (lambda simple [state proc args env cont]
 (&&normalise state proc env
 (make-proc-continuation proc args env cont))))

 4 · Implementation of Reflection

 271

(define &&PROC-CONTINUATION
 (lambda simple [state proc! proc args env cont]
 (if (reflective proc!)
 (&&call state (de-reflect proc!) args env cont)
 (&&normalise state args env
 (make-args-continuation proc! proc args env cont)))))

(define &&ARGS-CONTINUATION
 (lambda simple [state args! proc! proc args env cont]
 (if (directly-implemented proc!)
 (&&call state cont (proc! . args!))x
 (&&expand-closure state proc! args! cont))))

The implementation of EXPAND-CLOSURE is like the regular EXPAND-
CLOSURE code, except we can absorb (shift-down) on PPPs and
PPCs—see the discussion in section 5.2. The following checks for
NORMALISE and the PPCs:

(define &&EXPAND-CLOSURE
 (lambda simple [state proc! args! cont]
 (cond [(and (= (ppp-type proc!) 'normalise)
 (plausible-arguments-to-normalise args!))
 (&&normalise (shift-down cont state)
 (1st args!) (2nd args!) (3rd args!))]
 [(and (ppc proc!)
 (plausible-arguments-to-a-continuation args!))
 (&&call-ppc (shift-down cont state)
 proc!
 (1st args!))]
 [$t (&&normalise state
 (body proc!)
 (bind (pattern proc!)
 args!
 (environment proc!))
 cont)])))

The implementation of NORMALISE-RAIL is similar to NORMALISE-RAIL
itself, except that explicit procedures are used to implement both
the FIRST and REST continuations.

(define &&NORMALISE-RAIL
 (lambda simple [state rail env cont]
 (if (empty rail)
 (&&call state cont (rcons))
 (&&normalise state (1st rail) env
 (make-first-continuation rail env cont)))))

 x In the published paper this line was erroneously printed as

 (&&call state cont (proc! . args!))

272 Indiscrete Affairs · I

(define &&FIRST-CONTINUATION
 (lambda simple [state first! rail env cont]
 (&&normalise-rail state (rest rail) env
 (make-rest-continuation first! rail env cont)))

(define &&REST-CONTINUATION
 (lambda simple [state rest! first! rail env cont]
 (&&call state cont (prep first! rest!)))))

LAMBDA and IF must be implemented as primary processor proce-
dures, IF with an explicit procedure in place of its normal con-
tinuation:

(define &&LAMBDA
 (lambda simple [state [kind pattern body] env cont]
 (&&call state cont (ccons kind env pattern body)))

(define &&IF
 (lambda simple [state [premise c1 c2] env cont]
 (&&normalise state premise env
 (make-if-continuation premise c1 c2 env cont))))

(define &&IF-CONTINUATION
 (lambda simple [state premise! premise c1 c2 env cont]
 (&&normalise state (ef premise! c1 c2) env cont))))

(&&CALL f a1 ... ak) would be like (f a1 ... ak) except that if f is
a PPP or PPC, the corresponding implementation version is used
instead; if f is directly implemented, we use the implementation
directly and then shift up; otherwise we shift up and do an explicit
expand closure one level higher.

(define &&CALL
 (lambda simple x
 (let [[state (1st x)] [f (2nd x)] [a (rest (rest x)))]]
 (cond [(ppp f) (&&call-ppp state f a)]
 [(ppc f) (&&call-ppc state f (1st a)]
 [(directly-implemented f)
 (&&call (shift-up state)
 (reify-continuation state)
 (f . a))]
 [$t (&&expand-closure (shift-up state)
 f a (reify-continuation state))]))))

(define &&CALL-PPP
 (lambda simple [state f a]
 ((select (ppp-type f)
 ['normalise &&normalise]
 ['normalise-rail &&normalise-rail]
 ['reduce &&reduce]
 ['read-normalise-print &&read-normalise-print]
 ['if &&if]

 4 · Implementation of Reflection

 273

 ['lambda &&lambda])
 . (prep state a))))

(define &&CALL-PPC
 (lambda simple [state f arg]
 (select (ppc-type f)
 ['proc (&&proc-continuation state arg (ex 'proc f)
 (ex 'args f) (ex 'env f) (ex 'cont f))]
 ['args (&&args-continuation state arg (ex 'proc! f)
 (ex 'proc f) (ex 'args f) (ex 'env f) (ex 'cont f)))]
 ['first (&&first-continuation state arg (ex 'rail f)
 (ex 'env f) (ex 'cont f))]
 ['rest (&&rest-continuation state arg (ex 'first! f)
 (ex 'rail f) (ex 'env f) (ex 'cont f))]
 ['reply (&&reply-continuation state arg (ex 'level f)
 (ex 'env f))]
 ['if (&&if-continuation state arg (ex 'premise f)
 (ex 'c! f) (ex 'c2 f) (ex 'env f) (ex 'cont f))])))

The next six MAKE-XXX-CONTINUATION procedures look very messy,
but they are really trivial: all they do is to construct a closure that
is identical to the type of closure that would have been constructed
by the RPP, had it been running instead of this implementation.
These continuations are only used to fake the RPP; their only use
here is as templates for later recognition. EX(TRACT) is used to ex-
tract bindings for variables that were enclosed in these faked con-
tinuations.

(define MAKE-PROC-CONTINUATION
 (lambda simple [proc args env cont]
 (ccons 'simple (bind '[proc args env cont reduce]
 [proc args env cont reduce]
 global)
 '[proc!]
 '(if (reflective proc!)
 ((de-reflect proc!) args env cont)x
 (normalise args env
 (lambda [args!]
 (if (primitive proc!)
 (cont (proc! . args!))
 (normalise (body proc!)
 (bind (pattern proc!)
 args!
 (environment proc!))
 cont))))))))

 x The ‘’ in this line was ‘’ in the published paper, but that was an error.

274 Indiscrete Affairs · I

(define MAKE-ARGS-CONTINUATION
 (lambda simple [proc! proc args env cont]
 (ccons 'simple
 (bind '[proc! proc args env cont reduce]
 [proc! proc args env cont reduce]
 global)
 '[args!]
 (if (primitive proc!)
 (cont (proc! . args!))
 (normalise (body proc!)
 (bind (pattern proc!)
 args!
 (environment proc!))
 cont)))))

(define MAKE-FIRST-CONTINUATION
 (lambda simple [rail env cont]
 (ccons 'simple
 (bind '[rail env cont normalise-rail]
 [rail env cont normalise-rail]
 global)
 '[first!]
 '(normalise-rail (rest rail) env
 (lambda [rest!]
 (cont (prep first! rest!)))))))

(define MAKE-REST-CONTINUATION
 (lambda simple [first! rail env cont]
 (ccons 'simple
 (bind '[first! rail env cont normalise-rail]
 [first! rail env cont normalise-rail]
 global)
 '[rest!]
 '(cont (prep first! rest!))))))

(define MAKE-REPLY-CONTINUATION
 (lambda simple [level env]
 (ccons 'simple
 (bind '[level env read-normalise-print]
 [level env read-normalise-print]
 global)
 '[result]
 '(block (prompt&reply result level)
 (read-normalise-print level env)))))

(define MAKE-IF-CONTINUATION
 (lambda simple [premise c1 c2 env cont]
 (ccons 'simple
 (bind '[premise c1 c2 env cont if]
 [premise c1 c2 env cont if]
 global)
 '[premise!]
 '(normalise (ef premise! c1 c2) env cont))))

 4 · Implementation of Reflection

 275

(define EX
 (lambda simple [variable function]
 (binding variable (environment function))))

Various utilities dealing with state management and continua-
tions for each level:

(define INITIAL-TOWER
 (lambda simple [level] (scons level))

(define SHIFT-DOWN
 (lambda simple [continuation state]
 (prep continuation state)))

(define REIFY-CONTINUATION
 (lambda simple [state]
 (if (= (length state) 1)
 (make-reply-continuation (1st state) global)
 (1st state))))

(define SHIFT-UP
 (lambda simple [state]
 (if (= (length state) 1)
 (scons (1+ (1st state)))
 (rest state))))

Predicates to check the plausibility of arguments, closures, and
environments, to be used preparatory to shifting down and using
implementation versions:

(define PLAUSIBLE-ARGUMENTS-TO-A-CONTINUATION
 (lambda simple [args!]
 (and (rail args!)
 (= (length args!) 1)
 (handle (1st args!)))))

(define PLAUSIBLE-ARGUMENTS-TO-NORMALISE
 (lambda simple [args!]
 (and (rail args!)
 (= (length args!) 3)
 (handle (1st args!))
 (plausible-environment-designator (2nd args!))
 (plausible-continuation-designator (3rd args!)))))

(define PLAUSIBLE-ENVIRONMENT-DESIGNATOR
 (lambda simple [env!]
 (and (rail env!)
 (or (= env! global)
 (empty env!)
 (and (plausible-binding-designator (1st env!))
 (plausible-environment-designator
 (rest env!)))))))

276 Indiscrete Affairs · I

(define PLAUSIBLE-BINDING-DESIGNATOR
 (lambda simple [b!]
 (and (rail b!)
 (= (length b!) 2)
 (handle (1st b!)
 (atom (1st b!)
 (handle (2nd b!))))

(define PLAUSIBLE-CONTINUATION-DESIGNATOR
 (lambda simple [c!]
 (and (closure c!)
 (not (reflective c!))
 (or (atom (pattern c!))
 (and (rail (pattern c!))
 (= 1 (length (pattern c!))))))))

Predicates defined over closures, sorting them into the various
types that the implementation needs to know about: PPPs, PPCs,
etc. Also, there are utilities for recognizing closures of these vari-
ous types.

(define DIRECTLY-IMPLEMENTED
 (lambda [closure]
 (or (primitive closure)
 (kernel-utility closure))))

(define PPP
 (lambda simple [closure]
 (not (= 'unknown (ppp-type closure)))))

(define PPP-TYPE
 (lambda simple [closure]
 (identify-closure closure *ppp-table*)))

(set *PPP-TABLE*
 [['normalise normalise]
 ['reduce reduce]
 ['normalise-rail normalise-rail]
 ['read-normalise-print read-normalise-print]
 ['lambda (de-reflect lambda)]
 ['if (de-reflect if)]])

(define PPC
 (lambda simple [closure]
 (not (= 'unknown (ppc-type closure)))))

(define PPC-TYPE
 (lambda simple [closure]
 (identify-closure closure *ppc-table*)))

 4 · Implementation of Reflection

 277

(set *PPC-TABLE*
 [['proc (make-proc-continuation '? '? '? '?)]
 ['args (make-args-continuation '? '? '? '? '?)]
 ['first (make-first-continuation '? '? '?)]
 ['rest (make-rest-continuation '? '? '? '?)]
 ['reply (make-reply-continuation '? '?)]
 ['if (make-if-continuation '? '? '? '? '?)]])
(define KERNEL-UTILITY
 (lambda simple [closure]
 (member closure *kernel-utility-table*)))

(set *KERNEL-UTILITY-TABLE*
 [1st double normal rail
 2nd environment normal-rail rebind
 atom external pair reflective
 bind handle primitive rest
 binding length prompt&read unit
 de-reflect member prompt&reply vector-constructor])

(define IDENTIFY-CLOSURE
 (lambda simple [closure table]
 (cond [(empty table) 'unknown]
 [(similar-closure closure (2nd (1st table)))
 (1st (1st table))]
 [$T (identify-closure closure (rest table))] I))~

(define SIMILAR-CLOSURE
 (lambda simple [closure template]
 (or (= closure template)
 (and (isomorphic (pattern closure) (pattern template))
 (isomorphic (body closure) (body template))
 (= (reflective closure) (reflective template))
 (similar-environment (environment closure)
 (environment template))))))

(define SIMILAR-ENVIRONMENT
 (lambda simple [environment template]
 (or (= environment template)
 (and (empty environment) (empty template))
 (and (not (empty template))
 (not (empty environment))
 (= (1st (1st environment)) (1st (1st template)))
 (or (= ''? (2nd (1st template)))
 (= (2nd (1st environment))
 (2nd (1st template))))
 (similar-environment (rest environment)
 (rest template))))))

278 Indiscrete Affairs · I

— Were this page been blank, that would have been unintentional —

 283

5 — Varieties of Self-Reference†

 Abstract
The significance of any system of explicit representation depends
not only on the immediate properties of its representational struc-
tures, but also on two aspects of the attendant circumstances: im-
plicit relations among, and processes defined over, those individ-
ual representations, and larger circumstances in the world in
which the whole representational system is embedded. This rela-
tivity of representation to circumstance facilitates local inference,
and enables representation to connect with action, but it also lim-
its expressive power, blocks generalisation, and inhibits communi-
cation. Thus there seems to be an inherent tension between the ef-
fectiveness of located action and the detachment of general-
purpose reasoning.

It is argued that various mechanisms of causally-connected self-
reference enable a system to transcend the apparent tension, and
partially escape the confines of circumstantial relativity. As well as
examining self-reference in general, the paper shows how a variety
of particular self-referential mechanisms—autonymy, introspec-
tion, and reflection—provide the means to overcome specific kinds
of implicit relativity. These mechanisms are based on distinct no-
tions of self: self as unity, self as complex system, self as independ-
ent agent. Their power derives from their ability to render explicit
what would otherwise be implicit, and implicit what would other-

†Original published in Joseph Y. Halpern (ed.), Theoretical Aspects of Rea-
soning about Knowledge: Proceedings of the 1986 Conference, Monterey, Cali-
fornia, March 19–22. Los Altos, California: Morgan Kaufmann: 1986, pp.
19–43. Also available as CSLI Technical Report CSLI–87–76, Center for
the Study of Language and Information, Stanford, California, 1986.

284 Indiscrete Affairs · 1

wise be explicit, all the while maintaining causal connection be-
tween the two. Without this causal connection, a system would ei-
ther be inexorably parochial, or else remain entirely disconnected
from its subject matter. When appropriately connected, however, a
self-referential system can move plastically back and forth between
local effectiveness and detached generality.

 1 Introduction
“If I had more time, I would write you more briefly.” So, according
to legend, said Cicero—thereby making reference to himself in
three different ways at once. First, he quite explicitly referred to
himself, in the sense of naming himself (with the word ‘I’) as part
of his subject matter. Second, his sentence has content, or conveys
information, only when understood “with reference to him”—
specifically, with reference to the circumstances of his utterance.
To see this, note that if I were to use the same sentence right now I
would say something quite different (something, for example, that
might lead you to wonder whether this paper might not have been
shorter). Similarly, the pronoun ‘you’ picks someone out only
relative to Cicero’s speech act; the present tense aspect of ’had’ gets
at a time two millennia ago; and so on and so forth. Third, as well
as referring to himself in these elementary ways, he also said
something that reflected a certain understanding of himself and of
his writing, enabling him to make a claim about how he would
have behaved, had his circumstances differed.

In spite of all these self-directed properties, though, there is
something universal about Cicero’s statement as well, transcend-
ing what was particular to his situation. It is exactly this univer-
sality that has led the statement to survive. So we might say in
summary that Cicero referred to himself, that the content of his
statement was self relative, that he expressed or manifested self un-
derstanding, and yet that, in spite of all of these things, he managed
to say something that did not, ultimately, have much to do with
himself at all.

Or we might like to say such things, if only we knew what those
phrases meant. One problem is that thay all talk about the famil-
iar, but not very well-understood, notion of ‘self’. Perry (1983) has
claimed that the self is so “burdened by the history of philosophy”
as to almost have been abandoned by that tradition (though his

 5 · Varieties of Self-Reference

 285

own work, on which I will depend in the first two sections, is a no-
table exception). Researchers in Artificial Intelligence (AI), how-
ever, have rushed in with characteristic fearlessness and tackled
self-reference head-on. AI’s interest in the self is not new: dreams
of self-understanding systems have permeated the field since its
earliest days. Only recently, however, has this general interest
given way to specific analyses and proposals. Technical reports
have begun to appear in what we can informally divide into three
traditions. The first., which (following Moore) I will call the
autoepistemic tradition, has emerged as part of a more general
investigation into reasoning about knowledge and belief (the
theme of this conference). A second more procedural tradition, fo-
cusing on so-called meta-level reasoning and inference about con-
trol, is illustrated by such systems as FOL1 and 3-l.isp:2 for discus-
sion I will call this the control camp. Finally, in collaboration
with the philosophical and linguistic communities, what I will
call the circumstantial tradition in AI has increasing come to rec-
ognise the pervasiveness of the self-relativity of thought and lan-
guage (self-reference in the sense of “with reference to self”).3

In spite of all this burgeoning activity, two problems have not
been adequately addressed.

The first problem is obvious, though difficult: while many par-
ticular mechanisms have been proposed, no clear, single concept of
the self has emerged, capable of unifying all the disparate efforts.
Technical results in the three traditions overlap surprisingly little,
for example, in spite of their apparently common concern. Nor has

1«Ref»
2«Ref»
3For examples of the autoepistemic tradition, see for example Fagin &
Halpern (1985), Konolige (1985), Levesque (1984), Moore (1983), and
Perlis (1985). For the control tradition, see Batali (1983), Bowen & Kow-
alski (1982), Davis (1976), Davis (1980), de Kleer et al. (1979), des Rivières
and Smith (1984), Doyle (1980), Friedman and Wand (1984), Genesereth
and Smith (1982), Hayes (1973), Laird and Newell (1983), Laird et al.
(forthcoming), Smith (1982), Smith (1984), and Weyhrauch (1980). For
the circumstantial tradition, see Kaplan (1979), Barwise and Perry (1983),
Perry (1985a), Perry (1985b), Perry (forthcoming), and Rosenschein
(1985). Finally, I should mention those who have studied self-reference in
specific cognitive tasks: for example Collins (1975) and Lenat and Brown
(1984).

286 Indiscrete Affairs · 1

the general enterprise been properly located in the wider intellec-
tual context. For example, as well as exploring the self we should
understand what sort of reference self-reference involves, and how
it relates to reference more generally. Also, it has not been made
clear how the inquiries just cited relate to the self-referential puz-
zles and paradoxes of logic (which, for discussion, I will call nar-
row self-reference). At first glance the two seem rather different:
AI is apparently concerned with reference to agents, not to sen-
tences, for starters—and with whole, complex selves, not individ-
ual utterances or even beliefs. We are interested in something like
the lay, intuitive notion of “self” that we use in explaining some-
one’s actions by saying that they lack self-knowledge. It is not ob-
vious that there is anything even circular, let alone paradoxical,
about this familiar notion (folk psychology does not go into any
infinite loops over it). And yet we will uncover important similari-
ties having to do with limits.

The second problem is more pointed: there seems to be a con-
tradiction lurking behind all this interest in self-reference. The
real goal of AI, after all, is to design or understand systems that
can reason about the world, not about themselves. Who cares,
really, about a computer’s sitting in the corner referring to itself?
Like people, computers are presumably useful to the extent that
they participate with us in our common environment: help us with
finances, control medical systems, etc. Introspection, reflection,
and self-reference may be intriguing and incestuous puzzles, but
AI is [fundamentally] a pragmatic enterprise. Somehow—in ways
that no one has yet adequately explained—self-reference must
have some connection with full participation in the world.

In this paper I will attempt to address both problems at once,
claiming that the deep regularities underlying self-reference arise
from necessary architectural aspects of any embedded system.
Both cited problems arise from our failure to understand this—a
failure attributable in part to our reliance on restricted semantical
techniques, particularly techniques borrowed from traditional
mathematical logic, that ignore circumstantial relativity. Once we
can see what problem the self is “designed to solve”, we will be able
to integrate the separate traditions, and explain the apparent con-
tradiction.

 5 · Varieties of Self-Reference

 287

The analysis will proceed in three parts. First, in section 2 I will
assemble a framework in terms of which to understand both self
and self-reference, motivated in part by the technical proposals just
cited. The major insights of the circumstantial tradition will be
particularly relevant here. Second, in section 3, I will sketch a ten-
tative analysis of the structure of the circumstantial relativity of
any representational system. This specificity will be necessary in
order to ground the third, more particular analysis, presented in
section 4, of a spectrum of self-referential mechanisms. Starting
with the simple indexical pronoun ‘I’, and with unique identifiers,
I will examine assumptions underlying the autoepistemic tradi-
tion, moving finally to canvass various models of introspection
and reflection that have developed within the control camp.

The way l will resolve the contradiction is actually quite simple.
It is suggested by my inclusion of self-relativity right alongside
genuine self-reference. Some readers (semanticists, especially) may
suspect that this is a pun, or even a use/mention mistake. But in
fact almost exactly the opposite is true. [It is a fundamental thesis
underlying the present analysis that] the two notions are inti-
mately related, forming something of a complementary pair. Time
and again we will see how an increase in the latter (self-reference)
enables a decrease in the former (self-relativity). For fundamental
reasons of efficiency, all organisms must at the ground level be
tremendously self-relative.a On the other hand, although it en-
ables action, this [basic] self-relativity inhibits cognitive expres-
siveness, proscribes communication, restricts awareness of higher
level generalisations, and generally interferes with the agent’s at-
taining a variety of otherwise desirable states. The role of self-
reference, [it will be argued,] is to compensate for this parochial self-
relativity, while retaining the ability to act,

Explicit self-reference, that is, can provide an escape from im-
plicit self-relativity.

Intuitively, it is easy to see why. Suppose, upon hearing a twig
break in the woods, I shout “There is a bear on the right!” My
meaning would be perfectly clear, but I have explicitly mentioned
only one of the four arguments involved in the TO-THE-RIGHT-OF

a«Talk about this as a precursor to the deixis adumbrated in O3»

288 Indiscrete Affairs · 1

relation;4 the other three remain implicit and self-relative, deter-
mined by circumstance. However I can lessen the degree of implicit
self-relativity by mentioning some of the other arguments explic-
itly. Look at this as a two stage process: one to get rid of the implic-
itness, one to get rid of the self-relativity (implicitness and self-
relativity, that is, are distinct; both characterise ground-level ac-
tion). In particular, the first move is to shift from the original
statement to another that has roughly the same content, but that
makes another argument explicit: “There is someone to the right of
me.” This latter statement is still self-relative, of course, but in a
different, explicit, way. Now that I have a place for another argu-
ment, I can make the second move, and use a different expression
to refer to someone else: “There is someone to the right of you,” or
“There is someone to the right of us all.”

Thus the self provides a fulcrum, allowing a system to shift in
and out of the particularities of its local situation. Both directions
of mediation are necessary: neither totally local relativity, nor
completely detached generality, would be adequate on its own.
Roughly, the first would enable you to act, but thoughtlessly; the
second, to think, but ineffectively.

So there is really no contradiction, after all. But there is some
irony: the self is the source of the problem, as well as being an in-
gredient in the solution. The overall goal in attaining detached
general-purpose reasoning is to flush the self from the wings. How-
ever, the way to do that is first to drag it onto center stage. If you
were to stop there, then you really would be stuck with a contra-
diction—or at least with a system so self-involved it could not rea-
son about the world at all. Fortunately, however, once the self is
brought into explicit view, it can then be summarily dismissed.

 2 Circumstance, Self, and Causal Connection
«Put in an introductory sentence or three … »

…

4The fourth is orientation. Even if you and I are in essentially the same
place, and looking out in the same direction, and if A is to the right of B
from my point of view, A will nonetheless be to the left of B from your
point of view. if you happen to be standing on your head. Gravity estab-
lishes such a universal orientation that we rarely need to make this [final?]
circumstantially determined argument position explicit.

 5 · Varieties of Self-Reference

 289

 2a Assumptions
I will focus on representational systems—without defining them,
though I will assume they include both people and computers, at
least with respect to what we would intuitively call their linguistic,
logical, or rational properties. For a variety of reasons I will not in-
sist that representational systems be ‘syntactic’ or ‘formal’ (al-
though what I have to say would equally well apply under what
people take to be that conception).5 Several other assumptions,
however, will be important.

First, I take it that systems do not represent as indivisible
wholes, in single representational acts, but in some sense have rep-
resentational parts, each of which can be said to have content at
least somewhat independently (what content a part has, however,
will often depend on all the other parts—i.e., the parts do not need
to be semantically independent). I take this notion of ”part” very
broadly: parts might be internal structures (tokens of mentalese,
data structures, whatever), distinct utterances or discourse frag-
ments issued over time, or even different aspects or dimensions of a
complex mental state (what Perry has informally called mental
“counties”). I will use ‘agent’ or ‘system’ to refer to a representa-
tional system as a whole, and ‘representational structure’ to refer
to [such] ingredients. When I specifically want to focus on the in-
ternal structures that are causally responsible for an agent’s or
system’s actions, however, I will talk of impressions (as opposed
to expressions, which I take to be tokens or utterances, external to
an agent, in a consensual [or communicative] language). Impres-
sions are meant to include data structures, elements of a knowl-
edge representation system, or aspects of a total mental state. Such
structures are sometimes classified abstractly (particularly in
[computer science’s] “abstract data type” tradition), or identified
with other abstract things to which they are thought to be isomor-
phic (like beliefs), but I will refer to them directly, because of my
architectural bias and interest in causal role.

Second, [as well as severally constituting a complex system or
agent as a whole,] representational structures are themselves likely

5[I set formality aside] primarily because, [in spite of prevailing consensus,]
I do not think the notion is in fact coherently applicable to computation.
See [Smith forthcoming (a)].

290 Indiscrete Affairs · 1

to be compositionally constituted, which just means that they too
may have parts (nothing is being said about compositional se-
mantics—at least not yet). Again, the notion of part is rough:
imagine something like a grammatical structure, or set of partially
independent properties or elements, each of which contributes to
the meaning of the whole. Utterances constituted of words accord-
ing to the dictates of grammar are one example; composite struc-
tures in a data or “knowledge” base are another. Thus the words
‘I’, ‘would’, ‘have’, and so on, are components of Cicero’s claim (at
least in its English translation). Since the term ‘element’ is biased
towards ingredient objects and away from features or characteris-
tics, and ‘property’ is biased the other way, I will refer to such parts
as aspects of a structure or impression.

Finally, each constituent will be assumed to have what philoso-
phers would call a meaning which is something, probably abstract,
that indicates just what and how it contributes to [what I will call]
the interpretive content of the composite wholes in which it partici-
pates (i.e., I mean now to embrace just about the weakest form of
compositional semantics I can imagine). Meaning [in this sense]
is not, typically, the same as [interpretive] content; rather, it is
something that plays a role in giving a representation, or a use of a
representation, whatever [interpretive] content it has. So the mean-
ing of the word ‘Caitlyn’ might be something like a relation be-
tween speakers and the world, a relation that enables those speak-
ers, when they use the word, thereby to refer to whomever has that
particular name in the overall situation being described. Though
it is ultimately untenable, one can think of meaning as something
a representational structure has “on its own”, so to speak, in the
sense of being independent of context of use; the [interpretive]
content arises only when it is used, in a full set of circumstances.
So ‘I’ means the same thing when different people use it, but those
uses have different [interpretive] contents—[you when you use it,
I when I do].

As well as distinguishing meaning and content, we need to dis-
tinguish the latter—roughly, what a representation or statement
is about—from an even wider notion of [general] semantical sig-
nificance, where the latter is taken to include not only the content
but the full conceptual or functional role that the representational

 5 · Varieties of Self-Reference

 291

structure can play in and for the agent.6 So for example in a com-
puter implementation of a natural deduction system for tradi-
tional logic, a formula’s content might be taken to be its standard
(model-theoretic) interpretation, whereas its full significance
would include its proof-theoretic role as well. It is distinctive of
standard logical systems to view a sentence’s meaning as the sole
determiner of its content, and to take content as independent of
any other aspect of significance. Situation theory7 distinguishes
meaning and content, and admits the dependence of the latter on
circumstance, but takes both as specifiable independent of concep-
tual or functional role. In some of the cases we will look at, how-
ever, such as the use of inheritance mechanisms to implement de-
fault reasoning, all three will be inextricably intertwined.c

 2b Circumstantial Relativity
The first and most important observation we can make about rep-
resentational systems in terms of these distinctionsd is that a great
deal of the full significance of a representational system will not,
in general, be directly or explicitly represented by any of the repre-
sentational structures of which it is composed. Instead, [that ad-
ditional significance] will be contributed by the attendant circum-
stances. Section 3 will be devoted to saying what “attendant cir-
cumstances” might mean, but some familiar examples will illus-
trate the basic intuition. As we have already seen, whom the word
‘I’ refers to is not indicated on the word itself, nor is it part of the
word’s meaning; rather, the meaning of T, [given the notion of
meaning we are using,] is merely that it refers to whomever says
it—[with the narrowing of that generic meaning to a particular
individual settled by the particularities of the saying.] Similarly,
the referent of a pronoun may be determined by the structure and
circumstances of the conversation in which it is used. If I say “So-

6The term “conceptual role” is associated with Harman; see Harman
(1982), and Smith (1984) for a computational account treating both con-
tent and conceptual role simultaneously.

7See Barwise & Perry (1983).
c«That paragraph is extraordinarily dense; admit this, and maybe say some-
thing about what it means? A sidebar?»

d«I.e., the ability to refer to the compositional contribution to meaning,
content, and full significance of mereological impressions.»

292 Indiscrete Affairs · 1

lar tax credits have been extended for a year,” the year in question,
and the temporal constraints I place on it by using the past tense,
emerge from the time of my utterance, not from anything explicit
in the [meaning of the] words. And, to take perhaps the ultimate
example, whether what I say is true—which is, after all, part of its
significance—is determined by the world, not (at least typically)
by anything about the sentence itself.

Similarly, as the Carroll paradoxes show,e the fundamental
rules of inference cannot themselves emerge in virtue of being ex-
plicitly represented, because further or deeper rules of inference
would be required in order to use them. Nor do even the so-called
“eternal” sentences of mathematics and logic carry all of their sig-
nificance on their sleeve. [While relevant to their semantical con-
tribution, the syntactic category of lexical items in logical formulae
is not explicitly represented:] that a predicate letter is a predicate
letter is true in, but is not represented by, that formula. Similarly,
Lisp’s being dynamically scoped is not explicitly represented in
Lisp; [the same holds for the order of argument evaluation—left-
to-right or right-to-lefte]. Or take the inheritance example sug-
gested above: suppose you implement a representation system
where a (representation of a) property attached to a node in a
taxonomic lattice is taken to mean “an object of this type should be
taken to have this property unless there is more specific evidence to
the contrary.” Thus, to use the standard example, if an impression
of FLIES(x) is attached to the BIRD node, then the system is wired to
“believe” that a particular bird will fly so long as there is not an
impression of ¬FLIES(x) attached in the lattice between the BIRD
node and the individual node representing the bird in question.
In such a system the content (not meaning!) of the “so long as
there is not…” part of the impression’s meaning is architecturally
determined: it is an implicit part of the overall system’s structure,
not explicitly represented, and it depends on the surrounding cir-
cumstances that obtain throughout the rest of the system, not on
anything local to the particular structure under consideration.

This last example is intended to suggest why I am not distin-

e«They should probably be explained: maybe with reference to the Alice in
Wonderland case?»

e‘«Maybe note that it is not even revealed by standard meta-circular inter-
preter code.»

 5 · Varieties of Self-Reference

 293

guishing internal circumstance (whether there are other impres-
sions standing in certain relational properties with a given one,
say) and external circumstance (who is talking, where the agent is
located, etc.). An informal division between the two will be intro-
duced in section 3, but the similarities are more important than
the differences, as evidenced in the similarities of mechanisms to
cope with them. For one thing, since activity has to arise, ulti-
mately, from the local interaction of parts, it may not matter
whether a part’s relational partner is somewhere across the system,
or outside in the world; what will matter is that it is not right
“here.” Perhaps more significantly, the internal/external distinc-
tion is far from clean: since agents are part of the world in which
they are embedded, some properties cross the boundary. For ex-
ample, the passage of so-called “real time” is often as crucial for in-
ternal mechanism as for overall agent.

 2c Efficiency
Before trying to carve circumstantial relativity into some coherent
substructure, it helps to understand why it is so pervasive. The an-
swer has to do with efficiency, in a broad sense of that term. Spe-
cifically, in order for a finite agent to survive in an indefinitely
variable world, it is important that multiple uses of its parts or as-
pects have different consequences, each appropriate to how the
world is at that particular moment. Partly this enables a system to
avoid drowning in details: any facts that are persistent across its
experience can be “designed out,” so to speak, and carried by the
environment (as gravity carries the orientation argument for the
human notion of to-the-right-of). But efficiency goes deeper, hav-
ing also to do with how to cope with genuinely different situa-
tions.

The point is easiest to see in the case of action, where it is in fact
so obvious as to be almost banal. Specifically, different occurrences
of what we take to be the “same” action have different consequences,
depending on the circumstances of the world in which they take
place. So if I take a scoop with my backhoe, what I pick up in its
shovel will depend not on my action as such, but on the ground
behind my tractor. Thus l can perfectly coherently say things like
“after doing the same thing over and over, l suddenly cut the tele-
phone cable.” I.e., one can imagine viewing an action (read: mean-

294 Indiscrete Affairs · 1

ing) as a relation between a local flexing of the tractor’s append-
ages and the situation in which that flexing takes place. The con-
sequences of the action in a given situation (read: content) can be
determined by applying the relation to the situation itself.

Our conception of actions works in this way because any other
way of “parsing” it would be devastatingly inefficient. Each day we
want our actions to lead to different consequences (eating new
meals, for example); it would be a terrible strain if we had to be
structured differently for each one (to say nothing of: a terrible
strain if we had to describe the way we were structured each day,
in a manner that had to take explicitly into account the meta-
physical way in which the new day was different). As it is, we can
have (or use) a finite and relatively stable structure, which can lo-
cally repeat doing the “same” things; the circumstantial relativity
of perception and action will take care of providing the new conse-
quences. The result is an efficient solution to what Perry charac-
terises as a fundamental design problem:e

“Imagine you want to populate the world with animals that
will act effectively to meet their needs.

There is one fundamental problem. Since these organisms
will be scattered about in different locations, what they
should do to meet their needs will depend on where they are
and what things are like around them. This seems to present
a problem. You can’t just make them all the same, for you
don’t want them to do the same thing. You want those in
front of nuts to lunge and gobble, and those who aren’t to
wander around until they are. (I have Grice’s squarrels in
mind.)

You decide to make them each different…But then it
strikes you that there is a more efficient way to do it. You can
make them all the same, as long as you are a bit more abstract
about it. You can make them all the same, [in the sense of

e«Note that this entire discussion—including Perry’s—only gestures,
rather crudely, at the point, because it makes free use of such construc-
tions as “same” and “different,” both of which are defined with respect to
types, which already build in many of the points being made. To makes
these points without some such presupposition is impossible; to say it as
carefully as possible, while nevertheless acknowledging that ultimate limita-
tion, would take several pages of exceedingly complex metaphysics.»

 5 · Varieties of Self-Reference

 295

having] their action controlling states depend on where they
are. And you can do that, by giving them perception, as long
as it is perception of the things about them. That is, you can
make their internal states work in terms of what we have
called subject relative conditions and abilities. You make them
each go into state G when they are hungry and there are
nuts in front of them, and each lunge forward and gobble
when they are in state G.

This way of solving a design problem, we call efficiency.”8

Like eating, representation needs to be efficient, and for similar
reasons. First, actions are required in order to use and profit from
the internal impressions: what page a least-recently-used virtual
memory system discards, for example, will depend on circum-
stances. Second, impressions can themselves be circumstantially
relative (what Perry calls “subject-relative”) as both the pronoun
and inheritance examples show. Finally, you would expect ground-
level representations—representations connected directly with ac-
tion and perception—to have the same (efficient) relativity as the
actions and perceptions with which they are connected. Only in
this way is there any hope of giving the connection between repre-
sentation and action the requisite integrity. It is plausible to imag-
ine a signal on the optic nerve directly engendering a rough im-
pression of THERE-IS-SOMETHING-TO-THE-RIGHT, but implausible
to imagine its producing (and even this, of course, is still earth-
relative):f

 RIGHT(SOMETHING, 38°N/120°W, 187°N, GRAVITY-NORMAL,
 3-JAN-86/12:40:04)

Similarly, the stomach must first create the grounded, impression
“HUNGRY!”; it takes inference to turn this into “Won’t you have
some more pie?”

 2d The Role of the Self
Circumstantial relativity is not something an agent should expect

8Perry (1983); second emphasis added.
fThe arguments of location (38°N/120°W), orientation (187°N), vertical-
orientation (GRAVITY-NORMAL), and time (3-JAN-86/12:40:04) held of the
author at the moment this paper was written.

296 Indiscrete Affairs · 1

to get over, but it [nevertheless] has a down side. First, it does not
lend itself to communication, if the relevant circumstances of the
two communicators differ. If some agent A were simply to give an-
other agent B a copy of one of its representational impressions, and
B were to incorporate it bodily, the result might have completely
different significance (and possibly even meaning) from the origi-
nal. Information would not have been conveyed.g If you are facing
me, hear me say “There is a bear on the right!”, take the sentence as
your own, and then leap to your left, you would land in trouble.

Second, one of representation’s great virtues is that it can em-
power a system with respect to situations remote in space or time,
outside the system’s own local circumstances.g However, in order
to represent those situations using impressions connected to those
it uses to control action, the system must at least represent its own
relativity, in order to be able to mediate between those less self-
relative generalisations and more familiar implicit ones. I.e., to the
extent that the content of its representational structures arise from
implicit factors, it is impossible for a system to modify, discrimi-
nate with respect to, or make different use of any of the implicitly
represented aspects of those representations’ contents. If
“HUNGRY!”, without any argument, is the system’s only means of
representing the property of hunger, then it will not be able to rep-
resent any generalisation involving anyone else (such as that the
bear on the right is hungry), or anything generic, such as that
hunger sharpens the mind.

The third limit arising from circumstantial relativity depends
on another fundamental fact about representation: its ability to
represent situations in ways other than how they are. I will call
this property of representation its partial disconnection (thus tree
rings, under normal conditions of rainfall, do not quite qualify as
representations, on this account, because they are so nomically
locked in to what they purportedly represent that they cannot be
wrong). A particular case of internal disconnection illustrates the
third limit of circumstantial relativity.

Typically, as long as some aspect of its internal architecture is

gOn the assumption that by ‘information’ we mean information content.
g«Put in a pointer to the non-effective relations to the distal that occupy so
much of my attention later on.»

 5 · Varieties of Self-Reference

 297

not represented, a system will behave in the “standard” way with
respect to that aspect. So to consider the inheritance example
again, the default FLIES(x) will always be interpreted by the under-
lying architecture in the “so long as there is not…” way. Suppose,
however, that you want a variant on this behaviour: say, that the
default should be over-ridden not if any specific information to
the contrary is represented, but only if that more specific contrary
information has been obtained from a reliable external source. Be-
ing implicit, however, the default way of doing things is not avail-
able for this kind of modification. But if the internal dependence
had been explicitly represented, then (as a consequence of the gen-
erative power of representation generally) the appropriate modifi-
cation of the default behaviour could likely be represented as well.
[And then—assuming that representation of internal behaviour is
causally linked with how and what internal behaviour actual
comes about, the modification could take effect.g] In this way (un-
der some constraints we will get to in a moment) a system could
alter its behaviour appropriately.

In sum, explicit representation of circumstantial relativity paves
the way for more flexible behaviour; without it, a system is locked
into its primitive ways of doing things.

Among other things, the representation of circumstantial relativ-
ity requires the representation of one’s self, because that self, [in
both its generality and particularity, is almost invariably] the ul-
timate source of the relativity. There are of course different aspects
of self, corresponding to different aspects of relativity: the self as a
unity (useful in such cases as TO-THE-RIGHT-OF), the self as a
complex organization (applicable to the inheritance example), the
self as an agent (relevant to generalising about the consequences of
hunger).

Note that merely giving a system an impression that refers to it-
self does not automatically solve the problem of circumstantial
relativity. To see this, imagine installing within a system, as if by
surgery, some impressions less self-relative than usual. For exam-
ple, one might imagine giving a system: (i) a three-place represen-

g«Say something about how this “causal connection” becomes a big issue
later on—and cite §.»

298 Indiscrete Affairs · 1

tation of “to-the-right-of”—say, RIGHT3(x,y,z); and (ii) a distin-
guished token—say, $ME—to use as its own name. Chances are
that the provision of such representations would be conceptually
possible, in the sense of not being architecturally precluded. They
might enable the system or agent to reason (rather like a theorem-
proving system) about some world. The problem would be that,
without additional machinery, there would be no way for that
system to act in that world, were it to find itself suddenly located
there—i.e., no way for it to connect an occasioning of RIGHT3 with
an occasioning of the grounded THERE’S-8OMETHING-TO-THE-
RIGHT!). The experience for the system might be a little like that of
students who learn mathematics in a totally formal way (in the
derogative sense), being able to manipulate formulae of various
shapes around in prescribed ways, with no real sense of what they
mean. Merely providing such explicitised representations, and ty-
ing them into the system’s general reasoning abilities, does not in
and of itself make such representations matter to the system; they
would not thereby be connected with the agent’s life [in the way in
which the presumed interpretation would imply]. Furthermore, in
a more realistic case where surgery is precluded (say, ours), there
is no way to see how such representations could arise [either
phylogenetically or ontogenetically], given that they would have
no direct tie to action or perception.

There is a problem, in other words: systems and agents must
connect any explicit representations of their circumstantial relativ-
ity with their grounded, circumstantially relative representations,
which in turn connect with action. I will call this the problem of
appropriately connected detachment. Entirely disconnected de-
tachment, as the surgery example shows, is likely to be easy
enough to obtain (at least in some architectural sense), but on its
own would not be significant. Totally connected detachment,
though somewhat of a contradiction in terms, one be imagined as
an explicit representation so locked into the default circumstances
that it provides no power above and beyond what the grounded
default case provided in the first place (tree rings might be an ex-
ample—they are fully connected, at least for the live tree).

What is wanted is a mechanism that will continually mediate
between the two kinds of representation—that will enable a system
to shift, smoothly and flexibly, between indexical and implicit rep-

 5 · Varieties of Self-Reference

 299

resentations that can engender action, and generic and more ex-
plicit representations that enable it to communicate with others
and in general have a certain detachment from its own circum-
stances. The problem, that is, is to provide something like an abil-
ity to “translate” between the two kinds (or, rather, among elements
arranged along a continuum, or even throughout a space—as we
have started to see, this is no simple dichotomy), just often enough
to maintain the appropriate causal connection between located
action and detached reasoning, but not so often as to lock them to-
gether. The right degree of partially causally connected self-
reference, in other words, is our candidate for solving the problem
of connected detachment. It enables a system to extricate itself from
the limits of its own indexicality, and yet at the very same moment
to remain causally connected to its own ability to act.

There is one final thing to be said about self-reference mecha-
nisms in general, before turning to particular varieties. In any rep-
resentational system, [it is widely agreed], the task domain or sub-
ject matter must be represented in terms of what we might call a
theory or conceptual scheme that identifies the salient objects, prop-
erties, relations, etc., in terms of which the terms and claims of the
representation are stated [i.e., in terms of which that task domain
or subject matter is found intelligible]. With the possible exception
of some extreme limiting cases, that is, [it is safe to say that] repre-
sentation is theory-relative. By this I do not mean so much relative
to an explicit account, in the sense of a theory viewed as a set of
sentences, but relative to a way of carving the world up, a way of
finding oneself coherent, a scheme of individuation.h

Granting this theory-relativity, we can see that causally con-
nected self-reference requires the following three things:

1. A theory of the self, in terms of which the system’s behav-
iour, structure, or significance can be found coherent.
There is no particular aspect of the self that needs to be
made explicit by this theory; we will see examples ranging
from almost content-free sets of names, to complex accounts
of internal properties and external relations.

hPoint forward to the discourse on registration that I introduce—in O3?»

300 Indiscrete Affairs · 1

2. An encoding of this theory within the system, so that
representations or impressions formulated in its terms can
play a causal role in guiding the behaviour of the system.

3. A mechanism of appropriate causal connection that en-
ables smooth shifting back and forth between direct think-
ing about, and acting in, the world, and detached reason-
ing about one’s self and one’s embedding circumstances.
The only example we have seen so far is a mechanism that
mediates between k-ary and k+1-ary representations of n-
ary relations, as in the TO-THE-RIGHT-OF case; more com-
plex examples will emerge.

The first two alone are not sufficient because they do not address
the problem of causal connection. Thus the so-called “meta-
circular interpreters” of List, as presented for example in Steele &
Sussman (1978), meet the first two requirements, but since there is
no connection between such meta-circular interpreters and the
underlying system they are disconnected models of, they fail to
meet the third. As such, they fail to meet the criterion of being able
to serve as appropriately causally connected self-reference.

 3 The Structure of Circumstance
I said earlier that particular mechanisms of self-reference can be
understood as responses to different aspects of circumstantial
relativity, which depend in turn on different aspects of circum-
stance itself. This means that, in order to understand these differ-
ent mechanisms, we need an account of how circumstance is struc-
tured. This is a problem, for several reasons. First, there is proba-
bly no more problematic area of semantics. Second, we need a gen-
eral account, since the whole point is to unify different proposals;
nothing would be served by an account of how circumstance is
treated by, say, semantic net impressions of a first-order language.
Third, we especially cannot assume the circumstantial structure of
traditional first-order logic, since the whole attempt to make logi-
cal and mathematical language “eternal” can be viewed as an at-
tempt to rid such systems of as much circumstantial relativity as
possible. Although that goal has not entirely been met, as the
Carroll paradoxes show, the formulae of logical systems certainly
lack some of the important kinds of relativity that characterise em-

 5 · Varieties of Self-Reference

 301

bedded systems.
Given these difficulties, my strategy will be to give a rough

sketch of some of the possible structure of circumstance. All that I
will ask is that what I provide support the demands of the next sec-
tion. Since my basic aim is to show how the structure of self-
reference reflects the structure of circumstantial relativity, any par-
ticular analysis of circumstance—including this one—can be
taken as somewhat of an example.

By the immediate aspects or properties of a representational
structure or impression l will mean those properties that can play a
direct causal role in engendering any computational regimen de-
fined over them. As such, they must not be relational—especially
not to distal objects—but instead be locally and directly deter-
minable (at least local and determinable within the system as a
single whole), in such a way that a process interacting with or us-
ing the representation can “read off” [the presence or absence of an
instantiation of] the property without further ado (i.e., without in-
ference). Immediate aspects or properties, that is, must be immedi-
ately causally effective, in the sense that processes interacting with
the structures can act differentially depending on their presence or
absence—depending on whether or not they are occasioned.

For example, the (type) identity of tokens of a representational
code (i.e., whether or not a given structure is a token of the word
‘elaborate’), how many elements a composite structure has, etc.,
would on this account be counted as immediate. Non-immediate
properties would include truth, being my favourite representation,
and whether there is another type-identical representation else-
where in a larger composite structure or system of which this par-
ticular representational structure is a part. This last example sug-
gests that immediacy, which otherwise sounds like Fodor’s notion
of a formal property, is more locally restrictive, since all “internal”
properties of a computational system, it seems, count as formal to
him.9 Positive existence will count as immediate, but negative exis-
tence not, since there is nothing for the latter property to be an im-
mediate property of.

9Immediacy can also be less restrictive than formality, however, since I will
countenance some semantic properties as immediate, such as the refer-
ence of direct quotations, small arithmetic properties exemplified by im-
mediate structures, etc. See Fodor (1980) and Smith «forthcoming (a)».

302 Indiscrete Affairs · 1

Although it is tempting to compare the notion of an immediate
property with apparently more familiar notions, such as of a syn-
tactic, intrinsic, or non-relational property, such comparisons would
involve us in more complexity than they are worth. The important
point is merely that, with the notion of immediacy, I mean to get at
those aspects of a representational structure that [are available to]
affect or engender processes that use it; just what such potentially
effective properties are, especially in any given case, is less impor-
tant.i

In the last section I distinguished a system as a whole, its ingredi-
ent structures, and those structure’s aspects or parts. With (i) that
set of distinctions, (ii) our semantic notions of meaning, content,
and significance, and (iii) the current notion of immediacy, we
have in hand everything we are going to need to lay out the ac-
count of self-reference.

Specifically, I will say that something is explicitly represented
by a structure or impression if it is represented by an immediate
aspect of that structure. In contrast, something is implicit (with
respect to an action or representation) if it is part of the circum-
stances that determine the content or significance of the represen-
tation or action, but is not explicitly represented. For example, I am
explicitly represented by the sentence “I am now writing section 3
of this paper,” since ‘I’ is a grammatical constituent of that sen-
tence, and constituent identity is immediate. On the other hand, if
I continue by saying “but I should stop because it is after mid-
night,” and the word ‘midnight’ represents the time in the Pacific
Time Zone, then the Pacific Time Zone is an implicit part of the
relevant circumstances (even though it is not part of the reference
of ‘midnight’—i.e., of the metaphysical moment thereby referred
to). Similarly, if I say “There is a bear to the right,” I am implicitly
involved, but not explicitly represented.

iTo put this on the verge of pedantically, one could say that immediacy is a
relational higher-order property, since it has to do with the ability of (a to-
kening or occasioning of) another property to cause an effect; whereas syn-
tactic, intrinsic, formal, etc., could at least be argued to be non-relational
higher-order properties, if one felt that whether a property was or was not
a syntactic property depending solely on, as it were, ‘local’ or intrinsic facts
about that property itself.

 5 · Varieties of Self-Reference

 303

There are shades of a use/mention distinction in the way I am
characterising the implicit/explicit distinction: things are explic-
itly represented (nothing, yet, is explicit on its own) only if they
are out there in the content, so to speak—part of the described
situation, or referents. Something is explicitly represented, that is,
only if it is mentioned,j whereas something can be implicit either if
it is used, or if it plays a middle role, not part of the sign itself, nor
of the content or significance, but of the surrounding circum-
stances that mediate between the two. Thus the words of an utter-
ance, on this view, are an implicit part of the circumstances that
determine that utterance’s content, since they are not themselves
explicitly represented by the utterance (i.e., I am explicitly repre-
sented by the sentence “I am writing,” but in that sentence the word
‘I’ plays only an implicit role). Where it will not cause confusion,
however, I will also talk about explicit or implicit representations of
things, as shorthand for “representations that represent those
things explicitly or implicitly.”

Finally, by extension, I will say that something is explicit (sim-
pliciter) only if it meets two criteria: (i) it is explicitly represented,
and (ii) it plays the role it plays in virtue of that explicit represen-
tation. So someone would be said to be an explicit part of a conver-
sation only if they were explicitly referred to, and had whatever in-
fluence they had in virtue of that explicit representation. From this
definition it follows that to make something explicit is to repre-
sent it explicitly in a causally connected way. Being implicit and
explicit thus end up rather on a par, in the sense that both have to
do with playing a role: to be implicit is to play a role directly; to be
explicit is to play a role in virtue of being explicitly represented—
which is to say, being represented by an immediate property.

We need to define one further notion, and then we are done. I

jHere and elsewhere throughout my writings, it is my habit to generalise the
familiar notions of ‘use’ and ‘mention’ by extending ‘mention’ to apply to
those objects referred to or named by uses of ground-level terms. Thus I
would not only say (i) that, in the sentence “The word ‘Nile’ contains four
letters,” the six-character expression ‘Nile’ is used, whereas the four-letter
expression Nile is thereby mentioned (using italics in these last two
phrases as a mentioning device!); but also (ii) that in the sentence “The Nile
is more than four thousand miles long,” the four-letter expression Nile is
mentioned, and a very long river is mentioned.

304 Indiscrete Affairs · 1

have already called representational structures self-relative if dif-
ferent occurrences of them (or things of which those occurrences
are a part) are part of the circumstances that determine their con-
tent. As pointed out above, however, there is more than one notion
of part: part of the whole, and part of part of the whole. Rather
than proliferating a raft of different mereological notions of self-
relativity, it will be convenient merely to separate the facts and
situations of the overall circumstances into three broad categories:
external circumstances, having to do with parts of the world in
which the overall system is not a participant; indexical circum-
stances, including those situations in the world at large in which
the system is a constituent, and internal circumstances, includ-
ing both the ingredient impressions, processes defined over them,
relations among them, etc. Thus who is President, at the time of
any given utterance or act of reasoning, and whether Shakespeare
wrote the sonnet discovered in the Bodleian Library, would be
paradigmatically external. Where a person or reasoning agent
was, and whom it was talking to, would be (for it) indexical. In-
ternal circumstances would include whether a represented for-
mula’s negation is also represented; what inference rules can be, or
are being, applied; how often this impression has been used since
the system’s last cup of coffee; etc. Finally, representations will de-
rivatively be called external, indexical, or internal (or a mixture)
depending on whether their content depends on the correspond-
ing kind of circumstance.

This typology allows us to say all sorts of natural things: that
the agent plays an implicit role in the significance of THERE-IS-
SOMETHING-TO-THE-RIGHT!; that ‘I’ is an explicit, indexical repre-
sentation of an agent; that a truly unique identifier would be an
explicit, non-indexical name; etc. Note also that a formula in a
system of first order logic, at least in terms of its standard model-
theoretic interpretation, has no implicit relativity to external or in-
dexical circumstance (other than to the described situation itself),
and no relativity to internal circumstance “outside” the formula,
but aspects of it are nonetheless relative to the (implicit) internal
structure of the formula itself. Whether an occurrence of variable
is free, for example, or what quantifier binds it, is implicitly deter-
mined by the structure of the expression containing it. Prolog im-
pressions, however, are implicitly relative to internal circumstances

 5 · Varieties of Self-Reference

 305

of the beyond-formula variety (because of such operations as CUT,
etc.), and are often used indexically. For example, the Prolog term
RIGHT(JOHN,MARY), if it meant that Mary was to the right of John
from the system’s perspective, would be counted as indexical.

 4 Varieties of Self-Reference
We are now finally in a position to show how various mecha-
nisms of self-reference facilitate various forms of connected de-
tachment.

 4a. Autonymy
I will call a system autonymic just in case it is capable of using a
name for itself in an appropriately causally connected way. Just
using a name that refers to itself does not make a system
autonymic, even if that use affects the system in some way. What
matters is that the name connect up, for the system, with its under-
lying, grounded, indexical architecture. To see this, imagine an
expert system designed to diagnose possible hardware faults based
on statistical analyses of reports of recoverable errors. Such a sys-
tem might be given the data on its own recoverable errors, filed
under a name known by its users to refer to it. The system’s run-
ning this particular data set, furthermore, might eventually affect
its very own existence (leading to board replacement, say). Even so,
the system’s behaviour in this case would not be any different from
its behaviour in any other; it would yield up its conclusions en-
tirely unaffected by the self-referential character of this externally
provided name. When systems or agents respond differentially,
however as for example do most electronic mail systems, which
recognise and deal specially with messages addressed to their own
users, forwarding other messages along to neighbouring ma-
chines—they will merit the autonymical label.

As we have already seen, two ingredients are required for
autonymy. The first is a mechanism to convert between k-ary and
k+1-ary impressions of n-ary relations.10 For example, from the 0-

10For reasons that will be obvious, I do not think there is ever any reason—
or need—to presume there is a final “fact of the matter” regarding how
many arguments relations really have (or even that relations, as opposed to
representations of them. have an “arity”). What is needed (for example in a
scientific account) is a representation that makes explicit enough of the ar-

306 Indiscrete Affairs · 1

ary HUNGRY! and unary RIGHT(SOMEONE), we need to produce
HUNGRY(__), and RIGHT(SOMEONE,__). Second, we need a term or
name to use so that the new, more explicit, version has the same
content as the prior, implicit version. This is required because, on
the story we are telling, it is this particular explicit version that, in
virtue of being connected, through the processes of causal connec-
tion, to the implicit perceptual and action-engendering version,
gives any more general explicit versions their semantic integrity.

As the mail example suggests, something like a unique identi-
fier can play this role. This is common in computational cases: de-
signers of autonymic systems typically provide a way in which
each system, though initially cast from the same mold, can be in-
dividually modified to react to its own unique name before being
brought into service (a chore the system operators would do in
“initializing” the system). As Perry suggests, however, this is not
efficient: it requires that each system be structured somewhat dif-
ferently. What is distinctive about the pronoun ‘I’, in contrast, is
that it gives exactly (type-)identical systems a way of explicitly re-
ferring to themselves. ‘I’, in other words, is an indexical term al-
lowing explicit but self-relative (hence efficient) self-reference. On
its own it does not help a system escape from its indexicality, but,
because it makes that indexicality explicit, it is the minimal step
away from fully implicit indexicality.

Causal connections to implement autonymy are so simple as to
seem trivial, but their importance outstrips their simple structure.
The mail systems provide a good example: that each mail host rec-
ognise its own name, and attach its own name to messages headed
out into the external world, is a simple enough task, but absolutely
crucial to the functioning of the electronic mail community.

 4b Introspection
In virtue of the inherent simplicity of names, purely autonymic
mechanisms are almost completely theory-neutral. By introspec-

guments so as to be able to convey, as widely as possible, insight, under-
standing, truth, whatever. If the universe were in fact an ordered progres-
sion of big bangs, numbered 1–…, with k spatial dimensions and forces
proportional to l/rk-1 in each case (i.e., we are currently in the third round),
all the relations of physics would turn out to have another parameter. That
would be OK.

 5 · Varieties of Self-Reference

 307

tive systems, in contrast, I will refer to systems with causally con-
nected self-referential mechanisms that render explicit, in some
substantial way, some of their otherwise implicit internal struc-
ture. Since most of the self-referential mechanisms that have actu-
ally been proposed fall in this class, this variety of self-reference
will occupy most of our remaining attention.

The first step, in analysing introspective systems, is to distin-
guish our own theoretical commitments from the theoretical com-
mitments we attribute to the agents we study. The difference can
be seen by comparing Levesque’s logic of “explicit” and “implicit”
belief11 (his terms, not ours, though the meanings are similar)
with Fagin & Halpern’s logics of belief and awareness.12
Levesque’s use of the predicates B and L for explicit and implicit
belief are predicates of the theorist: nothing in his account—as he
himself notes—commits him to the view that the agents he de-
scribes parse the world in terms of anything like the belief predi-
cate (i.e., in Fagin & Halpern’s phrase, they need not be “aware” of
the belief predicate). Fagin and Halpern, on the other hand, when
they use such axioms as Bf ⇒ BBf, thereby commit the agents to an
awareness of the same belief predicate they themselves use, I.e., for
us to say “A believes f” is for us to adopt the notion of belief; for us
to say “A believes that it believes f” commits A to the notion of belief
as well. Iterated epistemic axioms such as Bf ⇒ BBf can therefore
be substantially misleading, since any inner (non-initial) B’s
must represents the agents’ notion; the outer ones will be only the
theorists’.

In the self-referential models typical of the autoepistemic tradi-
tion, the correspondence between explicit representation and belief
is so close that this identification of agent’s and theorist’s com-
mitment seems harmless, but when we deal with more complex in-
trospective theories we will have to allocate theoretical commit-
ments more carefully. For example, some theories that are straight-
forward, from a theorist’s point of view, may be difficult or impos-
sible for introspective systems to use, if they assume a perspective
necessarily external to the agents they are theories of. Further-
more, different introspective theories require different primitive

11Levesque (1984).
12Fagin & Halpern (1985)

308 Indiscrete Affairs · 1

(“wired-in”) support, whereas we, as external theorists, can use
any theory we like, without fear of architectural consequence. For
example, it is only a small move for a theorist to change from a the-
ory of a programming language that objectifies only the environ-
ment, to one that also objectifies the continuation. On the other
hand, programming systems that can introspect using continua-
tions are an order of magnitude more subtle than ones that intro-
spect solely in terms of environments (we will see why this is so in
a moment).

Keeping these cautions in mind, consider, as a first introspec-
tive example, an almost trivial autoepistemic computational agent
comprising a set of base level representations, whose content,
though perhaps self-relative, has primarily to do with facts about
the world external to the system. As is usual in such cases, we will
presume that the representation of each fact, within the system, en-
genders the system’s belief in that fact—that is, we will adopt the
Knowledge Representation Hypothesis laid out in Smith (1985)—
so for familiarity we will call these representations beliefs rather
than impressions. Ignore reasoning entirely, for the moment, and
assume that the agent believes only what has somehow been stored
in its memory. For introspective capability, augment the base set of
beliefs with a set of sentences formulated in terms of what Levesque
calls an explicit belief predicate. So, for example, as well as contain-
ing the “belief” MARRIED(JOHN), imagine the system also being able
to represent B(MARNLED(JOHN)).13 I will call the whole system S,
and its simple introspective representations B-sentences. (Note: In
this and subsequent discussion [am representing impressions
within S, not giving theoretical statements in an external logic
about S, so sentences of the form f represent beliefs S already has,
and B-sentences represent introspective beliefs. All occurrences of
B, in other words, represent theoretical commitments on S’s part.)

S’s B-sentences, though introspective, are still implicit and in-
dexical, in several ways. First, the agent doing the believing—i.e., S
itself—remains implicitly (and efficiently) determined by internal
circumstance, as does the current belief set with respect to which

13Or, if you prefer, B(‘MARRIED(JOHN)’). For purposes of this paper I do
not need to take a stand on the question of the semantic or syntactic na-
ture of believe objects—which is fortunate, because I no longer think it is a
well-formed question. See «Smith forthcoming (b)».

 5 · Varieties of Self-Reference

 309

the B-sentence derives its truth conditions. I.e., B(a) is true just in
case a is one of the base-level sentences, meaning that it is explicitly
represented in S’s general internal store, which will presumably
change over time. Furthermore, by hypothesis, any implicitness or
indexicality of S’s base-level beliefs is inherited by the B-sentences:
B(RIGHT(x)) is no more explicit about RIGHT’s other three argu-
ments than is the simpler RIGHT(x).

Given that S is so simple, do the B-sentences do any useful
work? Since we have claimed that introspective representations
render explicit what was otherwise implicit, it is natural to wonder
what otherwise implicit aspect of S’s base-level beliefs these B-
sentences represent. The answer requires a simple typology of “re-
lations of structured correspondence”. In particular, I will call a
representation iconic (what is sometimes called analogue) if it rep-
resents each object, property, and relation in the represented do-
main with a corresponding object, property, and relation in the
representation (iconic representations are thus fully explicit).
Similarly, I will say that a representation objectifies any property
or relation that it represents with an object.k Thus for example the
sentence MARRIEO(JOHN,MARY) objectifies marriage, since it uses
(an instance of) the object ‘MARRIED’ to signify (an instance of) the
relation of marriage that connects John and Mary. A representa-
tion absorbs any object, property, or relation that it represents
with itself (thus the grammar rule EXP ⇒ OP(EXP,EXP) absorbs left-
to-right adjacency). Finally, I will say that a representation is po-
lar just in case it represents an absence with a presence, or vice
versa (positive polarity in the first case, negative in the second). For
example, the absence of a key in a hotel mail slot is often taken to
signify the presence of the tenant in the hotel, making mail slots a
negatively polar iconic representation of occupancy.l

If all B-sentences were positive, then S’s introspective represen-
tations would be a partial, non-polar, iconic representation of its
base level beliefs (partial because we are not necessarily assuming
B(a) for all a). Since such representations objectify nothing, and
therefore do not increase the explicitness of the base level, they are

k«These notions of iconicity, objectification, absorption, and polarity are
taken from “The Correspondence Continuum,”, q.v.»

lNeedless to say, an example from the 1980s.

310 Indiscrete Affairs · 1

not of much use on their own. Causal connection for them is also
relatively trivial. Negative B-sentences, however, of the form ¬B(a),
make the introspective representations positively polar, thereby ob-
jectifying an otherwise implicit property of base level representa-
tions: namely, the property of negative existence (we have already
seen that negative existence is not immediate, which forces it to be
implicit, unless explicitly represented, as in this case). Thus ¬B(a)
makes explicit one of the simplest imaginable implicit properties of
a set of internal representations. No slight on importance is sug-
gested, but it is noteworthy how close the correspondence between
introspective impression and baseqevel impression remains: the
objects of the introspective level correspond one-to-one with the ob-
jects of the base level: only a single, unary property is objectified
(no relations); etc. Nonetheless, as logicians are not the only ones
who know, that one act of “rendering something explicit” can have
substantial computational consequences, because—once appro-
priate causal connection is provided—it makes immediate what
was not otherwise immediate, with the effect that computational
consequence can depend directly on the absence of a belief, which
it could not (at least not easily) do in the non-introspective ver-
sion.

Causal connection, even with the positive polarity, is still rela-
tively simple. B(a) will be true just in case a is an element of the set
of representational impressions, and although negative existence
is not an immediate property of the belief set, constituent identity
in a finite set is, so that negative existence can be “computed” with
only a moderate amount of inference—just a membership check
on the base level belief set. Thus returning ‘yes’ or ‘no’ upon being
asked “B(a)?” is relatively straightforward. It is less clear what
should happen if ¬B(a) were to be asserted, although one can eas-
ily imagine a system in which this would either trigger a com-
plaint, if a were already in the base set of impressions, or else per-
haps cause its removal.

This example illustrates what will become an increasingly
common theme: whether causal connection is typically easy or
hard depending on two things:

1. The explicitness of the introspective representation (that is,
the closeness of correspondence between the immediate

 5 · Varieties of Self-Reference

 311

properties of the introspective representation and its con-
tent); and

2. The immediacy of the aspects of self thereby explicitly rep-
resented.m

An explicit representation of immediate properties of base-level be-
liefs, that is (such as their “syntactic” properties, their presence or
absence, which we have in this case, etc.), sustains relatively
straightforward causal connection.14 This equation—immediacy
on both ends, simply connected—is hardly surprising, since im-
mediacy is what engenders computational effect, and computa-
tional effect is required at both ends of causal connection. To the
extent that either (i) immediacy on either end is lessened, or (ii)
the connection between them becomes more complex, causal con-
nection typically becomes that much more difficult.

Examples of such difficulty are not hard to come by. They arise
as soon as we complicate the example and consider introspective
impressions that represent more complex internal properties—
particularly relational ones. Curiously, in these more realistic
cases introspective relativity itself tends to rise, as well as the non-
immediacy of what is represented. Thus consider Moore’s (1983)
interpretation of M(a) as “a is consistent.” This introspective repre-
sentation is locally indexical because it is relative to the entire
base-level set of representations, which is not explicitly represented
with its own parameter. Moore himself points out this relativity:

“The operator M changes its meaning with context just as do
indexical words in natural language, such as ‘I’, ‘here’, and
‘now’…Whereas default reasoning is nonmonotonic because
it is defeasible, autoepistemic reasoning is nonmonotonic be-
cause it is indexical. “15

As it happens, however, this indexicality is not what makes the
causal connectivity of consistency difficult; rather, the problem

m«Check this out—is this really right? In particular, isn’t it correspondence
between immediacy and immediacy? Is that what explicitness comes to?

14This is really the point made in Konolige (1985).
15Moore (1983) pp. 6–7. By ‘meaning’ Moore means what we are here call-
ing content, and by ‘indexical’ he means what we mean by ‘internally rela-
tive,’ but his point of course is valid.

312 Indiscrete Affairs · 1

stems from the fact that property of consistency is not itself imme-
diate, but a (computationally expensive) relational property of the
entire base-level set. Similarly, when interpreted as “implied (or
entailed) by the base level set,” as in both Konolige and Fagin &
Halpern,16 B becomes a relational, not immediate property
(though again it is circumstantially relative), and causal connec-
tion consequently grows problematic.

The environment and continuation aspects of the control struc-
ture of Lisp programs, made explicit in the introspective 3Lisp,17
are also implicit, but not relational, and therefore more computa-
tionally tractable than consistency. 3Lisp is so designed that
causal connection is supported in both directions (see below); as
well as obtaining a representation of what the continuation was,
you can also cause the continuation to be as represented. So in
3Lisp you can assert the introspective representation (it is not clear
what that would mean under the consistency reading of M(a), for
example). Similarly, various different aspects of the Prolog proof
procedure—goal set, control strategy, output—are made intro-
spectively explicit in Bowen & Kowalski’s amalgamated logic pro-
gramming proposals.18 Again, the consistent assumption sets in a
truth-maintenance system, typically implicit, are made explicit in
deKleer’s assumption-based truth maintenance system ATMS.19

Since it would be hopeless to delve into these or other introspec-
tive proposals in depth, I will devote the remainder of this section
to three broad problems they all must deal with. Before doing so,
however, it is important to note that the introspective models that
typify the autoepistemic tradition represent an extremely con-
strained conception of introspective possibility. Admittedly, that
tradition does not limit introspective beliefs to B(a) or ¬B(a), with
B meaning “is immediately represented in the base level set,” as our
initial example suggests; the consistency reading of M, as Moore’s
example shows, and readings of B (or L) as “is implied by the rest
of the belief set” are much more complex, as the discussion of
causal connection makes clear. Nonetheless, such accounts can
still largely be viewed as positively polar, iconic representations of

16«ibid, ibid»
17«Ref»
18«Ref»
19deKleer (1986).

 5 · Varieties of Self-Reference

 313

derivable extensions of the base set. There is no inherent reason,
however, to limit introspective deliberations to such one- or two-
predicate vocabularies: one can easily imagine systems with intro-
spective access to proof mechanisms and the state of proof proce-
dures (as is typical in proposals from the control camp), or theo-
ries of self that deal with whether ground-level beliefs are chau-
vinist, creative, or largely derived from children’s books. The kinds
of meta-level reasoning that prompted Artificial Intelligence’s
original interest in self, cited for example in Collins (1975), are
not limited to knowing what one believes, but having some under-
standing of it. The potential subject matter of introspection, in
other words, should be understand to be at least as broad as nec-
essary to include clinical psychology and psychiatry, and perhaps
sociology as well. In sum, whereas one can agree with Konolige’s
(1985) opening statement that “introspection is a general term cov-
ering the ability of an agent to reflect upon the workings of his
own cognitive functions,” there is no reason to limit those reflec-
tions as drastically as he does in constraining his “ideal introspec-
tive agents” to think nothing more interesting than “do I or don’t I
believe a?”

 4.b.i Introspective Integrity
The three issues that must be faced by any model of introspection
are largely independent of basic cognitive architecture or theory of
self. The first l call introspective integrity: it includes all ques-
tions of whether introspective representations are true, but extends
as well to questions of whether any other significant properties
they have (truth is only one) mesh appropriately with their con-
tent. In S,’s case integrity is relatively simple: B(a) should be repre-
sented just in case a is, and ¬B(a) just in case a is not. This simplic-
ity depends partly on the simplicity of the introspective representa-
tional language, but also on another property of S we have not yet
mentioned: the truth of S’s introspective structures depends only
on facts about the base-level representations, independent of intro-
spective commentary. For an example where this does not hold,
imagine a system where any impression (base-level or otherwise)
is believed unless there is introspective annotation stating otherwise.
Such a system would probably profit from an explicit representa-
tion of the truth and belief predicates, so that statements like “I

314 Indiscrete Affairs · 1

should probably believe this, even though Mary doubts it,” and
“This cannot be true, because it conflicts with something else I be-
lieve” could be straightforwardly represented (truth-maintenance
systems are not unlike this). In such a case it would be natural to
ask of any given base-level impression whether it is believed, but
this cannot be settled by inspecting only the base-level impres-
sions. It would depend both on the state of the base level memory
and on implications of the introspective commentary, and might
therefore be arbitrarily difficult to decide. The truth-functional
integrity of such a system would thus be inextricably relational.

Integrity is not offered as a property an introspective system
must achieve, but rather as a notion with which to categorise and
understand particular introspective axioms and mechanisms. For
example, all of Konolige’s notions of ”ideality,” “faithfulness,” and
“fulfillment” can be viewed as proposals for kinds of partial integ-
rity. Similarly, Fagin and Halpern’s Aif ⇒ AiAif axiom for self-
reflective systems is an axiom that ensures introspective integrity
for their notion of awareness. In a particular case even outright in-
trospective falsehoods could be licensed.

Truth is not the only significant property, and therefore is not
the only aspect of integrity that matters, as we can see by looking at
Bowen and Kowalski’s DEMO predicate.20 According to the stan-
dard story, logic programs have both a declarative reading, under
which clauses can be taken as formulae in a first-order language,
and a procedural reading, under which they (implicitly) specify a
particular control sequence, which implements a particular in-
stance of the proof (derivability) relation. It follows that the de-
clarative reading of DEMO should signify an abstraction over the
(implicit) procedural regimen (i.e., [[DEMO]] = £, to be a little cava-
lier about notation). But this is not all that is required, if DEMO is
to play the role that Bowen and Kowalski imagine; it must also be
the case that the procedural reading of DEMO—i.e., the control se-
quence engendered by an instance of DEMO(PROG,GOALS)—must
also lead to GOALS’ being (actively) derived from PROG. Similarly,
in 3Lisp, where ‘f’ was used in the external theory to signify con-
tent (i.e., roughly [[…]]), and ‘c” to signify procedural consequence
(roughly, £), and where the internal (impression) designing pro-

20«Ref»

 5 · Varieties of Self-Reference

 315

cedural consequence was called NORMALISE was the internal im-
pression representing procedural consequence,21 it was necessary
to show not only that f(NORMALISE)=c, but also, very roughly (ig-
noring some use/mention issues) that c(NORMALISE)≈c. The gen-
eral point is the following: suppose you have an impression A of
some aspect P of the internal state (i.e., such that [[A]]=P). In order
for this to count as having rendered P explicit (rather than just as
representing P explicitly!), a use of this representation A of P must
also engender P (remember, we said that something is rendered
explicit only if it subsequently participates in the circumstances in
virtue of that representation).

Intuitively, what this all comes to is something like the following.
In order to count as having introspective access to some aspect of
your self, not only must you be able to represent that aspect; you
must also be able to use that representation—to step through it, so
to speak, in what we informally call “problem-solving mode”—in
such a way that this introspective deliberations can serve as one
way of doing what is being introspected about. At this level of gener-
ality, the characterisation should not be contentious—though in
some cases it might seem like a luxury, since after all there are
things we can think about (such as how we ride a bicycle) that we
cannot simulate in virtue of reasoning with those thoughts. But
one of the advertised powers of introspection is its ability to enable
us to do things differently from how our underlying architecture
would have done them, had we not introspected. Moreover, cogni-
tive introspection is thinking about thinking, two instances of the
same type of activity—as opposed to thinking about bicycling,
where the thinking and the bicycling are at least in some sense
rather different.22 And if a system cannot at least think or reason
(introspectively) in the same way (modulo timing) that it would
have had it not done so introspectively, there seems little chance
that it will ever be able to move beyond its base level capabilities.
This is part of what causal connection demands. Thus, according

21I.e., c=NORMALISE, as it were, in which the term on the left is in the
theorist’s external analytic language, and the term on the right is in 3Lisp’s
internal language.

22Which is not to deny that bicycling “without thinking” may well land one
in danger.

316 Indiscrete Affairs · 1

to our account, although I can think about how I ride a bicycle,
since I cannot ride a bicycle by thinking about it, my bicycle-
riding thoughts do not qualify for the label causally-connected in-
trospection.

 4.b.ii Introspective Force
The second major issue, once again having to do with causal con-
nection, is what I call introspective force. It has to do not with
the causal efficacy of the introspective structures themselves, but
with the causal connection between those structures and the as-
pects of self they represent. This is the problem addressed by what
in the literature have been called linking rules, reflection principles,
semantic attachment, level-shifting, etc.,23 although simple quotation
and disquotation operators are even simpler examples—e.g., In-
terlisp ’s KWOTE and (some of its uses of) EVAL; 3Lisp’s ↑ and ↓,
etc. In the discussion so far, I have characterised causal connec-
tion rather symmetrically, as a relation between representations
and actual aspects of self. As the sophistication of introspection
increases, however, the relation between self and self-
representation not only grows more complex, but the two direc-
tions of connection—from self to representation (I will call this
“upwards”), and from representation to self (“downwards”)—take
on rather different properties. The differences are at least analo-
gous to (what current ideology takes as) the distinction between
beliefs and goals.

Imagine, to borrow an example from Smith (1984), paddling a
canoe through whitewater, exiting an eddy leaning upstream (the
wrong thing to do), and taking a dunking. If, sitting on the bank a
few moments later, you were to think about how to do better, you
would first have to obtain an explicit representation of what you
were doing just a moment earlier (this is the “belief” case: how do
you go from a fact to a true belief about it?). It is no good to think
“Ah, yes, the second millennium is drawing to a close,” as it was
when you fell in; you want to represent the very local situation
that led you to fall into the river, represented in the appropriate

23‘Linking rule’ is used in Bowen & Kowalski (1982), ‘semantic attachment’
in Weyhrauch (1980), ‘level-shifting’ in des Rivi6res and Smith (1984), and
‘reflection principles’ in Weyhrauch (1980) and some of the meta-logical
tradition.

 5 · Varieties of Self-Reference

 317

way. This is the connection from reality (i.e., self) to representa-
tion. But similarly, after analysing the affair, and concluding that
things would have gone better if you had leaned the other way,
you do not want merely to sit on the bank, fatuously contemplat-
ing an improved self: the idea is to get back in the water and do
better. That is, you need a connection from representation to real-
ity (more like the situation when you have a goal or even inten-
tion): you have a representation, and you want the facts to fit it).
Both kinds of connection are germane even for as simple a self-
referential representation as ¬B(a); the system might need to know
whether ¬B(a) is true, or it might want to make it true. On S’s
reading of B as “is explicitly represented” neither direction is too
hard: if B means “consistent,” the story, as we have already noted,
would be very different.

As McDermott and Doyle (1980) discovered, it is easy to moti-
vate perfectly determinate readings for introspective predicates
where the causal connection is not computable, even upwards.x In
the downwards case, moreover, if the property represented is a re-
lational one, there may be no unique determinate solution (lots of
things, typically, could make ¬M(a) true). It is thus a substantial
problem, in actually designing an effective introspective architec-
ture, to put in place sufficient mechanism to mediate between gen-
eral introspectively represented goals and the specific actions on
the self that have the dual properties of being causally connected
(so that they can be put into effect) and satisfying the goal in ques-
tion.

Since this problem is simply a particular case of the general is-
sue of designing and planning action, however, and not specific to
the introspective case, it need not concern us more here.

 4.b.iii Introspective Overlap
The third issue that must be faced by introspective systems is what
I will call the problem of introspective overlap, which arises
when the implicit circumstances of introspective impression coin-
cide with, or include, what has been rendered explicit. The issue
arises because the introspective representations are themselves part
of what constitutes the agent. As such, any claims they make that
involve, explicitly or implicitly, properties of the whole state of the

xTai!! Is this what I want to say? Is it what they said?

318 Indiscrete Affairs · 1

agent, will be claims that they are likely, in virtue of their own exis-
tence or treatment, to affect (but not effect!). Introspective represen-
tations of relational properties that obtain between a particular
impression and the whole set are obvious candidates for this diffi-
culty. For example, if six beliefs were represented, one could not
truthfully add the impression

 TOTAL-NUMBER-OF-EXPLICITLY-REPRESENTED-BELIEFS(6)

Instead, one would need to add

 TOTAL--OF-EXPLICITLY-REPRESENTED-BELIEFS(7)

This overlap between content and circumstance is what opens the
way for the puzzles and paradoxes of narrow self-reference. It is a
more general notion than strict “‘circularity,” since the problems
can arise even if the representational structure itself is not part of
its own content. An early but familiar example in computer science
arose in the case of debugging systems for programming lan-
guages with substantial interpreter state, when written in the same
language as the programs they were used to debug. These debug-
ging systems, introspective by our account, rendered explicit the
otherwise implicit parts of the control state of some other fragment
of the overall system. The problem was that they too engendered
control state (used global variables, occupied stack space, etc.),
thereby introducing a variety of confusions because of unwanted
conflict. These confusions often occasioned extraordinarily intri-
cate code to sidestep the most serious problems, sometimes with
only partial success. The fundamental problem, however, is easily
described in our present terminology: overall, the implicit dimen-
sion or aspect of the system that was rendered explicit remained
the implicit dimension or aspect of the explicit rendering. There
was no circularity involved, but there was overlap, with concomi-
tant problems.

Overlap is not necessarily a mistake: the indexicality that ‘I’
renders explicit is the same indexicality that implicitly gives the
pronoun its content (similarly for ‘here’ and ‘now’). Problems
seem to arise only when negatives or activity affect what would
otherwise be the case. It is typically necessary, in such cases, to give
an introspective mechanism an appropriate vantage point or lay-
ered set of implicit contexts, analogous to that provided by type hi-

 5 · Varieties of Self-Reference

 319

erarchies in logic, so that the introspective process can muck about
with its subject matter without affecting the circumstances that
give that subject matter its content.

Overlap only arises when the introspective machinery makes
explicit some implicit aspect of the internal circumstances; it is not
a problem when what is implicit to the base-level is also implicit for
the introspective machinery. Thus various systems, such as MRS
and Soar,24 apparently do not make explicit any otherwise implicit
state (everything that can be seen, self-referentially, is already ex-
plicit; what is implicit remains so), so the problem of overlap does
not arise. In some other cases, such as in BROWN,25 overlap would
occur, but the power of the introspective machinery is curtailed in
advance to avoid contradiction. Handling overlap coherently was
one of the problems that 3Lisp was designed to solve: its purpose
was to demonstrate the compatibility, in a theory-relative intro-
spective procedural system, of detached vantage point, substantial
implicit state, and complete causal connection.26 The continuation
structures of 3Lisp, representing the dynamic state of the overlap-
ping processor, were what made it interesting. The other two as-
pects that were made explicit—structural identity, roughly, and
lexical environment—did not overlap (this is why, as we said ear-
lier, an introspective variant of 3Lisp that only rendered these two
aspects explicit would be essentially trivial).

3Lisp’s particular solution to the problem of overlap was to pro-
vide what amounted to a type hierarchy for control, and in terms
of that to provide, as a primitive part of the underlying architec-
ture, mechanisms that always maintained the integrity of the con-
nection between self-representation and facts thereby represented.
Such a tight connection was made possible in 3Lisp—because, as
stated, continuations are not relational—that its actual (and per-
fectly effective) behaviour could be demonstrated to be equivalent,
in an important sense, to that that would have been manifested by
the infinite idealisation in which all of its internal aspects (relative
to its highly constrained theory) were always explicitly repre-

24«Refs»
25Friedman and Wand (1984)
26At the time of its design I called 3Lisp ‘reflective,’ not ‘introspective,’ but I
now think this was a mistake. Reflection—see below—was what I
wanted, but introspection was what I succeeded in providing.

320 Indiscrete Affairs · 1

sented to itself. As a consequence, both external theorist and in-
ternal program could pretend, even with respect to recursively
specified higher ranks of introspection, that it was indefinitely in-
trospective with perfect causal connection. This particular archi-
tecture, however, will clearly not generalise to more comprehensive
introspective theories, such as those involving consistency.

There is obviously no limit to the expressiveness of introspective
representation, or intricacy of causal connection, although there
are very real limits on the total combination of introspective ex-
pressiveness, integrity, and force. In the human case it seems clear
that causal connection is the practical problem, especially in the
“downwards” direction—from representation to fact: though it is
not exactly easy to come by accurate psychological self-knowledge,
it seems much harder, given such knowledge, to become the person
you can so easily represent yourself to be.

The real challenge to self-reference, however, stems not from the
limits on introspection, where after all one has, at least in some
sense, access to everything being theorised about, but from the dif-
ficulty of obtaining a non-indexical representation of one’s par-
ticipation in the external world.

 4c. Reflection
In the last section a point was made that we need to go back to, be-
cause within it lie the seeds of the limits of introspective self-
reference. In particular, it was pointed out, in connection with the
move from the base-level RIGHT(x) to the introspective B(RIGHT(x)),
that all of the implicitness of the former is inherited by the latter.
The self-relativity of the single-argument RIGHT—the fact that
three of its four arguments get filled in by the indexical circum-
stances of the agent—is left implicit even in the introspective ver-
sion. By a reflective system, in contrast, I will mean any system
that is not only introspective, but that is also able to represent the
external world, including its own self and circumstances, in such
a way as to render explicit, among other things, the indexicality of
its own embeddedness. This representational capacity, however, is
(as usual) insufficient on its own; the system must at the same
time retain causal connection between this detached representa-
tion, and its basic, indexical, non-explicit representations, which
enable it to act in that external world.

 5 · Varieties of Self-Reference

 321

Like substantial introspection, reflection is thus something we
can only approximate; complete detachment is presumably impos-
sible, both because no one knows to what extent properties that
seem universal are in fact local but just happen to hold throughout
our limited experience, and because it is very likely, for reasons of
efficiency, that we will not ever have represented them. Reflection is
also hard to attain, because of the requirement of causal connec-
tion. Finally, in order to obtain a representation of oneself that is
truly external—i.e., that would hold from an external agent’s per-
spective—one must first represent to oneself everything implicit
about one’s internal structure and state that is not universally
shared (or anyone shared by one’s peers). Without this kind of
self-knowledge, what one takes to be a detached representation of
the world will still be implicitly self-relative, in ways one presuma-
bly will not realise. Introspection is therefore a prerequisite for
substantial reflection (self-knowledge is a precursor of detach-
ment, as history has repeatedly told us). Yet in spite of these diffi-
culties, reflection is necessary if one is to escape from the confines
of self-relativity.

What then can we say about reflection, if it is so important? No
very much—at least yet. Of the three self-referential traditions we
have been tracking, neither the autoepistemic nor the control has
addressed relativity to the external world at all. In both cases the
self-referential focus has remained internal, though for different
reasons. In the autoepistemic case, the “language” typically used
for external representation either has either been, or has been
closely based on, mathematical logic—which, as Barwise and
Perry have repeatedly emphasized, does not admit, in its founda-
tions, of external relativity to circumstance. Hence logic’s focus on
sentences, rather than on statements, and its semantic models of
mathematical structures, not situations in the world. In spite of all
this, however, as pointed out earlier, even purely mathematical sys-
tems are permeated with internal implicitness: with questions of
consistency, truth, etc. It is this internal relativity on which
autoepistemic models of self-reference have therefore concentrated.

The control tradition stems more directly from computer sci-
ence and programming language semantics, which have by and
large trafficked in internal accounts. Its failure to deal with exter-
nal relativity is roughly the dual of the autoepistemic’s: whereas

322 Indiscrete Affairs · 1

the autoepistemic tradition has dealt with external content, but not
with external relativity, computer science has focused on complex
relativity, but not on the external world. Hence computer science’s
self-referential tradition—the control camp—has also dealt only
with internal introspection. Programs, in particular, are typically
viewed as (procedural) specifications of how a system should be-
have; as a result their subject matter is taken to be the internal
world of the resulting system: its structures, operations, behav-
iour.n Although one can (and I do) argue that the resulting com-
putational systems are themselves representational, and therefore
bear a “content” relation to the world in which they are ultimately
deployed, that system-world relation is not addressed by tradi-
tional programming language analyses. As a result, the implicit-
ness represented by such self-referential models as meta-circular
interpreters, BROWN, MRS, etc.,27 is also primarily internal.28

Thus there is somewhat of a gap between the self-referential
mechanisms that have so far been proposed (which are primarily
introspective), and the accounts of external relativity offered by the
circumstantial camp. What we need are mechanisms for render-
ing that external implicitness explicit. As usual, causal connection
will be the difficult problem—more difficult than for introspec-
tion, since internal circumstance, to the extent that it is causally ef-
fective at all, is always within the causal reach of the agent. The
consistency of a set of first-order sentences may be difficult or im-
possible for a formal system to ascertain, but that is not because

n«Point (forwards?) towards the “ingredient” vs. “specificational” view.
27See Steele & Sussman (1978), Friedman and Wand (1984), and Gene-
sereth et al. (1983), respectively.

28Not realising this fully at the time, I did not initially describe 3Lisp (Smith
1982, 1984) in a way that was very accessible to the programming language
community. 3Lisp’s semantical model, in particular, was based on a con-
ception of computation where the subject matter of a program was taken
to include not only the system whose behaviour was being engendered, but
also the subject matter of the resulting system. I still believe that this is of-
ten how programming is understood, even if implicitly, by a large number of
programmers: my analysis; however it would have been more accessible
had this non-standard semantic conception been treated more explicitly.
Ironically, however, in spite of this semantical orientation, the only “exter-
nal” world 3Lisp was able to deal with was that of pure (and simple)
mathematics, so it did not really live up to its own semantical mandate.

 5 · Varieties of Self-Reference

 323

there is crucial information somehow beyond the reach of that
system, remote in time and space, to which other systems might
have better access. Determining consistency is hard all by itself.
The external circumstantial dependencies of ordinary language
and thinking, however, are different: who is the right person to
perform some particular function, for example, is something that
only the world can ever know for sure. The best reflective agent
will have direct causal access—and probably only partial access at
that—to only one potential candidate.

None of this means that serious reflection is impossible, how-
ever, partly because of our three-way, rather than two-way, catego-
risation of circumstance into external, indexical, and internal
types. The truth of whether Shakespeare wrote the sonnet is exter-
nal; the implicitness motivated by efficiency, in contrast, is typi-
cally indexical, not external, and indexicality has to do with the
circumstances in which the agent participates—which circum-
stances, some of which, at least, should be relatively nearby. If there
is any locality in this world, there seems more hope of an agent’s
knowing about local circumstances than about situations arbi-
trarily remote in space and time. What is enduringly difficult, of
course, is that even those circumstances must be represented as if
by another.

 5 The Limits of Self-Reference
Perfect self-knowledge is obviously impossible, for at least three
reasons: (i) because of the complexity of the calculations involved,
such as those illustrated by consistency; (ii) because of the theory-
relativity—no theory can render everything explicit; and (iii) be-
cause some circumstantial relativity—particularly indexical and
external—remains beyond the causal reach of the agent. But there
are other limits as well, An important one stems from the fact that
the self being represented is ultimately the same self as the one do-
ing the representing, and as such certain possibilities are physi-
cally (if not metaphysically) excluded. The self can never be
viewed in its entirety, because there is no place to stand—no van-
tage point from which to look.

Another limit—more a danger than a constraint—was inti-
mated at the outset: although introspection (and self-knowledge)
is a prerequisite to substantial reflection, it remains true that the

324 Indiscrete Affairs · 1

power of all of these mechanisms derives ultimately from their
ability to support more general, more detached, more communica-
ble reasoning. It is a danger, however, that in climbing up out of its
embedded position, a system will end up thinking solely about its
self, rather than using its self to get outside itself. This would lead
to a self-involved—ultimately autistic—sort of system, of no use
whatsoever.

These limits notwithstanding, self-reference and self-under-
standing are important. One can look out, see three people around
the table, and represent the situation with “there are four people at
this dinner party.” One may also notice, perhaps with only intro-
spective capability, that one is repeating oneself. But then one goes
on to observe that, by doing so, one is acting inappropriately: that
from the other three’s perspective one looks like a fool. And then—
here is where causal connection gets its bite—as soon as one has
achieved this detached view of the situation, this representation
from the outside, one scurries back into the introspective state, re-
places the designator of that fourth person with ‘I’, recognises its
special self-referential role, collapses back down to the fully im-
plicit structures that engender talking, cuts them off, and thereby
shuts up.

That is almost as good as writing more briefly.

 Acknowledgements
I am indebted to everyone involved in AI’s inquiry into self-
reference, for their participation in what I take to be a collaborative
inquiry. Particular recognition goes to Jim des Rivières, fellow
traveler in the upper reaches of 3Lisp, and to all other members of
the Knights of the Lambda Calculus.p Finally, a special debt is
owed to John Perry: although most of the analysis in section 4
precedes his influence, much of the framework in which it is pre-
sented here, especially the emphasis on indexical relativity, has
benefited from his works. My thanks.

 References
Barwise, Jon, and Perry, John (1983): Situations and Attitudes, Cambridge,

MA: Bradford Books.

p«This organization should probably be explained ;-).»

 5 · Varieties of Self-Reference

 325

Batali, John (1983): “Computational Introspection”, MIT Artificial Intelli-
gence Laboratory Memo AIM-701. Cambridge Mass.

Bowen, Kenneth A., and Kowalski, Robert A. (1982): “Amalgamating Lan-
guage and Metalanguage in Logic Programming”, in K. L. Clark and S.-A
Tariund (eds.), Logic Programming, New York: Academic Press.

Collins, A. M., Warnock, E., Aiello, N, and Miller, M (1975): “Reasoning
from Incomplete Knowledge”, in Bobrow, D. G., and Collins, A. (eds.),
Representation and Understanding, New York: Academic Press.

Davis, Randall (1976): “‘Applications of meta level knowledge to the con-
struction, maintenance, and use of large knowledge bases”, Stanford AI
Memo 283 (July 1976), reprinted in Davis, R., and Lenta, D. B. (eds.)
Knowledge-Based Systems in Artificial Intelligence, New York: McGraw-
Hill.

——— (1980): “Meta-Rules: Reasoning About Control”, Artificial Intelli-
gence 15: 3, pp. 179–222.

de Kleer, John, Doyle, Jon, Steele, Guy L., and Sussman, Gerry J. (1979):
“Explicit Control of Reasoning”, in P. H. Winston and R. H. Brown
(eds.), Artificial Intelligence: An MIT Perspective, Cambridge: MIT Press.

de Kleer, Johan (1986): “An Assumption-Based TMS”, Artificial Intelligence,
to appear in 1986.

des Rivières, James and Smith, Brian Cantwell (1984): “The Implementa-
tion of Procedurally Reflective Languages”, Proc, Conference on LISP and
Functional Programming, pp. 331–47, Austin Texas. Also available as
Xerox PARC Intelligent Systems Laboratory Technical Report ISL-4,
Palo Alto, California, 1984.

Doyle, Jon (1980): “A Model for Deliberation, Action, and Introspection”,
MIT Artificial Intelligence Laboratory Memo AIM-TR-581, Cambridge
Mass.

Fagin, Ronald, and Halpern, Joseph Y. (1985): “Belief. Awareness, and Lim-
ited Reasoning: Preliminary Report,” Proceedings IJCAI-85 pp. 491-501,
Los Angeles, California.

Fodor, Jerry (1980): “Methodological Solipsism Considered as a Research
Strategy in Cognitive Psychology,” The Behavioural and Brain Sciences, 3:
l, pp. 63–73. Reprinted in Fodor, J., RePresentations, Cambridge, MA:
Bradford, 1981.

Friedman. Daniel P., and Wand, Mitchell (1984): “‘Reification: Reflection
without Metaphysics,” Proc. Conference on LISP and Functional Program-
ming, pp. 348–55, Austin Texas.

Genesereth, Michael R., and Smith, David E. (1982): “Meta-Level Architec-
ture,” Stanford Heuristic Programming Project Technical Report HPP-
8I-6, version of December 1982, Stanford California.

Genesereth, Michael R., Greiner, Richard. and Smith, David E. (1983):
“MRS—A Meta-Level Representation System,” Stanford Heuristic Pro-
gramming Project Technical Report HPP-83-27, Stanford California.

326 Indiscrete Affairs · 1

Halpern, Joseph Y., and Moses, Yoram (1985): “A Guide to the Modal
Logics of Knowledge and Belief, Preliminary Draft,” Proceedings of IJCAI-
85, pp. 480–90, Los Angeles, California.

Harman, Gilbert (1982): “Conceptual Role Semantics,” Notre Dame Journal
of Formal Logic, 23, pp. 242–56.

Hayes, Patrick J. (1973): “Computation and Deduction,” Proceedings of the
1973 Mathematical Foundations of Computer Science (MFCS) Symposium,
Czechoslovakian Academy of Sciences.

Kaplan, David (1979): “On the Logic of Demonstratives,” in P. A. French,
T. E. Uehling. Jr., and H. K. Wettstein, (eds.), Perspectives in the Philoso-
phy of Language, Minneapolis, pp 383–412.

Konolige, Kurt (1985): “A Computational Theory of Belief Introspection,”
Proceedings of IJCAI-85. pp. 502–08, Los Angeles, California.

Kowalski, Robert (1979): “‘Algorithm=Logic+Control,” CACM 22, pp.
424–36.

Laird, John E., and Newell, Allen (1983): “A Universal Weak Method:
Summary of Results,” in Proceedings of IJCAI-83, pp. 771–73. Karlsruhe,
West Germany.

Laird. John E., Newell, Allen, and Rosenbloom, Paul S. (forthcoming):
“SOAR: An Architecture for General Intelligence”, forthcoming.

Lenat, Douglas B., and Brown, John Seely (1984): “Why AM and EURISKO
Appear to Work,” Artificial Intelligence 23, pp. 269–94.

Levesque, Hector J. (1984): “A Logic of Implicit and Explicit Belief,” Proceed-
ings of the AAAI-84 Conference, pp. 198–202, Austin. Texas. A revised and
expanded version available as FLAIR Technical Report 32, Fairchild Arti-
ficial Intelligence Laboratory, Palo Alto, California, 1984.

McDermott, Drew, and Doyle, Jon (1980): “Non-Monotonic Logic I,” Arti-
ficial Intelligence 13:1&2, pp. 41–72.

Moore, Robert C. (1983): “‘Semantical Considerations on Nonmonotonic
Logic,” Artificial Intelligence Center Technical Note 284, SRI Interna-
tional, Menlo Park, California.

Perlis, Donald (1985): “Languages with Self-Reference I: Foundations,” Ar-
tificial Intelligence 25, pp. 301–22.

Perry, John (1983): “Unburdening the Self’,” unpublished manuscript, pre-
sented at the Conference on Individualism, Center for the Humanities,
Stanford University, Stanford California.

——— (1985a): “Self-Knowledge and Self-Representation,” in Proceedings
of IJCAI-85, pp. 1238–42, Los Angeles, California.

——— (1985b): “Perception, Action, and the Structure of Believing,” in
Grandy & Warner (eds.): Philosophical Grounds of Rationality, Oxford:
Oxford University Press, pp. 330–59.

——— (forthcoming): “Thought Without Representation,” to be pre-
sented at a Joint Symposium of the Mind Association and the Aristote-
lian Society, London, July 1986.

 5 · Varieties of Self-Reference

 327

Rosenschein, Stanley J. (1985): “Formal Theories of Knowledge in AI and
Robotics,” in David Nitzan, ed., Proceedings of Workshop on Intelligent
Robots: Achievements and Issues, SRI International, Menlo Park, Califor-
nia.

Smith, Brian Cantwell (1982): Reflection and Semantics in a Procedural Lan-
guage, M.I.T. Laboratory for Computer Science Technical Report MIT-
TR-272.

——— (1984): “Reflection and Semantics in Lisp,” Conference Record of
11th Principles of Programming Languages Conference (POPL), pp. 23–35,
Salt Lake City, Utah. Also available as Xerox PARC Intelligent Systems
Laboratory Technical Report ISL-5, Palo Alto, California, 1984.

——— (1985), “Prologue to Reflection and Semantics in a Procedural Lan-
guage,” reprinted in R. Brachman and H. Levesque (eds.), Readings in
Knowledge Representation, Los Altos, CA: Morgan Kaufman, pp. 31–39.

——— (forthcoming a): “Is Computation Formal?,” Stanford University
CSLI Technical Report.

——— (forthcoming b): “Categories of Correspondence”, Stanford CSLI
Technical Report.

Steele, Guy L. Jr, and Sussman. Gerry J. (1978): “The Art of the Inter-
preter; or, the Modularity Complex (Parts Zero, One and Two),” M.I.T.
Artificial Intelligence Laboratory Memo No 453, Cambridge, MA.

Weyhrauch, Richard W. (1980): “Prolegomena to a Theory of Mechanized
Formal Reasoning,” Artificial Intelligence 13: l&2, pp. 133–70.

328 Indiscrete Affairs · 1

— Were this page been blank, that would have been unintentional —

 329

C · Computing

330 Indiscrete Affairs · I

— Were this page been blank, that would have been unintentional —

 331

6 — The Limits of Correctness†

 Abstract
There is a formal technique in computer science, known as pro-
gram verification, which is used, in its own terms, to “prove pro-
grams correct”. From its name, someone might easily conclude
that a program that had been proven correct would never make
any mistakes, or that it would always follow its designers inten-
tions. In fact, however, what are called proofs of correctness are
really proofs of the relative consistency between two formal specifica-
tions: one of the program, one of the model in terms of which the
program is formulated. Part of assessing the correctness of a
computer system, however, involves assessing the appropriateness

†Lightly edited version of a paper originally presented at a Symposium on
Unintentional Nuclear War at the Fifth Congress of the International Physi-
cians for the Prevention Nuclear War, Budapest, Hungary, June 28–July 1,
1985. The version delivered there was subsequently reprinted: (i) as Cen-
ter for the Study of Language and Information Report CSLI–85–36, Stan-
ford, California: Stanford University, Oct. 1985, 22 pp.; (ii) in D. Johnson
& H. Nissenbaum (eds.), Computers, Ethics & Social Values, Englewood
Cliffs, NJ: Prentice Hall, 456–69; (iii) in Colburn, T. R., Fetzer, J. H., &
Rankin T. L. (eds.), Program Verification, Kluwer Academic Publishers,
Dordrecht/Boston/London, 1993, pp. 275–93; and (iv) in Kling, R. (ed.),
Computerization and Controversy: Value Conflicts and Social Choices (2nd
Ed.), San Diego: Academic Press, pp. 810–25. This version differs from
those in having some grammatical infelicities cleared up, dated references
explained, plus some mild copy-editing for purposes of clarity.

Support gratefully acknowledged: in the 1980s, from the Xerox Corpo-
ration and from the System Development Foundation through an award
to the Center for the Study of Language and Information (CSLI) at Stan-
ford University; and in 2009 from the Jackman Humanities Institute,
University of Toronto.

332 Indiscrete Affairs · I

of this model. Whereas standard semantical techniques are rele-
vant to the program-model relationship, we do not currently have
any theories of the further relationship between the model and
the world in which the program is embedded.

In this paper I sketch the role of models in computer systems,
comment on various properties of the model-world relationship,
and suggest that the term ‘correctness’ (in the program verifica-
tion context) should be changed to ‘consistency.’ In addition I ar-
gue that, since models cannot in general capture all the infinite
richness of real-world domains, complete correctness is inher-
ently unattainable, for people or for computers.

 1 Introduction
On October 5, 1960, the American Ballistic Missile Early Warn-
ing System station at Thule, Greenland, indicated a large contin-
gent of Soviet missiles headed towards the United States.1 Fortu-
nately, common sense prevailed at the informal threat-assessment
conference that was immediately convened: international tensions
were not particularly high at the time, the system had only re-
cently been installed—and perhaps most salient of all, Soviet
Premier Khrushchev happened to be in New York. All in all, a
massive Soviet attack at that particular moment seemed very un-
likely. And so no devastating counterattack was launched.

What was the problem? The moon had risen, and was reflect-
ing radar signals back to earth. Needless to say, this lunar reflec-
tion had not been predicted by the system’s designers.

Over the last few decades, the United States Defense Depart-
ment has spent many millions of dollars on a computer technol-
ogy known as “program verification”—a branch of computer
science whose business, in its own terms, is to “prove programs
correct”. Program verification has been studied in theoretical
computer science departments since a few seminal papers in the
1960s,2 but it was only in the late 1970s and 1980s that it started

1Edmund Berkeley, The Computer Revolution, Doubleday, 1962, pp. 175–
77, citing newspaper stories in the Manchester Guardian Weekly of Dec. 1,
1960, a UPI dispatch published in the Boston Traveler of Dec. 13, 1960,
and an AP dispatch published in the New York Times on Dec 23, 1960.

2McCarthy, John, “A Basis for a Mathematical Theory of Computation,”

 6 · The Limits of Correctness

 333

to gain in public visibility, and to be applied to real world prob-
lems. General Electric, to consider just one example, initiated
verification projects in their own laboratories, hoping to prove
that the programs used in their computer-controlled washing ma-
chines would not have any “bugs” (even a single serious one in a
major product can destroy a corporation’s profit margin).3

Although it used to be that only the simplest programs could
be “proven correct”—programs to put simple lists into order, to
compute simple arithmetic functions, etc.—slow but steady pro-
gress has been made in extending the range of verification tech-
niques. By the early 1980s papers began to report correctness
proofs for somewhat more complex programs, including small
operating systems, compilers, and other materiel of modern sys-
tem design.4

What, we do well to ask, does this new technology mean? How
good are we at it? For example, if the 1960 warning system had
been proven correct (which it was not), could we the problem
with the moon have been avoided? If it were possible to prove
that programs written to control automatic launch-on-warning
systems were correct, would that provide us with assurance that
there will not—and could not—be a catastrophic accident? In
systems currently being designed computers will make counterat-
tack launch decisions in a matter of seconds, with no time for any
human intervention (let alone for musings about Khrushchev’s
being in New York). Do the techniques of program verification
hold enough promise that, if these new systems could all be
proven correct, we could all sleep more easily at night?

These are the questions I want to look at in this paper. And
my answer, to give away the punch-line, is no. For fundamental

1963, in P. Braffort and D. Hirschberg, eds., Computer Programming and
Formal Systems, Amsterdam: North-Holland, 1967, pp. 33–70. Floyd,
Robert, “Assigning Meaning to Programs,” Proceedings of Symposia in Ap-
plied Mathematics 19, 1967 (also in F. T. Schwartz, ed., Mathematical As-
pects of Computer Science, Providence: American Mathematical Society,
1967). Naur, P., “Proof of Algorithms by General Snapshots,” BIT Vol. 6
No. 4, pp. 310–16, 1966.

3Albert Stevens, BBN Technologies, Inc. (called “Bolt, Beranek and New-
man” at the time), personal communication.

4See for example R. S. Boyer, and Moore, J S., eds., The Correctness Prob-
lem in Computer Science, London: Academic Press, 1981.

334 Indiscrete Affairs · I

reasons—reasons that anyone can understand, and that no one
can escape—there are inherent limitations to what can be proven
about computers and computer programs. Although program
verification is an important new technology—useful, like so many
other things, in its particular time and place—it should definitely
not be called verification. Just because a program is “proven cor-
rect”, in other words, you cannot be sure that it will do what you
intend.

First some background.

 2 General Issues in Program Verification
Computation has become the most important enabling technol-
ogy of nuclear weapons systems: it underlies virtually every aspect
of the defense system, from the early warning systems, battle
management and simulation systems, and systems for communi-
cation and control, to the intricate guidance systems that direct
the missiles to their targets. It is difficult, in assessing the chances
of an accidental nuclear war, to imagine a more important ques-
tion to ask than whether these pervasive computer systems will or
do work correctly.

Because the subject is so large, however, I want to focus on just
one aspect of computers relevant to their correctness: the use of
models in the construction, use, and analysis of computer sys-
tems. I have chosen to look at modelling because I think it exerts
the most profound and, in the end, most important influence on
the systems we build. But it is only one of an enormous number
of important questions. First, therefore—in order to unsettle you
a little—let me just hint at some of the equally important issues I
will not address:

1. Complexity: At the current state of the art, only very sim-
ple programs can be proven correct. Although it is terribly
misleading to assume that either the complexity or power
of a computer program is a linear function of length, some
rough numbers are illustrative. The simplest possible
arithmetic programs are measured in tens of lines; the cur-
rent state of the verification art extends only to programs
of up to several hundred. It is estimated that the systems
proposed in the Strategic Defense Initiative (Stars Wars),

 6 · The Limits of Correctness

 335

in contrast, will require at least ten billion (10,000,000)
lines of code.5 This is a difference of at least five decimal
orders of magnitude. By analogy, compare the difference
between resolving a two-person dispute and settling the
political problems of the Middle East. There is no a priori
reason to believe that strategies successful at one level will
scale to the other.

2. Human interaction: Not much can be “proven,” let alone
specified formally, about actual human behaviour. The
sorts of programs that have so far been proven correct,
therefore, do not include much substantial human interac-
tion. As the moon-rise example indicates, on the other
hand, it is often crucial, in the design of complex systems,
to allow enough human intervention to enable people to
override system mistakes and cope with unanticipated
eventualities. System designers, therefore, are faced with a
very real dilemma: (i) should they rule out substantive
human intervention, in order to develop more confidence
in how their systems will perform; or (ii) should they in-
clude it, so that costly errors can be avoided or at least re-
paired? The partial core meltdown at the Three Mile Is-
land generation plant in 1979 is a trenchant example of
just how serious this tradeoff can get: the system design
provided for considerable human intervention, but in the
event the operators failed to act “appropriately.” Which
strategy leads to the more important kind of correctness?

A standard way out of this dilemma is to specify the be-
haviour of the system relative to the actions of its operators.
But as we will see below, this strategy pressures the de-
signers to specify the system totally in terms of internal ac-
tions, not external effects. So the best that a proof can end
up demonstrating is that the system will behave in the way
that it will behave (i.e., it will raise this line level 3 volts),
not that it will do what you want it to do (i.e., launch a mis-

5Fletcher, James C., study chairman, and McMillan, Brockway, panel
chairman, Report of the Study on Eliminating the Threat Posed by Nuclear
Ballistic Missiles, Vol. 5, Battle Management, Communications. and Data
Processing, U. S. Department of Defense, February 1984.

336 Indiscrete Affairs · I

sile only if the attack is real). Unfortunately, the latter is
clearly what is important. Systems comprising computers
and people must function properly as integrated systems;
nothing is gained by showing that one cog in a misshapen
wheel is a very nice cog indeed.

Furthermore, large computer systems are dynamic, con-
stantly changing, embedded in complex social settings.
Another famous “mistake” in the American defense system
occurred when a human operator mistakenly mounted a
training tape, containing a “simulation” of a full-scale So-
viet attack, onto a computer that, just by chance, was
automatically pulled into service when the primary ma-
chine ran into a problem. For some tense moments the
simulation data were taken to be the real thing.6 What
does it mean to install a “correct” module into a complex
social flux?

3. Levels of Failure: Complex computer systems must work
at many different levels. It follows that they can fail at
many different levels too. By analogy, consider the many
different ways a hospital could fail. First, the beams used
to frame it might collapse. Or they might perform flaw-
lessly, but the operating room door might be too small to
let in a hospital bed (in which case you would blame the
architects, not the lumber or steel company). Or the oper-
ating room might be fine, but the hospital might be located
in the middle of the woods, where no one could get to it
(in which case you would blame the planners). Or the
hospital, in spite of having been “properly built”, might
have been damaged by an unanticipated (and unanticipat-
able) earthquake. Or, to take a different example, consider
how a letter could fail. It might be so torn or soiled that it
could not be read. Or it might look beautiful, but be full of
spelling mistakes. Or it might have perfect grammar, but

6See, for example, the Hart-Goldwater report to the Committee on Armed
Services of the U.S. Senate: “Recent False Alerts from the Nation's Mis-
sile Attack Warning System” (Washington, D.C.: U.S. Government Print-
ing Office, Oct. 9, 1980); Physicians for Social Responsibility, Newsletter,
“Accidental Nuclear War,” (Winter 1982), p. 1.

 6 · The Limits of Correctness

 337

disastrous contents.
Computer systems are the same: they can be “correct” at

one level—say, in terms of hardware—but fail at another
(i.e., the systems built on top of the hardware can do the
wrong thing even if the chips are fine). Sometimes, when
people talk about computers failing, they seem to think
that it is only the hardware that needs to work properly.
Sure enough, hardware does from time to time fail, caus-
ing machines to come to a halt, or yielding errant behav-
iour (as for example when a faulty chip in another Ameri-
can early warning system sputtered random digits into a
signal interpreted as indicating how many Soviet missiles
had been sighted, again causing a false alert7). And the
connections between the computers and the world can
break. On the day in which when the moonrise problem
was recognized, an attempt to override it failed because an
iceberg had accidentally cut an undersea telephone cable.8

The more important point is that, in order to be reli-
able, a system must be correct, or anyway reliable, at every
relevant level. The hardware is just the starting place—and
by far the easiest, at that. Unfortunately, however, we do
not even know what all the relevant levels are. So-called
“fault-tolerant” computers, for example, are particularly
good at coping with hardware failures, but the software
that runs on them is not thereby improved.9

4. Correctness and Intention: What does correct mean,
anyway? Suppose the people want peace, and the President
thinks that means having a strong defense, and the De-
fense department thinks that having a strong defense re-
quires maintaining an arsenal of nuclear weapons systems,
and the weapons designers request control systems to
monitor radar signals, resulting in computer companies

7Ibid.
8Berkeley, op. cit. See also Daniel Ford’s two-part article “The Button,”
New Yorker, April 1, 1985, p. 43, and April 8, 1985, p. 49, excerpted from
Ford, Daniel, The Button, New York: Simon and Schuster, 1985.

9Developing software for fault-tolerant systems is an extremely tricky
business.

338 Indiscrete Affairs · I

being asked to develop systems that respond to six particu-
lar kinds of radar pattern, and the engineers are told to
build signal amplifiers with certain circuit characteristics,
and the technician is told to write a program to respond to
the difference between a two-volt and a four-volt signal on
a particular incoming wire. If being correct means doing
what was intended, whose intent matters? The technician’s?
Or what, with twenty years of historical detachment, we
would say should have been intended?

With a little thought any of you could extend this list yourself.
And none of these issues even touch on the intricate technical
problems that arise in developing mathematical analyses of the
software and systems used in the so-called “correctness” proofs.
But, as I said, I want to focus on what I take to be the most im-
portant issue underlying all of these concerns: the pervasive use of
task domain models. Models are ubiquitous not only in com-
puter science but also in human thinking and language; their very
familiarity makes them hard to appreciate. So we will start sim-
ply, looking at modelling on its own, and come back to correct-
ness in a moment.

 3 The Permeating Use of Models
When you design and build a computer system, you first—
wittingly or unwittingly—formulate a model of the problem you
want it to solve, and then construct the computer program in its
terms. For example, if you were to design a medical system to
administer drug therapy, you would need to model a variety of
things: the patient, the drug, the absorption rate, the desired bal-
ance between therapy and toxicity, and so on and so forth. The
absorption rate might be modelled as a number proportional to
the patient’s weight, or proportional to body surface area, or as
some more complex function of weight, age, and sex.

Similarly, computers that control traffic lights are based on
some model of traffic—of how long it takes to drive across the in-
tersection, of how much metal cars contain (the signal change
mechanisms are triggered by wires buried under each street). Bi-
cyclists, as it happens, often have problems with automatic traffic
lights, because bicycles do not exactly fit the model: they do not

 6 · The Limits of Correctness

 339

contain enough iron to trigger the metal detectors. I also once saw
a tractor get into trouble because it could not move as fast as the
system “thought” it would: the light allowing cross-traffic to enter
the intersection went green when the tractor was only half-way
through.

To build a model is to conceive of the world in a certain delim-
ited way. To some extent you must build models before building
any artifact at all, including televisions and toasters, but comput-
ers have a special dependence on these models: to write a program
is effectively to write down an explicit description of the model inside
the computer, in the form of a set of rules or what are called repre-
sentations—essentially a set of linguistic formulae encoding, in the
terms of the model, the facts and data thought to be relevant to
the system’s behaviour. It is with respect to these representations
that computer systems work. In fact that is really what computers
are (and how they differ from other machines): they run by ma-
nipulating representations, and representations are always formu-
lated in terms of models. This can all be summarized in a slo-
gan:10

No computation without representation.

The models, on which the representations are based, come in all
shapes and sizes. Balsa models of cars and airplanes, for example,

10Footnote added 2009: It is no longer considered necessary for programs
to represent the structure of the task domains in which they work—
especially to represent it explicitly, in a set of language-like formulae or ex-
pressions. A great deal of “situated artificial intelligence,” the use of net-
work “models” in dynamic-systems based software, etc., the development
of machine learning, etc., which has taken place over the twenty-five years
since this paper was written, can be understood as various kinds of at-
tempt exactly to avoid such explicit task domain representation. However:
(i) it remains overwhelmingly likely that any software system designed and
built to control a major military system of the sort being discussed would
still be built on top of an explicit model—if for no other reason than that
this design strategy allows the model to be updated, if and as appropriate,
when the systems involved change (e.g., the nature and number of mis-
siles, sensors, etc.), without having to build the entire code base over
again; and (ii) even machine learning networks and connectionist systems
and the like rely on models (some even develop their own)—it is just that
the representation of the model in the system may be less explicit that was
taken for granted twenty-five years ago.

340 Indiscrete Affairs · I

are used to study air friction and lift. Blueprints can be viewed as
models of buildings; musical scores as models of a symphony. But
models can also be abstract. Mathematical models, in particular,
are so widely used that it is hard to think of anything that they
have not been used for: from whole social and economic systems,
to personality traits in teenagers, to genetic structures, to the
mass and charge of sub-atomic particles. These models, further-
more, permeate all discussion and communication. Every expres-
sion of language can be viewed as resting implicitly on some
model of—some assumed conceptual structure or “take” on—the
world.

What is important for our purposes is that every model deals
with its subject matter at some particular level of abstraction, paying
attention to certain details, throwing away others, grouping to-
gether similar aspects into common categories, and so forth. So
the drug model mentioned above would probably pay attention to
the patients’ weights, but ignore their tastes in music. Mathe-
matical models of traffic typically ignore the idiosyncratic tem-
peraments of individual taxi drivers. Sometimes what is ignored is
set aside because it is considered to be at too “low” a level to mat-
ter, for the system’s ultimate purpose; sometimes it is ignored be-
cause it is too “high”: it all depends on the purposes for which the
model is being used. So a hospital blueprint would pay attention
to the structure and connection of its beams, but not to the ar-
rangements of proteins in the wood the beams are made of (too
low), nor to the efficacy of the resulting operating room (too
high).

Models must ignore things exactly because they view the world
at a level of abstraction.11 And it is good that they do: otherwise
they would drown in the infinite richness of the embedding
world. Though this is not the place for metaphysics, it would not
be too much to say that every act of conceptualization, analysis,
categorization, does a certain amount of violence to its subject
matter, in order to get at the underlying regularities that group
things together. If you do not commit that act of violence—if you
do not ignore some of what is going on—you would become so

11‘Abstraction’ derives from the Latin ‘abstrahere’—to pull or draw away.

 6 · The Limits of Correctness

 341

hypersensitive and so overcome with complexity that, as a finite
creature, you end up paralyzed, unable to act.

To capture all this in a word, I will say that models are inher-
ently partial. All thinking, and all computation, are similarly par-
tial. Furthermore—and this is the important point—thinking
and computation must be partial: that is how they are able to
work.

 4 Full-blooded Action

Something that is not partial, in contrast, is action. When you
reach out your hand and grasp a plow, it is the real field you are
digging up, not your model of it. When you talk to someone of a
different race or culture, what you say may be inexorably affected
by your model of the person, their community, their social group,
etc.—but your addressee is an actual person—not your or anyone
else’s model of that person.12

Models, in other words, may abstract (may “pull away”), and
thinking may abstract, and some aspects of computation may ab-
stract—but action does not.13 To actually build a hospital, to
clench the steering wheel and drive through the intersection, to
inject a drug into a person’s body—to do any of these things is to
act in the full-blooded world, not in a partial or distilled model of
it.

This difference between action and modelling is extraordinar-
ily important. To move from thought or intent to concrete action
is to take leave of one’s model and participate in the whole, rich,
infinitely variegated world. For this reason, among others, action
plays a crucial role, especially in the human case, in grounding the
more abstract processes of modelling or conceptualization. One
form that grounding can take, which computer systems can al-
ready take advantage of, is to provide feedback on how well the
modelling is going. For example, if an industrial robot develops an
internal three-dimensional representation of a wheel assembly

12This is not to deny that we are affected by—perhaps even (partially) con-
stituted by—our own, our families’, and our society’s models of us. What it
denies is that we are such models.

13Even if what action it is is affected or determined by the actor’s model of
the situation in which the action is undertaken.

342 Indiscrete Affairs · I

passing by on a conveyor belt, and then guides its arm towards
that object and tries to pick it up, it can use video systems or force
sensors to see how well the model corresponded to what was ac-
tually the case. The world does not care about the model: the
claws will settle on the wheel just in case the actualities mesh.

Feedback is a special case of a very general phenomenon: you
often learn, when you do act, just how good or bad your concep-
tual model was. You learn, that is, if you have adequate sensory
apparatus, the capacity to assess the sensed experience, the inner
resources to revise and reconceptualize, and the luxury of recover-
ing from minor mistakes and failures.

 5 Computers and Models
What does all this have to do with computers, and with correct-
ness? The point is that computers, like people, and unlike mathe-
matics, are engaged participants in the world. Like us, they
participate in the real world: they take real actions; they cause ef-
fects, and are affected by causes. One of the most important facts
about computers, to put this another way, is that they are con-
crete; they use energy; we plug them in. They are not, as some
theoreticians seem to suppose, pure mathematical abstractions,
living in a pure detached heaven—or detached simulacra or
“models in themselves,” living a hermetically sealed life in a paral-
lel universe. On the contrary, computers land real planes at real
airports; administer real drugs; and—as we know only too well—
control real radars, missiles, and command systems. Like us, in
other words, although they base their actions on models, they
have consequence in a world that inevitably transcends the parti-
ality of their enabling models. Like us, in other words, and unlike
the objects of mathematics, they are challenged by the inexorable
conflict between partial but tractable models and actual but infi-
nite reality.

And, to make the only too obvious point: we in general have
no guarantee that the models are right—indeed we have no guar-
antee about much of anything about the relationship between
model and world. As we will see, current notions of “correctness”
do not even address this fundamental question.

In philosophy and logic, as it happens, there is a very precise

 6 · The Limits of Correctness

 343

mathematical theory called “model theory.” You might think that
it would be a theory about what models are, what they are good
for, how they correspond to the worlds they are models of, and so
forth. You might even hope this was true, for the following rea-
son: a great deal of theoretical computer science, and all of the
work in program verification and correctness, historically derives
from this model-theoretic tradition, and depends on its tech-
niques. Unfortunately, however, model theory does not address
the model-world relationship at all. Rather, what model theory
does is to tell us how our descriptions, representations, and pro-
grams correspond to our models.

The situation, in other words, is roughly as depicted in Figure
1. You are to imagine a description, program, computer system
(or even a thought—they are all similar in this regard) in the left
hand box, and the very real world in the surrounding right. Medi-
ating between the two is the inevitable model, serving as an ideal-
ized or pre-conceptualized simulacrum of the world, in terms of
which the description or program or whatever can be understood.
One way to understand the model is as the glasses through which
the program or computer looks at the world: it is the world, that

Figure 1 — Computers, Models, and the Embedding World

344 Indiscrete Affairs · I

is, as the system sees it (though not, of course, as it necessarily is).
The technical subject of ”model theory,” as I have already said,

is a study of the relationship, labeled a, on the left. What about
relationship b, on the right? The answer, and one of the main
points I hope you will take away from this discussion, is that, at
this point in intellectual history, we have no theory of this right-
hand side relationship—no theory of the relationship between models
and the world.

There are lots of reasons for this lack— some very complex.
For one thing, most of our currently accepted formal techniques
were developed during the first half of this century to deal with
mathematics and physics. Mathematics is unique, with respect to
models, because (at least to a first level of approximation) its sub-
ject matter is the world of models and abstract structures, and
therefore the model-world relationship is relatively unproblem-
atic. The situation in physics is more complex, as is the relation-
ship between mathematics and physics. How apparently pure
mathematical structures can be so successfully used to model the
material substrate of the universe is a question that has exercised
physical scientists for centuries.14 But the point is that, whether
or not one believes that the best physical models do more justice
and therefore less violence to the world than do models in so-
called “higher-level” disciplines like sociology or economics, for-
mal techniques do not themselves address the question of ade-
quacy.

Another reason we do not have a theory of the right-hand side
is that there is very little agreement on what such a theory would
look like. In fact all kinds of question arise when one studies the

14Cf. Eugene Wigner’s “The unreasonable effectiveness of mathematics in
the natural sciences,” Communications in Pure and Applied Mathematics,
Vol. 13, No. I (February 1960). New York: John Wiley & Sons, Inc.

 6 · The Limits of Correctness

 345

model-world relationship explicitly: about whether it ean be
treated formally; whether it can be treated rigorously, even if not
formally; what the relationship is between those two approaches,
whether any theory will be more than usually infected with the
prejudices and preconceptions of the theorist; and so forth. The
investigation quickly leads to foundational questions in mathe-
matics, philosophy, and language, as. well as computer science.
But none of what one learns in any way lessens its ultimate im-
portance. In the end, any adequate theory of action, and, conse-
quently, any adequate theory of correctness, will have to take the
model-world relationship into account.

 6 Correctness and Relative Consistency
Let us get back, then, to computers, and to correctness. As I men-
tioned earlier, the word ‘correct’ is already problematic, especially
as it relates to underlying intention. Is a program correct when it
does what we have instructed it to do? or what we wanted it to do?
or what history would dispassionately say it should have done?
Analysing what correctness should mean is too complex a topic to
take up directly. What I want to do, in the time remaining, is to
describe what sorts of correctness we are presently capable of ana-
lysing.

In order to understand this, we need to understand one more
thing about building computer systems. I have already said, when
you design a computer system, that you first develop a model of
the world, as indicated in Figure 1. But in general, you never get
to hold the model in your hand. Computer systems, in general,
are based on models that are purely abstract. Rather, if you are
interested in proving your program “correct,” you develop two
concrete things, structured in terms of the abstract underlying
model (although these are listed here in logical order, the pro-
gram is very often written first):

1. A specification: a formal description in some standard
formal language, specified in terms of the model, in which
the desired behaviour is described; and

2. The program: a set of instructions and representations,
also formulated in the terms of the model, which the com-
puter uses as the basis for its actions.

346 Indiscrete Affairs · I

How do these two differ? In various ways, of which one is par-
ticularly important. The program has to say how the behaviour is
to be achieved, typically in a step-by-step fashion—often in excru-
ciating detail. The specification, however, is less constrained: all it
has to do is to specify what proper behaviour would be, independ-
ent of how it is accomplished.

A specification for a milk delivery system, for example, might
simply be: “Make one milk delivery at each store, driving the
shortest possible distance in total.” That is an adequate descrip-
tion of what has to happen. The program, on the other hand,
would have the much more difficult job of saying how this was to
be accomplished. It might be phrased as follows: “Drive four
blocks north, turn right, stop at Gregory’s Grocery Store on the
corner, drop off the milk, then drive 17 blocks north-east…”.
Specifications, to use some of the jargon of the field, are essen-
tially declarative; they are like indicative sentences or claims. Pro-
grams, on the other hand, are procedural: they must contain in-
structions that lead to a determinate sequence of actions.

What, then, is a proof of correctness? It is a proof that any sys-
tem that obeys the program will satisfy the specification.

There are, as is probably quite evident, two kinds of problems
here. The first, often acknowledged, is that the correctness proof
is in reality only a proof that two characterizations of something
are compatible. When the two differ—i.e., when you try to prove
correctness and fail—there is no more reason to believe that the
first (the specification) is any more correct than the second (the
program). As a matter of technical practice, specifications tend to
be extraordinarily complex formal descriptions, just as subject to
bugs and design errors and so forth as programs. In fact they are
very much like programs, as this introduction should suggest. So
what almost always happens, when you write a specification and a
program, and try to show that they are compatible, is that you
have to adjust both of them in order to get them to converge.

For example, suppose you write a program to factor a number
C, producing two answers A and B. Your specification might be:

 Given number C, produce numbers A and B such that A×B=C

This is a specification, not a program, because it does not tell you

 6 · The Limits of Correctness

 347

how to come up with A and B; all it say is what properties A and
B should have. In particular, suppose I say: “OK, C is
8,687,001,541; what are A and B? Staring at the specification just
given will not help you to come up with an answer.15 Suppose, on
the other hand, given this specification, that you then write a pro-
gram—say, by successively trying pairs of numbers until you find
two that work. Suppose further that you then set out to prove
that your program meets your specification. And, finally, suppose
that this proof can be constructed (I will not go into details here;
I trust you can imagine that such a proof could be constructed).
With all three things in hand—program, specification, and
proof—you might think you were done.

In fact, however, things are rarely that simple, as even this sim-
ple example can show. In particular, suppose, after doing all this
work, that you try your program out on some simple examples,
confident that it must work because you have a proof of its cor-
rectness. You randomly give it 14 as an input, expecting 2 and 7.
But in fact it gives you the answers A=1 and B=14. In fact, you
realise upon further examination, it will always give back A=1 and
B=C. It does this, even though you have a proof of its being correct,
because you did not make your specification meet your inten-
tions. You wanted both A and B to be different from C (and also
different from 1), but you forgot to say that. In this case you have
to modify both the program and the specification. A plausible
new version of the latter would be:

 Given number C, produce numbers A and B such that A≠1 and
B≠1 and A×B=C.

We still are not done. If the next version of the program, given
C=14, produces A=–1 and B=–14, you would once again have
met your new specification, but still failed to meet your intention,
leading you to propose something like:

 Given number C, produce numbers A and B such that A≠1 and
A≠–1 and B≠1 and B≠–1 and A×B=C.

And so on. I take it that the point is obvious. Writing “good”
specifications—which is to say, writing specifications that capture

15Probably what you had in mind were 84,719 and 102,539.

348 Indiscrete Affairs · I

your intention—is hard.

It should be apparent, nonetheless, that developing even straight-
forward proofs of “correctness” is nonetheless very useful. As il-
lustrated in this almost trivially simple example, doing so often
forces you to delineate, very explicitly and completely, the model
on which both program and specification are based—as well as to
articulate, again very explicitly, your often tacit assumptions. A
great many of the simple bugs that occur in programs, of which
the problem of producing 1 and 14 was an example, arise from
sloppiness and unclarity about the model. Such bugs are not
identified, per se, by the proof, but they are often unearthed in the
attempt to prove the equivalence. And of course there is nothing
wrong with this practice; anything that helps to eradicate errors
and increase confidence is to be applauded. The point, rather, is
to show exactly what these proofs consist in.

In particular, as the discussion has shown, when you show that
a program meets its specifications, all you have done is to show
that two formal descriptions, slightly different in character, are
compatible. This is why I think it is somewhere between mislead-
ing and immoral for computer scientists to call this “correctness”.
What is called a proof of correctness is really a proof of the com-
patibility or consistency between two formal objects of an ex-
tremely similar sort: program and specification. As a community,
we computer scientists should call this relative consistency, and
drop the word ‘correctness’ completely.

Even if rightly renamed, proofs of relative consistency still ignore
the second problem intimated earlier. Nothing in the so-called
program verification process per se deals with the right-hand side
relationship: the relationship between the model and the world.
But, as is clear, inadequacies on the right hand side—
inadequacies, that is, in the models in terms of which the pro-
grams and specifications are written—remain common reasons
for system failure.

The problem with the moon-rise was a problem of this second
sort. The difficulty was not that the program failed, in terms of
the model. Rather, the problem was that the model was overly
simplistic; it did not correspond to what was the case in the world.

 6 · The Limits of Correctness

 349

Or, to put it more carefully, since all models fail to correspond to
the world in indefinitely many ways, as we have already said, it
did not correspond to what was the case in a crucial and relevant
way. In other words, to answer one of our original questions, even
if a formal specification had been written for the 1960 warning sys-
tem, and a proof of correctness generated, there is no reason to
believe that potential difficulties with the moon would have
emerged.

You might think that the designers were sloppy; that they
would have thought of the moon if they had been more careful.
But it turns out to be extremely difficult to develop realistic mod-
els of any but the most artificial situations, and to assess how ade-
quate these models are. The example of factoring numbers
brought some of this to the fore, but as another example, think
back on the case of General Electric, and imagine writing appli-
ance specifications, this time for a refrigerator. To give the exam-
ple some force, imagine that you are contracting the manufacture
of the refrigerator out to an independent supplier, and that you
want to put a specification into the contract that is sufficiently
precise to guarantee that you will be happy with anything that the
supplier delivers that meets the contract.

Your first version might be quite simple—say, that the requisi-
tioned device should maintain an internal temperature of between
three and six degrees Centigrade; not use more than 200 watts of
electricity; cost less than $100 to manufacture; have an internal
volume of half a cubic meter; and so on and so forth. But of
course there are hundreds of other properties that you implicitly
rely on: it should, presumably, be structurally sound: you would
not be happy with a deliciously cool plastic bag. It should not
weigh more than a ton, or emit loud noises. It should not fling
projectiles out at high speed when the door is opened. And so
on—essentially ad infinitum. It is generally impossible, when
writing specifications, to include everything that you want: legal
contracts, and other humanly interpretable specifications, are al-
ways stated within a background of common sense, to cover the
myriad unstated and unstatable assumptions assumed to hold in
force. (Current computer, alas, have no common sense, as the car-
toonists know so well—so they cannot be asked to interpret their
programs against such a reasonable background.)

350 Indiscrete Affairs · I

So it is hard to make sure that everything that meets your
specification will really be a refrigerator; it is also hard to make
sure that your requirements do not rule out perfectly good refrig-
erators. Suppose for example a customer plugs a toaster in, puts it
inside the refrigerator, and complains that the object they re-
ceived does not meet the temperature specification—and must
therefore not be a refrigerator. Or suppose they try to run it up-
side down. Or complains that it does not work in outer space,
even though you did not explicitly specify that it would only work
within the earth’s atmosphere. Or suppose they install it in an ex-
pensive centrifuge running at 100,000 rpm and discover that at
that speed all the air is pushed up against one wall, again causing
it not to work. Or suppose they just unplug it. These cases are the
dual of the former—the problem is not that what is claimed to be
a refrigerator is not one, but that what is in fact a refrigerator is
claimed not to be one. And in each one of them, you would say
that the problem lies not with the refrigerator but with the use.
But how is use to be specified?

A constitutive part of modelling an artifact, in other words, in-
volves understanding the relevant part of the world in which it
will be embedded, and the relevant ways it will be used. One
could try to extend the notion of modeling to cover that, too—
i.e., to model all appropriate uses, though specifications do not or-
dinarily even try to identify all the relevant circumstantial factors.
As well as there being a background set of constraints with re-
spect to which a model is formulated, there is also a background
set of assumptions on which a specification is allowed at any
point to rely.

The ultimate conclusion is inescapable. The model of a refrigera-
tor as a device that always maintains an internal temperature of
between three and six degrees is but the merest inchoate gesture
towards what in full glory is probably impossible: a full specifica-
tion of refrigeratorhood, suitable to serve as the basis for air-tight
proofs.

 7 The Limits of Correctness
It is time to summarize what we have said so far. The first chal-
lenge to developing a perfectly “correct” computer system stems

 6 · The Limits of Correctness

 351

from the sheer complexity of real-world tasks. We mentioned at
the outset various factors that contribute to this complexity: hu-
man interaction, unpredictable factors of setting, hardware prob-
lems, difficulties in identifying salient levels of abstraction, etc.
Nor is this complexity of only theoretical concern. A December
1984 report of the American Defense Science Board Task Force
on “Military Applications of New-Generation Computing Tech-
nologies” identifies the following gap between current laboratory
demonstrations and what will be required for successful military
applications—applications they call “Real World; Life or Death.”
In their estimation the mid-1980s military needs (and, so far as
one can tell, expects to produce) an increase in the power of com-
puter systems of nine decimal orders of magnitude, accounting for
both speed and amount of information to be processed. That is a
one billion (1,000,000,000) fold increase over current research
systems, equivalent to the difference between a full century of the
entire New York metropolitan area, compared to one day in the
life of a hamlet of one hundred people. And remember that even
current systems are already several orders of magnitude more
complex that those for which we can currently develop proofs of
relative consistency. So, to put the point starkly, expected need
outstrips current capability by a factor of approximately a trillion.

But sheer complexity has not been our primary subject matter.
The second and more serious challenge to computational cor-
rectness comes from the problem of formulating or specifying an
appropriate model. And the point we have been making is that,
except in the most highly artificial or constrained domains, mod-
elling an embedding situation is inherently an approximate,
fraught, and compromised task—not a form or complete and per-
fectible endeavour.

The situations in which modeling has the best hopes of even
partial success are those that Winograd has called “systematic
domains”:16 areas where the relevant stock of objects, properties,
and relationships are most clearly and regularly predefined. Thus
bacteria, or warehouse inventories, or even flight paths of air-
planes coming into airports, are relatively systematic domains, at

16«Ref: probably either in Bringing Design to Software or in Understanding
Computers and Cognition : A New Foundation for Design»

352 Indiscrete Affairs · I

least compared to conflict negotiations, any situations involving
intentional human agency, learning and instruction, and so forth.
The systems that land airplanes are hybrids—combinations of
computers and people—exactly because the unforeseeable hap-
pens, because what happens is often the result of human action,
and because what it is that has happened often requires human
interpretation. Although it is impressive how well the phone
companies can model telephone connections, lines, and even de-
velop statistical models of telephone use, at a certain level of ab-
straction, it would nevertheless be impossible to model the content
of the telephone conversations themselves—what people actually
say.

Third, and finally, there is the question of what one does about
these first two facts. It is because of the answer to this last ques-
tion that I have talked, so far, somewhat interchangeably about
people and computers. With respect to the ultimate limits of
models and conceptualization, both people and computers are re-
strained by the same truths. If the world is infinitely rich and varie-
gated—which I not only believe, but would also argue that expe-
rience has demonstrated to be pragmatically (if not metaphysi-
cally) evident—then no prior conceptualization of it, nor any ab-
straction, will ever do it full justice. That is OK—or at least we
might as well say that it is OK, since that is the world we have got.
What matters is that we never forget about that richness—that we
never think, with misplaced optimism, that machines might
magically have access to a kind of “correctness” to which people
cannot even aspire.

It is time, to put this another way, that we change the tradi-
tional terms of the debate. The question is not whether machines
can do things, as if, in the background, lies the implicit assump-
tion that people are not only the object of comparison, but that the
only choice in front of us is whether an assumed action should be
taken by a person or by an automated system. The very idea of
building an automated system capable, within a few short sec-
onds, of making a “decision” to annihilate Europe, say, should
make you uneasy. Requiring a person to make the same decision,
also in a matter of the same few seconds, should also make you un-
easy—and for very similar reasons.

Fundamentally—to say what is obvious but somehow also ex-

 6 · The Limits of Correctness

 353

tremely worth saying—a decision to annihilate Europe should
never be made within a few short seconds.17 It should never be made
because there is no way that reasoning of any sort, be it human or
machine, could possibly do justice to the inevitable complexity of
the situation, because of fundamental metaphysical facts about
how reasoning relates to the world. Because reasoning is based on
partial models, it is an ultimate and inherent truth that reasoning
can never be guaranteed to be correct in the sense of doing full
justice to what is the case.

Which means, to suggest just one possible strategy for action,
that we might try, in our treaty negotiations, to find mechanisms
to slow our weapons systems down.

It is striking to realise, once the comparison between machines
and people is raised explicitly, that we do not typically expect
“correctness” for people in anything like the form that that we
presume it for computers. In fact quite the opposite, and in a re-
vealing way. Imagine, in a by-gone era, sending a soldier off to
war, and giving him (it would surely have been a “him,” then) his
final instructions. “Obey your commander; help your fellow-
soldier,” you might say, “and above all do your country honour”.
What is striking about the last clause is what it betrays: the rec-
ognition that it is considered not just a weakness, but a punish-
able weakness—a breach of morality—to obey instructions abso-
lutely blindly (in fact, and for relevant reasons, it is generally im-
possible to follow instructions blindly; they have to be interpreted
to the situation at hand). Soldiers are subject to court martial, for
example, if they violate fundamental moral principles, such as
murdering women and children, even if following strict orders.

In the human case, in other words, most our social and moral
systems, even including the strict disciplinary institutions of the
military, have built in into them an acceptance of the uncertain-
ties and limitations inherent in the model-world relationship (re-
lation b in figure 1). We know that the assumptions and precon-
ceptions built into instructions will sometimes fail, and we know
that instructions are always incomplete. We exactly rely on judg-
ment, responsibility, consciousness, and so forth, to carry some-

17If, of course, ever, and at all.

354 Indiscrete Affairs · I

one through those situations where model and world part com-
pany—which is to say, through all situations, since model and
world always part company, to a lesser or greater extent.

Saliently, in fact, we never talk about people, in terms of their
overall personality, being correct. It is only concrete individual ac-
tions, fully situated in particular settings, that are (or are not) cor-
rect —not people in general, or systems. Rather, when people are
the subject matter, we speak of their being reliable—a much
more substantial term. What leads to the highest number of cor-
rect human actions is a person’s being reliable, experienced, capa-
ble of good judgment, etc., so that, as often as possible, and to the
greatest extent possible, based on partial, incomplete, and likely
fallible information about stupefyingly complex real situations,
they can aim as strenuously as possible towards doing the right
thing.

There are two possible morals here, for computers. The first has
to do with the notion of experience. In point of fact, program
verification is not the only, or even the most common, method of
obtaining assurance that a computer system will do the right
thing. In the real world, programs are usually judged acceptable,
and are typically accepted into use, not because we prove them
“correct,” but because they have shown themselves relatively reliable
in their destined situations, for some substantial period of time.
And, as part of this experience, we expect them to fail: there al-
ways has to be room for failure. Certainly no one would ever ac-
cept a program without such in situ testing: a proof of correctness
is at best added insurance, not a replacement, for real life experi-
ence. Unfortunately, however, for the ten million lines of code
that is proposed to control and coordinate the Star Wars Defense
System, there will never, God willing, be an in situ test.

One answer, of course, if genuine testing is impossible, is to
run a simulation of the real situation. But even at its best, simula-
tion, as our diagram should make clear, can also test only the left-
hand side relationship. Simulations are defined in terms of models;
that is what a simulation is: a concretization of a model. It is not an
actual yet somehow not actual real world. As a result, simulations
do not and cannot test relationships between models and world.
That is exactly why simulations and tests can never replace real-

 6 · The Limits of Correctness

 355

world in situ testing—cannot replace embedding a program in the
real world and seeing how it behaves. All the war games we hear
about, and hypothetical military scenarios, and electronic battle-
field simulators, and so forth, are all based on exactly the kinds of
models we have been talking about all along. In fact the subject of
simulation, worthy of a whole analysis on its own, is really just
our whole subject welling up all over again in what is only a su-
perficially different guise.

I said earlier that there were two morals to be drawn, for the
computer, from the fact that we ask people to be reliable, not to be
correct. The second moral is for those who, when confronted with
the fact that genuine or adequate experience cannot be had,
would say “Well if that is true, let’s build responsibility and mo-
rality into computers. If people can have it, there is no reason why
machines cannot have it too.”

I will not argue that building responsibility and morality into
artefacts is inherently impossible, in some metaphysical or ulti-
mate philosophical sense, but lest anyone be tempted in that di-
rection, a few short comments are in order. First, from the fact
that humans sometimes are responsible, it does not follow that
we know what responsibility is: from tacit skills no explicit model
is necessarily forthcoming. We simply do not know what aspects
of the human condition underlie the modest levels of responsibil-
ity to which we sometimes rise. Second, with respect to the goal
of building computers with even human levels of full reliability
and responsibility, I can state with surety that the present state of
artificial intelligence is about as far from this as mosquitoes are
from flying to the moon. Whether it will be 50 or 500 years be-
fore we have responsible machines around is a topic we could de-
bate, but no one currently alive need worry about what it will be
like to live with them.

But there are deeper morals even than these. The point is that
even if we could make computers reliable, they still would not
necessarily always do the correct thing. Remember: people are not
always “correct”, either; correctness at that level is not something
this world will ever provide. That is why we hope that people are,
and educate them to be, responsible. And if civilization has
learned anything over the past few millennia, it is surely that cor-

356 Indiscrete Affairs · I

rectness and responsibility do not always coincide. Even if, in an-
other thousand years, someone were to devise a genuinely respon-
sible computer system, there is no reason to suppose that it would
achieve “perfect correctness” either, in the sense of never doing
anything wrong. This is not failure, in the sense of a performance
limitation; it stems from the deeper metaphysical fact that models
must be abstract, in order to be useful. This is the lesson to be
learned from the violence inherent in the model-world relation-
ship: that there is an inherent conflict between the power of analy-
sis and conceptualization, on the one hand, and sensitivity to the
infinite richness, on the other.

But perhaps this is an overly abstract way to put it. Perhaps,
instead, we should just remember that there will always be an-
other moon-rise.

 357

7 — One Hundred Billion Lines of C++†

The year is 2073. You have a job working for General Electric, de-
signing fuel cells. Martian have landed. One stands over your
desk, demanding to see what you are working on. On the large
CAD display surface forming your desk, you are sketching a com-
plex combustion chamber for a new eco-engine you and some col-
leagues are designing. Next to an input port, on the left side, is the
word ‘oxygen,’ with an arrow pointing inwards. On the right is a
similar port, with the word ‘hydrogen.’ “Amazing!,” says the Mar-
tian to a conspecific, later that day. “Earthlings build symbol com-
bustion machines! I saw some engineers designing one. They
showed me how the word ‘oxygen’ would be combined with the
word ‘hydrogen’ in a wondrous kind of symbol mixing chamber.”

The Martian is confused. That was a diagram for a fuel cell,
not a fuel cell itself. The word ‘oxygen’ was a label. Map is not ter-
ritory. What will be funneled into the input chamber—to bela-
bour the obvious—is oxygen gas, not (a token of) the word ‘oxy-
gen.’ Words entering chambers makes no sense.

Far-fetched? Perhaps. But in this paper I argue that the debate
that has been conducted, over the last decade or so, between sym-
bolists and connectionists founders over a troublingly similar er-
ror. Perhaps not quite as egregious—but a misunderstanding,
nonetheless. Moreover, the confusion goes far beyond that par-
ticular debate, infecting (mis)understandings of the computa-
tional theory of mind throughout philosophy—including, to take

†Published in Cog Sci News, Lehigh University, 1997. Thanks to Irene Ap-
pelbaum and Güven Güzeldere for comments on an early draft.

358 Indiscrete Affairs · I

just one example, the debate about Searle’s notorious Chinese
Room. It is as if John Searle had wandered into a hacker’s office,
looked over her shoulder at the program she was writing, seen lots
of symbols arranged on the screen, and concluded that the result-
ing system must be symbolic. Searle’s inference, I claim, is no more
valid than the Martian’s.

For discussion, I will focus on the connectionist debate, but the
points can easily be extended to other contexts.

 1 Background
A glimmer of trouble is evident in the way the connectionist debate
is framed. Both positions consider only two kinds of architecture.
On one side are traditional von Neumann architectures, of the
sort imagined in “good old fashioned ai” (‘GOFAI,’ to use
Haugeland’s term). These systems are assumed to be constructed
out of a set of atomic symbols, combined in countless ways by rules
of composition, in the way that is paradigmatically exemplified by
the axioms of a first-order theorem prover. On the other side are
connectionist (or dynamic) systems, composed instead of a web of
interconnected nodes, each dynamically assigned a numerical
weight. For purposes of this debate, it seems as if that is all there is.
Some writers1 even take the first, symbolic, model, to be synony-
mous with computation tout court. So they frame the argument
this way: that cognition is (should be understood as, will best suc-
cumb to analysis as, etc.) a dynamical system, not a computational
system.

What happens to real-world programming in this scheme—
the uncountably many network routers and video games and disk
compression schemes and e-mail programs and operating systems
and so on and so forth, that are the stock and trade of practicing
programmers? Which side of the debate are they on? Most people,
I take it, assume that they fall on the symbolic side. But is that so?
And if so, why are such systems never mentioned?

It cannot be that they are not mentioned because such programs
are rare. In National Public Radio’s famous phrase, “let’s do the

1E.g. Port, Robert and van Gelder, Timothy (eds.), Mind as Motion, Cam-
bridge, Mass.: MIT Press (1995), or van Gelder, Timothy "Computation
and Dynamics," Journal of Philosophy, …

 7 · One Hundred Billion Lines of C++

 359

numbers.”2 Sure enough, some combinatorial symbolic systems
have been constructed, over the years, of just the sort envisaged
(and defended) by Fodor, Pylyshyn, and others on the symbolic
side of the debate.3 Logic-based programs, theorem provers, and
knowledge representation systems were early examples. SOAR4 is a
more modern instance, as is the CYC project of Lenat and Feigen-
baum. Perhaps the category should even be taken to include the
bulk of expert systems, case-based reasoners, truth-maintenance
systems, and diagnosis programs. What does this come to, over-
all? Perhaps somewhere between 1,000 and 10,000 programs?
Suppose each comprises an average of 10,000 lines of code (a cou-
ple of hundred pages, in normal formatting). That would come to
ten million lines of code, overall.

But now consider the bulk of real-world programming. Think
of e-mail clients, of network routers, of word processors and
spreadsheets and calendar programs, of operating systems and
just-in-time compilers, of Java applets and network agents, of em-
bedded programs that run the brakes in our cars, control traffic
lights, and hand your cellular telephone call from one zone to the
next, invisibly, as you drive down the interstate. Think, that is, of
commercial software. Such programs constitute far and away the
mainstay of computing. Again, it is impossible to make even much
of a rough estimate, but it will not be too misleading if we assume
that there are probably something on the order of 1011—i.e., one
hundred billion—lines of C++ code in the world.5 And we are
barely started.

In sum: symbolic AI systems constitute approximately 0.01% of

2«Ref ‘Marketplace’»
3See for example Pinker, Steve, and Mehler, Jacques (eds.), Connections and
Symbols, Cambridge, Mass.: MIT Press, 1988.

4‘«ref»
5It is not even clear how one would individuate programs—or, for that
matters, lines of code. When does one line turn into another one? How
long does a line have to exist (e.g., in a rough-draft of a program, in a
throw-away implementation) in order to count? What about multiple cop-
ies? Moreover, since C++ is already passé, what about Java? Or the language
that will be invented after that?

I have no clue as to how to answer such questions. Maybe this is a bet-
ter estimate: 109±(3±2). Whatever; the answers do not matter to any of the
points being made in the text.

360 Indiscrete Affairs · I

written software.

By themselves, the numbers do not matter. What I want to do is to
use these facts to support the following claims:

1. Within the overall space of possible computational archi-
tectures, the vast majority of commercial software—which
is to say, the vast majority of software, period—is neither
“symbolic,” in the sense defended by Fodor and Pylyshyn,
nor “connectionist,” in the sense defended by Smolensky,
nor “dynamic,” in the sense advocated by van Gelder, but
rather some fourth kind entirely;

2. The only reason for thinking that commercial software is
symbolic, as we will see, stems from a confusion between a
program and the process or computation that it specifies
(something of a use/mention error, not unlike that made
by the Martian); and

3. In order to understand how such a confusion could be so
endemic in the literature (and have remain so unre-
marked), one needs to understand that the word “seman-
tics” is used differently in computer science from how it is
used in logic, philosophy, and cognitive science—a re-
quirement that in turn will require us to understand some-
thing about the history of the technical vocabulary used in
computer science.

In a sense, the ultimate moral comes to this: the “design space” of
possible representational/computational systems is enormous—
far larger than non-computer-scientists may realize. Both the tra-
ditional “symbolic” variety of system, as imagined in GOFAI, and
the currently-popular connectionist and dynamic architectures,
are just two tiny regions, of almost vanishingly small total extent,
within this vast space.

Within the hugely important project of exploring how human
cognition works, it may be important, or anyway of moderate in-
terest, to ask whether and how much human cognition fits within
these regions—to what extent, in what circumstances, with respect
to what sorts of capacities, etc. But to assume that the two represent
the entire space, or even a very large fraction of the space—even to

 7 · One Hundred Billion Lines of C++

 361

assume that they are especially important anchor points in terms
of which to dimension the space—is a mistake. Our imaginations
need to run much freer than that.

And commercial software shows us the way.

 2 Compositionality
What it is that defines the symbolic model is itself a matter of de-
bate. But as Fodor and Pylyshyn make clear, there are several
strands to the basic picture:

1. It is assumed that there exist a relatively small (perhaps fi-
nite) stock of basic representational ingredients: something
like words, atoms, or other entities we can call simplexes.

2. There are grammatical formation rules, specifying how
two or more representational structures can be put together
to make complexes.6

3. It is assumed that the simplexes have some meaning or
semantic content: something in the world that they mean,
denote, represent, or signify.

4. Finally—and crucially—the meanings of the complexes
are assumed to be built up, in a systematic way, from the
meanings of the constituents.

The picture is thus somewhat algebraic or molecular: you have a
stock of ingredients of various basic types, which can be put to-
gether in an almost limitless variety of ways, in order to mean or
represent whatever you please. This “compositional” structure7

6Words of English—or anyway their morphological stems—are good ex-
amples of simplexes; and sentences and other complex phrases of natural
language are good examples of complexes. But words have various addi-
tional properties—such as having spellings, being formulable in a consen-
sual medium between and among people so as to serve as vehicles for
communication, etc.—that are not taken to be essential to the symbolic
paradigm.

7Compositionality is a complex notion, but is typically understood to con-
sist of two aspects: first, a syntactic or structural aspect, consisting of a
form of "composition" whereby representational symbols or vehicles are
put together in a systematic way (according to what are often known as
formation rules), and a semantic aspect, whereby the meaning or interpre-
tation or content of the resulting complex is systematically formed out of

362 Indiscrete Affairs · I

underwrites two properties that Fodor identifies as critical aspects
of human thinking: productivity (the fact that we can produce
and understand an enormous variety of sentences, including ex-
amples that have never before occurred) and systematicity (the
fact that the meaning of large complexes is systematically related
to the meanings of their parts). Much the same structure is taken
by such writers as Evans and Cussins8 to underlie what is called
conceptual representation. The basic idea is that your concepts come
in a variety of kinds: some for individual objects, some for proper-
ties or types, some for collections, etc.; and that they, too, can simi-
larly be rearranged and composed essentially at will. So a repre-
sentation with the content P(x) is said to be conceptual, for agent A,
just in case: for every other object x’, x’’, etc. that A can represent, A
can also represent P(x’), P(x’’), etc., and for every other property P’,
P’’, etc. that A can represent, A can also represent P’(x), P’’(x), etc.9

Thus suppose we can say (or entertain the thought) that a table
is 29” high, and that a book is stolen. So too, it is claimed—given
that thought at this level is conceptual—we can also say (or enter-
tain the thought that) the table is stolen and the book is 29” high
(even if the latter does not make a whole lot of sense). This condi-
tion, called the “Generality Condition” by Evans, is taken to un-
derwrite the productive power of natural language and rational
thought. It is also clearly a property taken to hold of the paradig-
matic instances of “symbolic” AI—i.e., of logical axiomatisations,
knowledge representation systems, and the like. Whether being
compositional and productive is considered to be a feature, as
Fodor suggests, or a non-feature, as various defenders of non-
conceptual content suggest—i.e., whether it is viewed positively or
negatively—there is widespread agreement that it is an important
property of some representation schemes, and paradigmatically

the meanings or interpretations or contents of its constituents, in system-
atic way (in a way, furthermore, associated with the particular formation
rule the complex instantiates).

8Evans, Gareth, Varieties of Reference, Oxford: Clarendon Press (1982);
Cussins, Adrian, "On the Connectionist Construction of Concepts," in
Boden, Margaret. (ed.), The Philosophy of Artificial Intelligence, New York:
Oxford University Press (1990).

9Evans says ‘entertain the judgment’ that a is F, that b is G, etc., rather than
‘represent’; I use the representational phrasing here since the subject mat-
ter is symbolic computation.

 7 · One Hundred Billion Lines of C++

 363

exemplified by ordinary logic. Indeed, the converse, while too
strong, is not far from the truth: some people believe that
connectionist, “subsymbolic,” “non-symbolic” and other forms of
dynamical system are recommended exactly in virtue of being
non-compositional or non-conceptual.

 3 Programs
What about those billions of lines of C++ code? Are they concep-
tual, in this compositional sense?

We need a distinction. Sure enough, the programming lan-
guage C++ is a perfect example of a symbolic system. An indefinite
stock of atomic symbols is made available, called identifiers, some
of which are primitive, others of which can be defined. There are
(rather complex) syntactic formation rules, which show how to
make complex structures, such as conditionals, assignment state-
ments, procedure definitions, etc., out of simpler ones. Any ar-
rangement of identifiers and keywords that matches the formation
rules is considered to be a well-formed C++ program—and will
thus, one can presume, be compiled and run. By far the majority of
the resulting programs will do nothing of interest, of course—just
as by far the majority of syntactically legal arrangements of Eng-
lish words make no sense. But it is important that these possible
combinations are all legal. That is exactly what makes program-
ming languages so powerful.

But—and this matters—it does not follow that most commer-
cial software is symbolic. For consider the language used in that
last paragraph. What is compositional—and hence is symbolic—
is the programming language, taken as a whole, not any specific pro-
gram that one writes in that language. It follows that the activity of
programming is a symbolic process—i.e., the activity engaged in by
people, for which they are often well paid. That may be an impor-
tant fact, for a variety of reasons: it might be usable as an early in-
dicator of what children will grow up to be good programmers, or
represent an insight into or limitation on how we construct com-
puters. But it is irrelevant to the computational theory of mind,
since it is not programming that mentation is supposed to be like,
according cognitivism’s fundamental thesis.10 Rather, the claim of

10It is by no means clear that programming is a computational activity.

364 Indiscrete Affairs · I

the computational theory of mind is that thought or cognition or
mentation is like (or even: is) the running of a (single) program.

Thus if you write a network control program, and I write a hy-
perbolic browser, and a friend writes a just-in-time compiler, all in
C++, each of us uses the compositional power of the C++ program-
ming language to specify a particular computational program or
process or architecture. There is no reason to suppose—good rea-
son not to suppose, in fact—that those programs, those resulting
specific, concrete active loci of behavior, will retain the compositional
power of the language we used to specify them. To think so is, like
the Martian, to make something of a use/mention mistake.

To make this precise, we need to be more careful with our lan-
guage. As is entirely standard, I will call C++ and its ilk (Fortran,
Basic, Java, JavaScript, etc.) programming languages. As stated
above, I admit that programming languages are compositional
representational systems—and hence symbolic. They are used, by
people, to specify or construct individual programs. Programs are
static, or at least passive, roughly textual, entities, of the sort that
you read, edit, print out, etc.—i.e., of the sort that exists in your
EMACS buffer.11

What programs are for is to produce behavior. That is why we
write them. Behavior is derived from programs by executing or
running them. Programs can be executed directly in one of two
ways: (i) they can be executed by the underlying hardware of the
machine, if they are written in the lowest level language (called
‘machine language’), in which case the term ‘execution’ is the most
common one used; or (ii) they can be executed by another compu-
tational process, which itself results (directly or indirectly) form
the execution of a machine language program, in which case the
execution of the (higher-level) program is typically called inter-

Chances are, programming will turn out to be to be computational if and
only if cognitivism is true.

11Technically, a distinction needs to be made between the program at the
level of abstraction (and internal implementation) that a compiler can
see—the one that gets "written" on a computer's hard disk, etc.—and the
strictly “print representation” in ASCII letters, that people can read. For
purposes of this paper, however, this distinction, too, does not matter. As
is common parlance, therefore, I will refer to both, interchangeable, as “the
program.”

 7 · One Hundred Billion Lines of C++

 365

pretation, and the process that does the execution, the inter-
preter.12 Of the two, the notion of interpretation is more general;
and since most machines, these days, are micro-coded, even (so-
called’ machine language programs are typically interpreted, but a
process resulting from a still-further lower level program, written
in what is called ‘microcode,’ which in turn is directly executed by
the microcode hardware.

Commonly, however, programs are not directly executed. In-
stead, they are first translated, by a process called compilation, into
another language more appropriate for direct execution by a ma-
chine. That is, if program P1 is written in C++, instead of being run
or executed directly, by a C++ interpreter, it will instead be trans-
lated into another program P2, perhaps in machine language,
such that the execution of P2 results in the “same” behaviour as
would have resulted by the direct execution of P1 by a C++ inter-
preter.

However it comes into existence, the ultimately resulting behav-
ior—the whole point of the exercise—is what I will call a process.
When (in the computer scientist’s sense of that term) a program is
interpreted, therefore, to put this all simply, what results is behavior
or a process. But when a program is compiled, what results is not
behavior, but another program, in a different language (typically:
machine language). When that machine language program is
executed, however, once again a process (or behavior) will result.

For our purposes, having to do with what is and is not sym-
bolic, what matters is that once a program is created, its structure is
fixed. Except in esoteric cases of reflective and self-modifying be-
havior—which is to say, except in a vanishingly small fraction of
those 1011 lines of code—the entire productive, systematic, compo-
sitional power of the programming language is set aside when the
program is complete. The process that results from running that
program is...well, whatever the program specifies. But, at least to a
first order of approximation, the compositional power of the pro-
gramming language is as irrelevant to the resulting process as the
compositional and productive power of a computer-aided design
system (CAD) is irrelevant to the thereby-specified fuel cell.

12Why this is called interpretation will be discussed in the next section.

366 Indiscrete Affairs · I

Consider an example. Suppose we are writing a driver for a print
server, and need to represent the information as to whether the
printer we are currently servicing is powered up. It would be ordi-
nary programming practice to define a variable called current-
printer11 to represent whatever printer is currently being serviced,
and a predicate called PoweredUp? to be the Boolean test. This
would support the following sort of code:13
 if PoweredUp?(current-printer)
 then … print out the file …
 else TellUser (“Printer not powered on. Sorry.”)

But now consider what happens when this program is compiled.
Since the question of whether or not a printer is powered up is a
Boolean matter, the compiler is free to allocate a single bit in the
machine (per printer) to represent it. That will work so long as the
hardware is arranged to ensure that whenever the printer is pow-
ered up, the bit is set (say) to ‘1’; otherwise, it should be set to ‘0’.
Instances of calls to PoweredUp? can then be translated into simple
and direct accesses of that single bit. In the code fragment above,
for example, if that bit is 1, the file will be printed; if it is a 0, the
user will be given an error message. And so all the compiler needs
to produce is a machine whose behavior is functionally dependent
on the state of that bit in some way or other.

This is all straightforward—even elementary. But think of its
significance. In particular Consider Evans’ Generality Condition,
described above. In order for a system to be compositional in the
requisite way, what was required, was the following: that the sys-
tem be able to “entertain” a thought—construct a representation,
say—whose content is that any property it knows about hold of
any object it knows about. Suppose, for argument, that we say that
the print driver “knows about” the current printer, and also “knows
about” the user—the person who has requested the print job, to
whom the potential error message will be directed. Suppose, fur-
ther, that we say that the driver, as written, can “entertain the
thought” that the printer is powered up. Does that imply that it can
entertain a thought (or construct a representation) whose content
is that the user is powered up?

Of course not. In fact the print driver process cannot entertain a

13By design, this code fragment is ridiculously skeletal.

 7 · One Hundred Billion Lines of C++

 367

single “thought” that does not occur in the program. That shows
that it is not really “entertaining” the thought at all. For the issue
of whether the printer is powered up is not a proposition that can
figure, arbitrarily, in the print driver’s deliberations. In a sense,
the print driver doesn’t “deliberate” at all. It is a machine, designed
for a single purpose. And that is why the representation of
whether a given printer is powered up can be reduced to a single
bit. It can be reduced to a single bit because the program has abso-
lutely no flexibility in using it. Sure, given that C++ is incontestably
symbolic, productive, and so forth, the original programmer could
have written any of an unlimited set of other programs, rather
than the program they wrote. But given that they wrote the particu-
lar one that they did, that extrinsic flexibility is essentially irrele-
vant.

From one point if view, in fact, that is exactly why we compile
programs: to get rid of the overhead that is required in the original
programming language to keep open (for the programmer) the vast
combinatoric space of possible programs. Once a particular pro-
gram is written, this space of other possibilities is no longer of in-
terest. In fact it is in the way. It is part of the compiler’s task to
wash away as many traces of that original flexibility as possible, in
order to produce a sleeker, more efficient machine.

Another numerical point will help drive the point home. Pro-
grams to control high-end networked printers are several million
lines long. Operating systems are 100s of millions of lines of
code.14 It is not unreasonable to suppose that such programs con-
tain a new identifier every four or five lines. That suggests that the
number of identifiers used in a printer control program can ap-
proach a million, and that Windows NT will contain as many as 7
million identifiers. Suppose a person’s conceptual repertoire is ap-
proximately the same size as their linguistic vocabulary. Educated
people typically know something like 40,000 to 80,000 words.
Suppose we therefore assume that people have on the order of
100,000 concepts. Is it possible—as seems to be entailed by the
symbolists’ position—that a Xerox printer has a conceptual reper-

14Microsoft Windows NT 5.0, the release of which was thought to be im-
minent at the point when this paper was first written, was rumoured to
contain 35 million lines of code. (It was eventually released on February 17,
2000.)

368 Indiscrete Affairs · I

toire ten times larger than you do, or a Microsoft operating system,
seventy times larger?

I think not.15

 4 Processes
A way to understand what is going on is given in figure 1. The
box at the top left is (a label for!) the program: the passive textual
entity selected out of the vast space of possible programs implicitly
provided by the background programming language. The cloud
at the middle right is intended to signify the process or behavior
that results from run-
ning the program.16
The scene at the bot-
tom is a picture of the
program’s task domain
or subject matter. For
example in this case the
process might be an ar-
chitectural system
dealing with house de-
sign.

Given these three
entities, two relations
are most important:
that labelled a, from
program to process,
and that labelled b,
from resulting process
to task domain. Moreover, what is perhaps the single most confus-
ing fact in cognitive science’s use of computation is this: the word
‘semantics’ is used by different people for both of these relations. In

15Indeed, no program—at least none we currently know how to build—
could possibly cope with millions of differently-signifying identifiers, if all
those identifiers could be mixed and matched, in a compositional way, as
envisaged in the symbolists' imagination.

16Whether the cloud represents a single run (execution) of the process, or
a more general abstract type, of which individual runs are instances, is an
orthogonal issue—important in general, but immaterial to the current ar-
gument.

Figure 1 — Program and Process

 7 · One Hundred Billion Lines of C++

 369

computer science, the phrase “the semantics of a program” refers to
the program-behavior (process) relation a, whereas the relation
considered semantic in the philosophy of mind is the process-
world relation b. For discussion, in order not to confuse them, I
will refer to a as program semantics, and to b as process seman-
tics. It is essential to realize that they are not the same.17 Not only
do they relate different things, but they are subject to vastly differ-
ent constraints—and are of distinct metaphysical kinds.

All sorts of confusion can be cleared up with just this one distinc-
tion. But a cautionary note is needed first. Given that processes
and behaviours are computer science’s primary subject matter, you
might think that there would be a standard way to describe them.
Curiously enough, however, that is not so. Rather, professional
practice instead models processes in various ways:

… In the final version it will probably be helpful to devote more than a sen-
tence to each of these; perhaps even worth constructing a target program P
that does something (a bit more complex than the printer example above), and
then actually presenting the five different models of the processes that result. …

1. The most common way to talk about processes is to model
them with (mathematical) functions mapping their inputs
onto their outputs.

2. A second way is to treat the computer as a state machine,
and then to view the process or behaviour as a sequence of
state changes.

3. A third is to have the process produce a linear record of eve-
rything that it does (called a “dribble” or “log” file), and to
model the process in its terms.

17Many years ago, at Stanford's Center for the Study of Language and In-
formation (CLSI), I, with a background in AI and philosophy of mind, tried
in vain to communicate about semantics with Gordon Plotkin, one of the
most preëminent theoretical semanticists in all of computer science. Fi-
nally, a glimmer of genuine communication transpired when I came to un-
derstand the picture sketched in figure 1, and realised that we were using
the term 'semantics' differently. "What I am studying," I said, trying to put
it in his language, "is the semantics of the semantics of programs."

Plotkin smiled.

370 Indiscrete Affairs · I

4. A fourth (called “operational semantics”) is to model the
process in terms of a different program in a different lan-
guage that would, if run, generate the same behavior as the
original.

5. A fifth and particularly important one—called denota-
tional semantics—models the concrete activity that the
program actually produces (i.e., the behaviour Q) with vari-
ous abstract mathematical structures (such as lattices),
rather in the way that physicists model concrete reality
with similarly abstract mathematical structures (tensors,
vector fields, etc.).

Especially because of the common use of mathematical models in
several of these approaches (#s 1 and 5 especially, though they can
all be mathematized), outsiders are sometimes tempted to think
that computer science’s notion of semantics is similar or equivalent
to that used in logic and model theory. But that assumption is
misleading. Although the relation is studied in a familiar way,
what relation it is that is so studied may differ substantially from
what is supposed.

 5 Discussion
Once these modelling issues are sorted out, we can use these basic
distinctions they are defined in terms of to make the following
points:

… This section has not really been written; the six points identified below
should be amplified enough to communicate the essential moral, in each case, to
someone who does not “already know it,” as it were—in particular, enough de-
tail both to motivate and to convey it to a philosophical reader, even one with-
out computational experience …

1. (Discussed above) It is programs, not processes, that, in
standard computational practice, are symbolic (composi-
tional, productive, etc.).

2. It is again programs, not processes, that computer scientists
take to be syntactic. It strikes the ear of a computer scientist
oddly to say that a process or behavior is syntactic. But

 7 · One Hundred Billion Lines of C++

 371

when Fodor talks about the language of thought, and ar-
gues that thinking is formal, what he means, of course, is
that human thought processes are syntactic.

3. Searle’s analogy of the mind to a program is misleading.18
What is analogous to mind, if anything (i.e., if the compu-
tational theory of mind is true) is process.

4. Not only is there no reason to suppose, but in fact I know of
no one who ever has proposed, that there should be a pro-
gram for the human mind, in the sense we are using here: a
syntactic, static entity, which specifies, out of a vast combi-
natoric realm of possibilities provided for by the program-
ming language, the one particular architecture that the
mind in fact instantiates. Perhaps cognitive scientists will
ultimately devise such a program. But it seems relatively
unimaginable that evolution constructed us by writing
one.19

5. For simple engineering reasons, the program-process rela-
tion (a in the figure) must be constrained to being effective
(how else would the program run?). There is no reason to
suppose that the process-world relation b need be effective,
however—unless for some reason one were metaphysically
committed to such a world view.

6. It is because computational semanticists study the pro-
gram-process relation a, not the process-world relation b,
that theoretical computer science makes such heavy use of
intuitionistic logic (type theory, Girard’s linear logic, etc.)
and constructive mathematics.

 6 Conclusion

… Once §5 is properly written, this § will deserve a rewrite …

18Searle, John, Minds, Brains, and Science, Cambridge: Harvard University
Press (1984).

19Of course one could call DNA a programming language in this
sense…«talk about how it is subject to some of the same efficacy con-
straints»

372 Indiscrete Affairs · I

What, in sum, can we say about the cognitive case? Two things,
one negative, one positive. On the negative side, it must be recog-
nized that it is a mistake to assume that modern commercial pro-
gramming gives rise to processes that satisfy anything like the de-
fining characteristics of the “symbolic” paradigm. Perhaps some-
one could argue that most—even all—of present-day computa-
tional processes are symbolic on some much more generalized no-
tion of symbol.20 But the more focused moral remains: the vast
majority of extant computer systems are not symbolic in the sense
of “symbol” that figures in the “symbolic vs. connectionist” or “com-
putational vs. dynamic” debates.

What are the computer systems we use, then? Are they
connectionist? No, of course not. Rather—this is the positive
moral—they spread out across a extraordinarily wide space of
possibilities. With respect to the full range of computational pos-
sibility, moreover, present practice may not amount to much. Com-
putation is still in its infancy; we have presumably explored only a
tiny subset of the space—perhaps not even a very theoretically in-
teresting subset, at that. But this much we can know, already; the
space that has already been explored is far wider than debates in
the cognitive sciences have so far recognized.

20If it were enough, in order to be a symbol, to be discrete and to carry in-
formation, then (at least arguably) most modern computational processes
would count as symbolic. Or at least that would be true if computation
were discrete—another myth, I believe (see chapter ■■). But the symbolic
vs. connectionist and/or dynamicist debate is not simply a debate about
discrete vs. continuous systems.

 373

8 — The Semantics of Clocks†

 The inexorable ticking of the clock may have had
more to do with the weakening of God’s supremacy
than all the treatises produced by the philosophers of
the Enlightenment . . . Perhaps Moses should have
included another Commandment: Thou shalt not
make mechanical representations of time.

 —Neil Postman1

 1 Introduction
Clocks?

Yes, because they participate in their subject matter, and par-
ticipation—at least so I will argue—is an important semantical
phenomenon.

To start with, clocks are about time; they represent it.2 Not
only that, clocks themselves are temporal, as anyone knows who,
wondering whether a watch is still working, has paused for a sec-
ond or two, to see whether the second hand moves. In some sense
everything is temporal, from the price of gold to the most passive
rock, manifesting such properties as fluctuating wildly or being

 † Slightly revised version of a paper that appeared in James H. Fetzer (ed.),

Aspects of Artificial Intelligence, Kluwer 1998, pp. 3–31.
 1 Postman (1985), pp.11–12.
 2 Clocks represent time for us, as it happens, not for themselves—but that

will count as representation, at least here. I am sympathetic to such dis-
tinctions as between original and derivative semantics, and between
authentic and derived; in fact I am interested in participation in part for
just such reasons. However I am against relativizing representation to an
observer at the outset, especially to a human observer (cf. Winograd and
Flores, 1986), since to do that would be to abandon any hope of explaining
how the human mind might itself be representational. See (Smith, forth-
coming).

374 Indiscrete Affairs · I

inert. But the temporal nature of clocks is essential to their se-
mantic interpretation, more than for other representations of
time, such as calendars. The point is just the obvious one. As time
goes by, we require a certain strict coordination The time that a
clock represents, at any given moment, is supposed to be the time
that it is, at that moment. A clock should indicate 12 o’clock just
in case it is 12 o’clock.

But that is not all. The time that a clock represents, at a given
moment, is also a function of that moment, the very moment it is
meant to represent. I.e., suppose that a clock does indicate 12
o’clock at noon. The time that it indicates a moment later will dif-
fer by an amount that is not only proportional to, but also de-
pendent on, the intervening passage of time. It does not take God
or angels to keep the clock coordinated; so long as the mechanism
is set up properly, it does it on its own. This is where participa-
tion takes hold.

2010 Perspectiveα1

………… to be written …………

Things to be talked about:

… How the paper emerged in part out of a desire to combine derivatives and
semantic brackets, as part of the unification project (based on another bar
conversation about using the states of dynamical systems as “representa-
tionally significant” syntactic states).

… The (huge) long-term importance of the comment about “state-change,”
… How, in teaching, I use clocks as a first example of a mechanical system de-

signed to honour a non-effective semantical norm (rather than logic, be-
cause people get so confused by the notation—as well as the intrusion of
mathematics).

… Go over the notes from the phil-comp course where I talk about clocks, and
put into these perspective comments anything there that is not covered in
the paper (Jun’s feeling is that those notes are easier and more important,
for students).

Notes
 α1 Sidebars and footnotes with text in sans-serif font, as in this case, contain comments and

reflections added in 2010, rather than material that appeared in the original paper.

 8 · Semantics of Clocks

 375

As well as representing the current time, clocks have to iden-
tify its “location” in the complex but familiar cycle of hours, min-
utes, etc. They have to measure it, that is, in terms of a predeter-
mined set of temporal units, and they measure it by participating
in it. And yet the connection between their participation and
their content is not absolute—clocks, after all, can be wrong.
How it is that clocks can participate and still be wrong is some-
thing we will have to explain.

For clocks, participation involves being dynamic: constantly
changing state, in virtue of internal temporal properties, in order
to maintain the right semantic stance. This dynamic aspect is a
substantial, additional, constraint. A passive disk inscribed with
‘NOW!’ would have both temporal properties mentioned above
(being about time, and having the time of interpretation relevant
to content) and would even maintain perfect coordination. A ren-
dering of this word in blinking lights, mounted on a chrome
pedestal, might even deserves a place on California’s Venice
Boardwalk. But even though it would be the first time piece in
history to be absolutely accurate, such a contraption would not
count as a genuine chronometer.

We humans participate in the subject matter of our thoughts,
too, when we think about where to look for our glasses, notice
that we are repeating ourselves, or pause to ask why a conversant
is reacting strangely. Why? What is this participation? It is hard
to say exactly, especially because we cannot get outside it, but a
sidelong glance suggests a thick and constant interaction between
the contents of our thoughts, on the one hand, and both prior
and subsequent non-representational activity, on the other, such
as walking around, shutting up, or pouring a drink.

Take the glasses example. Suppose, after first noticing their
absence, I get up and look on my dresser, asking myself “Are they
here?” My asking the question will be a consequence of my won-
der, but so will my (non-representational) standing in front of the
dresser. Furthermore, the two are related; the word ‘here’ will de-
pend for its interpretation on where I am standing. And who
knows, to drive the example backwards in time, what caused the
initial wonder—eye strain, perhaps, or maybe an explicit com-
ment. The point is that the representational and non representa-

376 Indiscrete Affairs · I

tional states of participatory systems are inexorably inter-
twined—they even rest on the same physical substrate. We can
put it even more strongly: the physical states that realise our
thoughts are caused by non-representational conditions, and en-
gender non-representational consequences, in ways that must be
coordinated with the contents of the very representational states
they realise. Participation is something like that.

Artificial intelligence (AI) and general computational systems
also participate—more and more, in fact, as they emerge from the
laboratory and take up residence with us in life itself: landing air-
planes, teaching children, launching nuclear weapons. Far from
being abstract, computers are part of the world, use energy, affect
the social fabric. This participation makes them quite a lot like us,
quite unlike the abstract mathematical expression types on which
more familiar semantical techniques have been developed.

My real reason for studying clocks, therefore, can be spelled
out as follows. First, issues of semantics, and of the relationship
between semantics and mechanism, are crucial for AI and cogni-
tive science (this much I take for granted). Second, it is terrifically
important to recognise that computational systems participate in
the world along with us. That is why they are useful. Third, as I
hope this paper will show, participation has major consequences
for semantical analysis: it forces us to develop new notions and
new vocabulary in terms of which to understand interpretation
and behaviour. Clocks are an extremely simple case, with very
modest participation. Nonetheless, their simplicity makes them a
good foil in terms of which to start the new development

So they are really not such an unlikely subject matter, after all.

 2 Inference and Time-keeping
Let’s start by reviewing the current state of the semantical art.
Consider a familiar, paradigmatic case: a theorem-prover built ac-
cording to the dictates of traditional mathematical logic. As sug-
gested in figure 1, two relatively independent aspects will be co-
ordinated in such a system First, there is activity or behaviour—
what the system does—indicated as ψ (for psychology). All sys-
tems, from car engines to biological mechanisms of photosynthe-
sis, of course do something; what distinguishes theorem provers
is the fact that their ψ implements (some subset of) the proof-

 8 · Semantics of Clocks

 377

theoretic inference relation (⊢). Second, there is the denotation or
interpretation relation, indicated φ (for philosophy), which maps

sentences or formulae onto
model-theoretic structures of
some sort, in terms of which the
truth-values of the formulae are
determined. In a computer sys-
tem designed to prove theorems
in abstract algebra, for example,
the interpretation function
would map states of the machine
(or states of its language) onto
groups, rings, or numbers—the
subject matter of the algebraic

axioms.

Four things about this situation are important.
First, although proof theory’s putative formality suggests that

ψ must be definable independent of φ you could not claim to have
a proof-theoretic or inference relation except with reference to
some underlying notion of semantic interpretation. Conceptually,
at the very least, ψ and φ are inextricably linked (salesmen for in-
ference systems without semantics should be reported to the Bet-
ter Business Bureau). Furthermore, the two relations are coordi-
nated in the well-known way, using notions of soundness and
completeness: inferences (ψ) should lead from one set of sen-
tences to another only if the latter are true just in case the former
are true (⊢ should honour ⊨). And truth, as we’ve already said , is
defined as in terms of φ: the semantic relation to the world.

Second, even though the proof-theoretic derivability relation
(⊢) can be modeled as an abstract set-theoretic relation among
sentences, I will view inference itself (ψ) as fundamentally tempo-
ral—as an activity. ‘Inference’ is a derived noun; ‘infer’ is first and
foremost a verb, with an inherent asymmetry corresponding di-
rectly to the asymmetry of time itself. It might be possible to real-
ise the provability relation non-temporally, for example by writ-
ing consequences of sentences down on a page, but you could
hardly claim that the resulting piece of paper was doing inference.

Third, when its dynamic nature is recognised, inference is

Figure 1 — Activity and semantics
for a theorem prover

378 Indiscrete Affairs · I

(quite properly) viewed as a temporal relation between sentences
or states of the machine’s memory, not as a function from times
onto those corresponding sentences or states. Mathematically this
may not seem like much of a difference, but conceptually it mat-
ters a lot. Thus, taking σ to range over interpretable states of the
system, and t over times, ψ is of type σ → σ, not t → σ. Of course
it will be possible to define a temporal state function of the latter
type, which I will call Σ; the point is that it is ψ, not Σ, that war-
rants the name inference. Details will come later, but the relation
between the two is roughly as follows: if t’ is one temporal unit
past t, and Σ(t) = σ, then Σ(t’) = ψ(σ). Inference, that is, has
more to do with changes in state than with states themselves. To
study inference is to study the dynamics of representational sys-
tems.

Fourth, of all of the relations in figure 1, only ψ need be effec-
tive. Neither φ nor Σ can be directly implemented or realised, in the
strong sense that there cannot be a procedure that uses these
functions’ inputs as a way of producing their outputs (the real
reason to distinguish ψ and Σ) This claim is obviously true for φ.
If I use the name ‘Beantown’ to refer to Boston, then the relation
between my utterance and the town itself is established by all
sorts of conventional and structural facts about me, about Eng-
lish, about the situation of my utterance, and so forth. The town
itself, however, is not the output of any mechanisable procedure
realised in me, in you, or in anyone else (fortunately—as it would
be awfully heavy). It might require inference to understand my
utterance, but that would only put you in some state σ the same
referent as my utterance, or state. In particular, you do not “com-
pute” the referent of an utterance you hear, in the sense of pro-
ducing that referent as an output of a procedure.x Nor is the ref-

 x While this point is philosophically obvious to the point of banality, there is

substantial ambiguity about the word compute. In English we have no dif-
ficulty is distinguishing, for example, between ‘utter’ and ‘describe,’ in the
sense (as I have said elsewhere) one describes a refrigerator, and in that act
utters a sentence (but does not utter a refrigerator). Perhaps because so
much of computational theory has been developed to deal with mathe-
matical examples, and also because so much computational practice has to
do not only with the construction but the representation of computation-
internal structures (programs, data structures, etc.), there is no such clarity

 8 · Semantics of Clocks

 379

erence relation effectively mediated by the physical substrate of the
world, at least on any understanding of ‘effective’ remotely con-
nected to the idea that computation has to do with the capcities
of effective mechanisms. Not even the National Security Agency
could fabricate a sensor, to be deployed on route 128, that could
detect Boston’s participation as a referent in a reference act.3

regarding the word ‘compute.’ People are happy to talk about computing
numbers, rather than numerals—suggesting it be interpreted as analogous
to ‘describe’—but also about “computing the header” of a file, in which
case it is assumed that the header is actually produced, rather than merely
being represented.

 3 In computer science the claim that reference is not computed is viewed
suspiciously—for an very interesting reason. To see it, consider why the
claim is true. Suppose in a room of one hundred people we label as A the
person among them who is the average height. Then suppose a new
(101st) person enters the room. Suddenly—and without any computa-
tion—a different person B will have become the person of the average
height. No work needs to be done to “lift” the property of being the aver-
age height off of person A, and settling it on B; no energy need be ex-
pended; no symbols massaged. The new state just comes to be, automati-
cally, in virtue of the maze of conditions and constraints that hold. Refer-
ence, I take it, is something like that; conditions and constraints hold so
that, when a word is uttered or a thought entertained, some object “be-
comes” the referent. (Nor is it possible to reply, in the average-height-
person case, “Well, the room computed it”. On that recourse everything
that happens would be computed, which would evacuate the word ‘com-
pute’ of substance.)

How could computer scientists object to this? For the following reason.
Note that the way that B becomes the person of average height is by par-
ticipating in the situation at hand: he or she enters the room. Participation,
in other words, is what enables relationship to exist. Computers, on the
other hand, are traditionally viewed in purely abstract terms—and ab-
stractions, whatever they are, and whatever else may be true of them, are
presumably metaphysically banned from participation. The closest an ab-
straction comes to the property of average height—or indeed to anything
at all—is by designating it. And so, because of this abstract conception of
computers, one gets lulled into thinking that everything must to come into
being in this disconnected, putatively “computational” way.

Needless to say, I do not believe the abstract conception of computers is
right. More strongly, I want to argue that participation—virtually the op-
posite of abstraction—is exactly what allows you to connect to the world
in other ways than through explicit symbol manipulation. See section 8,
and (Smith, forthcoming).

380 Indiscrete Affairs · I

That Σ is not computed is equally obvious, once you see what
it means. The point is a strong metaphysical one: times them-
selves—metaphysical moments, slices through the flux quo—are
not causally efficacious constituents of activity; per se, they lack
causal powers. If they were causally efficacious, clocks would not
have been so hard to develop.4 As it is, mechanisms, like all physi-
cal entities, manifest whatever temporal behaviour they do in vir-
tue of momentum, forces acting on them, energy expended, etc.,
all of which operate in time, but do not convert time, compare it
to anything else, or react with it. The only thing that is available,
as a determiner of how a system is going to be, is how it was a
moment before, plus any forces impinging on it (this is physic’s
vaunted locality). That, fundamentally, is why inference is of type
σ → σ, not t → σ. It could not be otherwise. The inertness of gold,
and the indifference of a neutrino, are nothing as compared with
the imperturbability of a passing moment

Given these properties of theorem provers, what can we say
about clocks? Well, to start with, their situation certainly resem-
bles that of figure 1. As in the inference case, a clock’s being in
some state σ represents (φ) it’s being noon, or 7:15, or whatever;
the interpretation function is what matters. Similarly, clocks, like
theorem provers, change state (ψ) in a simple but important way.
Not only that, state change is what the clock designer has to work
with; no mortal machinist. unfortunately, could build a device
that would directly implement Σ. Furthermore, as in the case of
the theorem prover, the change in state of the clock face is impor-
tant only because of its relation to its content. Forget the Better
Business Bureau; no one would buy a clock without a clue as to
how its state represented time.(without, that is, understanding
how it was a clock). Once again, systematic coordination between
activity and interpretation is what matters.

But despite these similarities, there is a difference between
clocks and theorem provers—suggested by the fact that many
people (including me)would be reluctant to say that a clock was

 4 For accurately measuring distances on roads, one attaches a “fifth wheel”

to a car and reads off the passing miles. Maybe, if time had been causally
efficacious, we could have built clocks the same way, running a wheel
against time and reading off the passing seconds.

 8 · Semantics of Clocks

 381

doing inference. To get at the difference, note that I have not yet
said what inference’s coordinated pattern of events is for (on the
face of it, transitioning from truths to truths sounds a little bor-
ing). But the answer is not hard to find: given a set of sentences or
axioms that stand in (or enable you to stand in) a given semanti-
cal or informational relation to a subject matter, proofs or infer-
ence lead you to a new informational relation to the same, un-
changed subject matter. For example, the famous puzzle of Mr. S
and Mr. P5 focuses your attention on a pair of numbers under a
peculiar description; a considerable amount of inference is re-
quired in order to give you semantical access to those same num-
bers under a more traditional description (or give you access to
other more familiar properties of numbers—there are many ways
to discharge the ontological facts). The numbers themselves,
however, and their possession of all the relevant properties, are
expected to stay put during the inferential process. None of this
implies, of course, that the subject matter of inference cannot it-
self be temporal, as illustrated by the situation calculus, temporal
logics, and numerous other formal systems. The point is only that
the temporality of the inference process and the temporality of
the subject domain are not expected to interact.

The situation for clocks, on the other hand, is almost exactly
the opposite. What changes, across the time slice mediated by ψ,
is not the stance or attitude or property structure that clocks get

 5 There are two numbers between 1 and 100. Mr. P knows their product;

Mr. S, their sum. The following conversation ensues:
Mr. P: I don’t know the numbers.
Mr. S: I knew you didn’t. Neither do I.
Mr. P: Now I do
Mr. S: Now I do too.

What are the numbers?
The earliest publication of this problem I am aware of is by H.

Freudenthal in the Dutch periodical Nieuw Archief Voor Wiskunde, series
3, 17, 1969, p. 152 (a solution by J. Boersma appears in the same series, 18,
1970, pp. 102–106). It was subsequently submitted by David J. Sprows to
Mathematics Magazine 49(2), March 1976, p. 96 (solution in 50(5) Nov.
1977, p. 268). Perhaps the most widely read version appears in Martin
Gardner’s “Mathematical Games” in Scientific American 241(6), Dec 1979,
pp. 22–30, with subsequent discussions and slight variations in 1980:
242(3), March, p. 38; 242(5), May, pp. 24-28; and 242(6), June, p. 32.

382 Indiscrete Affairs · I

at. What changes, rather, is the subject matter itself. Clocks never
have a moment’s rest; no sooner have they achieved the desired
relationship to the current time than time slips out from under
their fingers—as if God were constantly saying “It’s later than
you think!” Clocks should perhaps be viewed as the world’s first
truth maintenance systems: they do what they do merely in order
to retain the validity of their single semantic claim. Like any other
meter or measuring instrument, they must track the world.

We can summarise:

 At least as traditionally construed, inference is a technique
that enables a system to change its relation to a fixed subject
matter. Clocks are almost exact duals: they maintain a fixed
relation to a changing subject matter.

If reconstructing time-pieces were really my subject matter, rather
than simply being a foil, I might stop here. But my real interest is
in developing a single semantical framework so that we can not
only handle both of these cases (mathematical inference and real-
time clocks), but also locate everything in between. So let’s spend
a minute to see how clocks fit into the general case.

 3 Semantically Coherent Activity
I will use the term ‘representational system’ to coyer anything
whose behaviour fits within the broad space of semantically con-
strained activity. To be a representational system, in other words,
is to be an element of the natural order that acts in a semantically
coherent way. Of all possible kinds of representational activity,
inference will be analysed as a particular type. The representa-
tional space is large, of course, and certainly includes all of com-
putation (more about that in a moment), but it is still a substan-
tive notion: not everything is in it. Planets, for example, are ex-
cluded,x because planets do not represent their orbits; they just
have them. Clocks, on the other hand, do represent the time, just
as I can represent to myself how the sunrise looked this morning,
as I drove down from the mountains.

Clocks do however fall outside most traditional models of

 x Unless accorded semantical significance, which is not usual practice (except
perhaps of astrologists).

 8 · Semantics of Clocks

 383

computation, including the “formal symbol manipulation” model
so familiar in cognitive science.6 First, clocks (their faces, and the
clockworks that run them) are fully concrete, physical objects,
part of the natural order; nothing abstract here. Furthermore,
this concreteness is crucial to our understanding of them; for
some purposes one might treat clocks at a level of description that
abstracted away from their physical being, including their tempo-
ral being, but since our purpose is to show how participation in
their subject matter influences their design, to do so would be to
miss what matters most. Second, at least some clocks (especially
electrical ones operating on alternating current) are analog, even
though more and more recent on are “digital.”x Third, to the ex-
tent that clocks have representational ingredients, there is no ob-
vious decoupling to be made between (i) a set of structures that
represent, and (ii) an independent process that inspects and ma-
nipulates them according to the shapes it sees. In other words,
whereas Fodor’s characterisation of a computer’s “standing in re-
lation” to representational ingredients suggests a modular division
between symbols and processor, no such division is to be found in
the chronological case. Fourth, there is another separation that
cannot be maintained in the case of clocks: that between “inter-
nal” and “external” properties. Rather like neutrinos, times per-
meates everything equally—being as much an influence on inter-
nal workings as it is on surrounding context. And of course it is
one and the same time, inside and out—clock design depends on
this. Fifth, clocks, especially analog clocks, are not usually “pro-
grammed” in any sense; they are designed, but they are not uni-
versal computers specialised by physical encodings of time-
keeping instructions. Like so many other properties of clocks, this
is important, and leads to the sixth salient difference. Even on the
view that Turing machines are concrete, physical objects (of

 6 The two other primary models, conceptually distinct from the formal

symbol manipulation idea, are the automata-theoretic notion of a digital or
discrete system, and the related idea of a machine whose behaviour is
equivalent to that of some Turing machine. Although the formal symbol
manipulation view seems to go virtually unchallenged in cognitive science,
the other two have much more currency in modern computer science. See
«Smit, forthcoming».

 x Whatever that means. See «…».

384 Indiscrete Affairs · I

which abstract mathematical quadruples are merely set-theoretic
models), there is still no guarantee, given a particular universal
one, that any set of instructions could make it be, or eνen simulate, an
accurate time keeper—because there need be no consistency or
regularity as to how long its state changes take. Turing machines,
qua Turing machines, do not really participate.

I have come to believe, however, that not one of these proper-
ties is essential to the notion of computation on which the econ-
omy of Silicon Valley is based, or to the notion that underlies AI’s
hunch that the mind is computational: (i) being abstract, (ii) be-
ing digital, (iii) exhibiting a process/structure dichotomy, (iv)
having a clear boundary between inside and outside, (v) being
programmable, or (vi) being necessarily equivalent to any Turing
machine. Quite the contrary. In (Smith, forthcoming)x I argue for
a much stronger conclusion: that the only regularity essential to
computation has to do with computation’s being a physically em-
bodied representational process—an active system or process whose
behaviour represents some part or aspect of the embedding world
in which it participates. Needless to say, this has the conse-
quences of defining computation squarely in terms of undis-
charged semantical predicates. My position on theoretical cartog-
raphy is therefore the inverse of Newell’s (1980): whereas he
thinks that computer science has answered the question of what it
is to be a symbol, I believe in contrast that the integrity of compu-
tation as a notion rests full-square on semantics: it requires a no-
tion of symbol in order to have any foundation. So we have lots of
homework to do, but it is homework for another day.

In the meantime, clocks are a good test case for comprehensive
semantical frameworks. They lack many important properties of
more general computers: they do not act, for example, or have
sensors. But since every semantical property they do exhibit is
one that computers exhibit too—including participation—they
are a useful design study.

 x Though this paper was written in 1997, this was a reference to AOS «ref».

 8 · Semantics of Clocks

 385

 4 Three Points on Two Factors
In the previous section I distinguished two aspects or factors of
any representational system: its behaviour, activity, or causal con-
nection with the world (which I will call the first factor) and its
interpretation, content, or relation to its subject matter (the sec-
ond factor). I have previously used this two-factor framework to
reconstruct the semantics of Lisp, the programming lingua franca
of AI, and argued for its general utility in analysing knowledge
representation systems.7 And I will use it here, to analyse clocks.
But three points must be made clear.

First, the ordering of the two factors may seem odd. There is no
doubt that having interpretation or content—standing in seman-
tic relation to a subject matter—is what particularly distinguishes
the systems we are interested in. Given this pride of place, it
might seem that content should be called first. But for present
purposes this would be a mistake. We theoreticians typically treat
semantics as primary when we analysing both natural and artifac-
tual languages (such as the predicate calculus). We typically de-
fine semantics over rather abstract entities—sentence types, for
example—and then understandably define the other dimensions
(proof theory, inference) over the same domain. But especially in
conjunction with the formal-symbol manipulation view of com-
putation, this overall strategy lends a very abstract feel to infer-
ence—leading such people as Searle to wonder how, or even
whether, such a system could ever possess genume semantical
powers. In contrast, by calling activity the first factor here I want
to recognise that computational systems are first and foremost,
systems in the world. Everything has what I am calling a first fac-
tor; that is what gives a system the ability to participate. The sec-
ond factor—of representation or content—which enables a sys-
tem (a thinker, a clock) to stand in relation to what is not imme-
diately accessible or discriminable, is a subsequent, more sophisti-
cated capacity. It is the second factor, furthermore, that distin-
guishes the representational or interpretable systems from other
natural systems, but it distinguishes them as a sub-type, not as a

 7 Smith (1982, 1984, 1986).

386 Indiscrete Affairs · I

distinct class. First factor participation in the world (“being
there,” roughly) is always available—which is fortunate, since it is
only with respect to the first factor that second factor content can
ever be grounded.

In sum, recognising the metaphysical primacy of the first factor
is an important ingredient in the defense of naturalism.

Second, there is a natural (almost algebraic) tendency to think
that, in accepting a two-factor stance, one is committed to think-
ing that the two factors, in any given system, will in some impor-
tant sense be independent. This tendency is amplified by the fact
that in standard first-order logic an almost total independence of
factors is achieved—this is one of the many meanings of the am-
biguous claim that first-order logic is formal. Truth, content, and
interpretation in logic are thought to be relatively independent of
proof-theoretic role, and provability or inferential manipulation
analogously independent of content or interpretation. In fact it is
only because of this conceptual independence that proofs of
soundness and completeness, even the very notions of soundness
and completeness, are conceptually coherent. In computer sys-
tems, however—and minds, and clocks—there is no reason to
expect this total degree of disconnection or independence. We
should expect something more like the relationship between the
mass and velocity of a physical object, on the one hand, and the
center of gravity or resonance of the system of which it is a part,
on the other: a web of constraints and conditions tying the two
factors together—piece-wise, incrementally—thereby giving rise
to a comprehensive whole. The situation of a cmplete proof sys-
tem defined on an abstract set of mathematical expression types is
extreme: a global but locally unmediated coherence, with no part
of the proof or inferential system touching the semantic interpre-
tation or content, except in the final analysis, when an outside
theorist’s proof grandly ties the whole thing together. For com-
puters, and for us, it seems much more plausible to take a step or
two apart from our subject matter, and then check in with it, to
stay in “synch”—by taking a look, for example, or (following
AT&T’s recommendation) by “reaching out and touching it.” Par-
ticipation is a resource, not a complication

Third, as both the first two points make clear, it is a little hard
to justify calling the two factors semantical, especially when the

 8 · Semantics of Clocks

 387

first is shared with every other participant in the natural order. It
is not just that the first should be viewed as syntax, the second as
semantics (as application of this more general framework to the
predicate calculus would suggest). Rather, it is not clear what, if
anything, the terms ‘syntax’ and ‘semantics’ should mean in a con-
text where the coupling between factors is so much richer and
more complex than in the traditional idealised case—if indeed
they mean anything at all. Clockworks are mechanisms that en-
able first-factor behaviour—that much seems innocuous enough;
calling the momentum of a clock’s pendulum semantic is more dif-

ficult. First and second
factors are not distinct
objects that somehow co-
operate in engendering
semantical activity; rather,
one and the same causal
constituents of a semantic
system play both first and
second factor roles.

This whole question is
complicated by the use of
the word ‘semantics’ (es-
pecially in AI) to describe
inferential and structural

relations among ingredients within a computational system. In
(Smith, 1986)x I attempt to resolve some of these issues, but in-
stead of reconstructing that argument here I will simply use the
two-factor terminology without prejudice as to what does and
does not have legitimate claim to the overloaded term.

 5 Theoretic Machinery and Assumptions
Look, then, at how clocks represent time, starting with some ba-
sic assumptions. As suggested in figure 2, qua theorists we need
accounts of four things:

1. States of the clock itself, including the face (σ);
2. The time or passage of time that the clock represents (τ);

 x «Explain where that is done in this volume.»

Figure 2 — The typology of clock semantics

388 Indiscrete Affairs · I

3. The first factor movement or state change between clock
states (ψ); and

4. The second factor representation relation (φ) between
clock states and times.

All four of these are shared with standard semantical analysis: the
first two would be the syntactic and semantic domain; the third,
inference or proof theory; the fourth, semantics or interpretation.

I will adopt what I will call a direct rather than model-theoretic
approach to these analytic tasks. Typically, when doing seman-
tics, instead of talking directly about clock faces, orientations of
hands. etc., one models them. For example, the state of a three-
hand analog clock might be modelled as a triple, consisting of the
orientations of the hour-hand, minute-hand, and second-hand,
respectively, measured clock-wise from the vertical, in degrees.
Thus the clock face shown in figure 2 would be modelled as fol-
lows:

 Mσ: <128.3166…, 99.8, 228> (S1)

The problem with this technique, however, as suggested in figure
3, is that a model M of a situation S is itself a representation of S,
since modelling is a particular species of representation (Mσ, for
example, represents the clock face; it is not the clock face, since for

example it has a length of
three). The general character
and complexity of the model–
clock relation Mσ–σ, therefore,
is the same as that between the
clock and the time it represents
(σ–t). It is therefore very hard
to know whether what is crucial
about σ–τ will be revealed or
hidden if its analysis is con-
ducted purely in a Mσ–Mτ
form. For example, using simple
numbers to represent the orien-
tations of hands presumes an
absolute accuracy on the clock
face, counter to fact. When

Figure 3 — The model-theoretic approach

 8 · Semantics of Clocks

 389

studying something like natural language, which makes use of a
much more complex representation relation than a model, the
problems of indiscriminate theoretic modelling may be minor, or
(more likely) go unnoticed. In our case, however, the representa-
tion relation under investigation—between clock faces and peri-
odic time—is essentially an isomorphism. In this situation indis-
criminate modelling would be theoretically distracting.

The direct semantical stance will have consequences, of two
main sorts. First, we will need some machinery for talking pre-
cisely about the world without modelling it; for this I will use an
informal “pocket situation theory,” based unapologetically on
Barwise and Perry.8 Second, in the analog case it will be tempting
to use some elementary calculus, which if I was going to do any-
thing complex would be problematic, since a situation-theoretic
reconstruction of continuity has not been yet been developed. On
the other hand, since the continuities underlying the integrity of
the calculus presumably derive, ultimately, from the fundamental
continuity of the physical phenomena that the mathematics of
the calculus was developed to describe, and since it is exactly such
continuous phenomena that will be the subject matter here, I will
take the liberty of applying its insights anyway. Since I will effec-
tively merely be using mathematical notation, rather than actually
doing any mathematics, this approach will not get us into trouble.

The direct semantical stance also highlights a question: how as
theorists are we going to describe or registerx the phenomena we
are going to study—i.e., in terms of what concepts, categories,
and constraints are we going to explicate its regularity? When giv-
ing semantical analyses of linguistic or syntactic objects (sen-
tences, expression types, etc.), tradition provides standard regis-
trations in terms of constituent terms, predicate letters, etc. Simi-
larly, purely abstract objects are typically categorised in ad-
vance—in terms of a defining set of properties or relations.
Clocks, on the other hand, are neither traditional nor abstract, so
we have to address the question de novo, as it were.

My metaphysical bias is to treat the world as infinitely rich,

 8 Barwise and Perry 1983; Barwise, 1986a.

 x «Ref “Rehabilitating Representation” for a discussion of registration.»

390 Indiscrete Affairs · I

not only in the sense of taking there to exist more to everything
than we can say, but also in assuming that there is both more uni-
formity and structure, and more heterogeneity and individual dif-
ference, than theory or language can ever encompass. I will there-
fore assume that clock faces, being actual, are sufficiently struc-
tured that one can be wrong about them, but still do not come la-
belled in advance by God, like plant slips at a nursery, identified
with a white plastic tag with the name printed on them. Since
every clock face, furthermore, exemplifies an infinite number of
properties and relations (such as the property of being the subject
matter of this paragraph), even after settling on a basic registra-
tion scheme, we have considerable latitude in making a specific
choice.

None of this is intended to be either problematic or new; it is
worth mentioning only because we need to make room for there
being a difference between how we theorists do it, and how clocks
do it, for themselves or (more likely, in the case of clocks) for
their users. The problem is particularly acute for time itself, espe-
cially the periodic cycle of hours, minutes and seconds to which I
keep referring without explanation. If this were a paper on the
semantics of time, not just on the semantics of clocks, or even on
the nature of time itself, not only would such an explication have
to be given, but the incestuous fact addressed that clocks them-
selves are surely in part responsible for the temporal registration
(hours, minutes, seconds, etc.) of the times they represent, as ar-
gued for example by Mumford (1934). In this paper, however, I
will merely adopt the periodic cycle without analysis, taking its
explanation as a debt that needs to be paid here.

Given these preliminaries, I summarise the ontological type struc-
ture that I will adopt in figure 4. Variables ranging over objects
will be indicated with lower-case italic letters; over properties and
relations, in lower-case Greek; over functions, in upper-case
Greek. Thus c and c’ will range over clocks; t, t’, etc., over full-
blooded times, which are taken to be instantaneous slices through
the metaphysical flux. Times are meant to include the time Ken-
nedy was shot, the referent of ‘now’ (on any occasion of its use),
the point when the ship passed out of sight behind the island—
that sort of thing. Intervals—intuitively, temporal durations be-

 8 · Semantics of Clocks

 391

tween times—will be indicated by ∆t, ∆t’, etc. I will extend the
use of ‘+’ to allow adding intervals to times (i.e., will “overloading
‘+’,” as computer scientists would put it); thus t+∆t’ will be taken
to be of the same type as t.

As opposed to times themselves being periodic (we will be
more Heraclitean about them), I will assume that times are “lo-
cated” on the periodic cycle by what I will call the o’clock prop-
erties—such as that of “being 4:01:23,” “being midnight,” etc.
The idea is not so much to license a continuum of distinct prop-
erties, but rather to assume that these properties arise out of a
continuous relation between times and the abstract locations on
the periodic time cycle to which they are taken to correspond
(“4:00,” etc.). Various explanations of this relation are possible,
but since the e intent of this paper is not to present an independ-
ently justified metaphysical account of time, but only to relate
clocks to such a thing, I will employ a notation that simply picks
up o’clock properties, whatever they are, from times that have
them. Thus I will use τt to refer to the particular o’clock property

Objects and Properties

c, c’, … — clocks
t, t’, … — times (instantaneous moments)
∆t, ∆t’, … — temporal intervals
τ, τ’, … — o’clock properties (being midnight, being 4:01:23, …
 τt — the o’clock property that holds of time t
σ, σ’, … — states of clock faces (both hands point upwards, …)
 σt,c — the state of clock c at time t

Primary Theoretic Functions

ψ: σ, ∆t → σ — clockworks (clocks states × intervals → clock states)
Σ: c, t → σ — state function (clocks × times → clock states)
[[…]]: σ → τ — semantic content (clock states → o’clock properties)

Overloaded Addition

t+∆t: t — times plus intervals are times
τ+∆t: τ — o’clock properties + intervals are o’clock properties

Figure 4 — Theoretic type structure

392 Indiscrete Affairs · I

that actually holds of time t. Also, I will take differences between
o’clock properties to be intervals (e.g., the difference between 5:00
and 3:00 will be two hours). Thus the sentence τt(t’) says of time t’
that o’clock property τt(t)—i.e., that it has whatever o’clock prop-
erty t has. τt(t) is analytically true, therefore; as is τt(t+24:00:00).
The term τt–τt’ denotes an interval, of type ∆t.9

In an analogous way, σ, σ’, etc. will range over a (continuous,
in the analog case) set of states of clock faces. For traditional cir-
cular analog clocks, a σ representation 4:30 might be “having the
hour hand at 135º, the minute hand at 180º, and the second hand
at 0º, all measured clockwise from the ‘XII.’

Given this framework, we can type the various semantical func-
tions already encountered. As suggested in the previous section, Σ
will be a (non-computed!) function of type t → σ, from times
onto clock states; ψ, a function of type σ × ∆t → σ from clock
states and temporal intervals onto clocks states; and φ, a function
of type σ → τ, from clock states onto o’clock properties. The im-
portant typological point for general semantic analysis is that
both factors (ψ and φ) are defined as functions between the states
that objects can be in, not between the objects that are in them.
This is as you would expect for scientific laws.

Two more theoretical points, before we take up the analysis it-
self First, as just mentioned, I claimed in section 2 that times t
were not causal agents—that they could not be in the domain of a
strongly effective realisable function. It is probably more impor-
tant to the life of clock designers that the o’clock properties (τ)
are equally impotent. Even if it is 4:00 all around you, there is
nothing that it’s being 4:00 can cause to happen—such as serving
tea and crumpets. With respect to engendering behaviour, a mo-
ment’s being midnight is more like Boston’s being a referent than
it is like ice-cream’s being sticky: it just is not the sort of thing
that a sensor can or could detect. So functions of the form τ → x

 9 A more detached theoretic viewpoint should point out that o’clock proper-

ties τ are in fact two-place relations between times and places (a time that
is midnight in London will be 7:00 p.m. in New York). More generally,
whereas I assume throughout that activity (ψ) and interpretation (φ) are
functions, they should properly be viewed as more complex relations be-
tween agents and their embedding circumstances.

 8 · Semantics of Clocks

 393

are as non-realisable (in the strong sense discussed earlier) as
those of type t → x, for arbitrary x. Such is life.

Second, I mentioned earlier that using numbers to represent
the orientations of the hands of clocks presumes an accuracy that
outstrips physical plausibility. Even if quantum physics would
theoretically support there being a fact of the matter as to where a
hand points within ±10-50 degrees, say (which it will not), there
are also pragmatic realities of producing a macroscopically ob-
servable clock subject to the forces of gravity, anomalies of manu-
facture, etc. Furthermore, if the hour-hand were anything like
this accurate, then at least for theoretical purposes the minute
and second hands would be redundant: a perfect observer could
gaze at a clock and read off a time of, say, 4:15:38:17.10 One might
object, of course, that human users would not be able to register
the hour-hand more accurately than, say, ±1º or ±2º, and there-
fore, even with internal calculation, would not be able to deter-
mine the time on a single-handed clock more accurately than to
within about 5 minutes, no matter how much more accurately
than that the time was actually signified. In fact casual observa-
tion suggests that, in reality, hour hands on modern analog clocks
are caused, by the internal mechanism (clockworks) to be much
more accurately positioned than is necessary merely to determine
which hour the minute hand signifies time with respect to.

These issues again raise the question of the relation between
how we as theorists register clock faces and the times they repre-
sent, and how clock faces themselves register those represented
times.11 But I will not answer this question here, since I will pri-
marily be dealing with semantic constraints on clock and time
registrations, rather than with individual registrations themselves.

 6 Temporal Representation: The Second Factor
Given these premises and caveats, I turn to look at how times are
represented. Intuitively, we are aiming for something like the fol-

 10 “Third, n…5. The sixtieth part of a second of time or arc.”—Webster’s

New International Dictionary, Second Edition. New York: G. & C. Mer-
riam, Co. 1934.

 11 Clock faces, and representations in general, do not need to register them-
selves, in order to represent.

394 Indiscrete Affairs · I

lowing

 [[]] = the property of being 4:16 (S2)

To do this, we start with φ, of type σ → τ from (representing)
states of clock faces onto (represented) states of time—i.e., onto
o’clock properties. Instead of the name ‘φ’, however, I will use so-
called “semantic brackets” (‘[[…]]’) in the following way: [[σc,t]]
will be the o’clock property signified by the state σc,t, where σc,t is
in turn taken to be the state σ of clock c at time t. For example,
the sentence [[σc,t’]](t) claims of time t that it has the o’clock prop-
erty that clock c indicates at time t’. Similarly, [[ψ(σc,t’,∆t)]](t)
claims of time t that has the o’clock property that clock c would
(or did) indicate ∆t later than time t’, since ψ(σc,t’,∆t) indicates
the state that it would be (or would have been) in then.

Using this terminology, we can say that clock c is chronologi-
cally correct at time t just in case t is of the type that the clock
then indicates:
 Correct(c,t) ≡df [[σc,t]](t) (S3)

So far, of course, this is a constraint on possible interpretation
functions [[…]], since I have not yet defined any specific instances.
Longer-term notions of correctness (over extended intervals, for
example) could be defined by quantifying over times; similarly,
approximate degrees of correctness could be characterised in
terms of the difference between what time it actually was and
what time was indicated.

 7 Clockwork: The First Factor
With respect to operation, the basic point is this: if at time t a
clock is so-and-so (σ), then at some point ∆t later it will be such-
and-such (σ’), where σ’ = ψ(σ, ∆t). The function ψ, which takes
a clock into the future in this way, must be realised by the under-
lying physical machine—must be implemented, that is, by the
clockworks. The important constraint on this relation, which I
will call the realisability constraint, is that ψ(σ, ∆t) can depend
on σ and on ∆t, but not on the time t that is “happening” when
the clock is in state σ.

In symbol manipulation or semantical contexts, where time
and symbols are both digital, we often view ψ as a state-transition

 8 · Semantics of Clocks

 395

function (such as for a Turing machine controller). In such cases
∆t drops out, being assumed to be a single temporal “click.” For
example, suppose S is a (discrete) function from states to states
(σ → σ). The equation for a single state change, of the sort one
would expect in a digital world, would be something like
σ’ = S(σ)—or, if generalized to ∆t’s of n ticks duration,
σ’ = Sn(σ). In the continuous world of physical mechanics, on the
other hand, ψ is merely “what the world does,” explained in terms
of velocities, accelerations, etc. From this perspective, the calculus
can be viewed as a theoretical vehicle with which to explain first
factor futures for continuous systems, where the state σ of some
system in an amount of time ∆t after it is in a starting state σ0,
assumed. to depend on the continuity of the underlying phenom-
ena, can be expressed in the familiar equation

 (S4)

My aim is not to contrast the discrete and continuous case (I
want to develop results applicable to both analog and digital
clocks), but rather to highlight the common focus on state
change, represented computationally by state transition func-
tions, and physically by temporal derivatives. There is, however,
this apparent difference: the theoretic notions employed in phys-
ics (force, acceleration, etc.) are essentially “relative”; they describe
how the new state will differ from the old one. The real identity
of the new state—what state the system will actually arrive in—is
obtained, as if it were conceptually subsidiary, by altering the pre-
vious state in the prescribed manner. State transition tables, in
contrast, are typically “absolute.” They still describe state change,
of course—they are not temporal state functions like Σ. The
point rather is that the new state is specific “de novo,” so to speak,
not as a modification of the old one, though of course the extent
to which the new state differs from the old can be calculated as a
difference between the two.

This difference in theoretic stance, however, is superficial,
since in actual use (in describing programs, operations on mem-
ory, etc.) state transition functions in computer science are almost
always defined with explicit reference to how the new state differs
from the old. In giving environment transition functions, for ex-

396 Indiscrete Affairs · I

ample, showing the consequence of binding a variable, the requi-
site function from total environments onto total environments is
defined as modifying the value of the given variable in question,
and otherwise being just like the prior one.x Practice suggests, in other
words, that in the computational case, as in the physical case,
state change is conceptually prior, new total state conceptually or
ontically dependent. In both arenas, therefore—physics and
computing—there is thus general support for my specific focus
here on ψ.

Intuitively, a proper ψ for a clock will specify that it runs at the
right speed. It is easy enough to calculate, in the case of circular
analog clocks, that this amounts to having the hour hand, minute
hand, and second hand rotate at 0.008333…º/sec, 0.1º/sec, and
6º/sec, respectively. But to characterise correctness this way is ex-
actly like characterising the correctness of a proof procedure by
pointing to the syntactic inference rules. It may indeed be true
that, if this condition is is met, the clock will be running at the
correct speed, but that does not mean that this condition ex-
presses what it is to be running correctly. Rather, we want to say
that if at time t (say, 12:00) a clock designates o’clock property τt’
(say, 3:11), then at time t+∆t, (12:01, if ∆t = one minute) it
should indicate the o’clock property that would hold ∆t later (i.e.,
3:12). We can indicate this as follows:

 Right-speed(c,t,∆t) ≡df [[σc,t+Δ∆t]] = [[σc,t]]+∆t (S5)

which has the consequence, given the definition of ψ, that

 [[ψ(σc,t+Δ∆t)]] = [[σc,t]]+∆t (S6)

Properly, it would probably be more pragmatically useful to state
something stronger: that a clock runs correctly throughout the in-
terval from t to t+∆t if and only if it advances at the right speed
for the whole time (note that the following is neutral as to
whether this is a continuous or discrete interval—i.e., as to

 x «Put in an explanation—maybe a sidebar?—on the “E/x→x’” notational

abbreviation practice (even though the underlying formalism “requires” a
total state designating function). This is a very curious—and telling—
practice.»

 8 · Semantics of Clocks

 397

whether ∀ is a discrete or continuous quantifier:

 Right-speed(c,t,∆t) ≡df (S7)
 ∀∆t’ | 0≤t’≤t [[σc,t+Δ∆t]] = [[σc,t]]+∆t

again directly yielding

 ∀∆t’ | 0≤t’≤t [[ψ(σc,t+Δ∆t)]] = [[σc,t]]+∆t (S8)

These equations involve property identity, but I defer any ques-
tions on that issue to situation theory. Note also that in each ver-
sion the two instances of ‘+’ are of different types: the first takes
a time and an interval onto a time; the second, an o’clock property
and an interval onto a o’clock property. No problem.

Given (S3) and (S7), we can prove the temporal analogues of
soundness and completeness: that if a clock is correct at time t,
and runs at the right speed during the interval from t to t’, then it
will be correct during that interval, and conversely if it is correct
throughout the interval it must be running at the right speed. But
it is more fun to do this in the continuous case, so let’s turn to
that.

Very simply, we want to talk of an analog clock’s running at the
right speed instantaneously, which means, intuitively, that we
should differentiate the temporal state function Σ—or equiva-
lently, take the limit of Σ as ∆t approaches 0, in the standard way:

 (S9)

Since, as we have already said, differences between o’clock prop-
erties are intervals, the left side of this reduces to
limitΔ∆t→0(∆t/∆t), which is identically 1, yielding:

 (S10)

The right hand side, however, is merely the derivative, with re-
spect to time, o the interpretation of the state. We cannot differ-
entiate σ directly, its not being a function of time (in fact it is not
a function at all), but we can rewrite (S10) in terms of Σ:

398 Indiscrete Affairs · I

 (S11)

This enables us to take the limit (Σ is continuous by assumption),
since the right hand side is the derivative of a function that is es-
sentially the composition of the second and first factors (φ º ψ, or
equivalently and more applicably here, [[…]] º ψ).12 I will abbrevi-
ate this as [[Σ]], giving us:

 Right-speedanalog(c,t) ≡df (S12)

If the derivative (with respect to time) of a function is unity, of
course, it follows that the function is of the form λt . t+k for some
constant k—or rather, in our case, λt . τt+k, as dictated by our
type constraints, where k in this case is a constant of type ∆t. This
is exactly what we would expect; the constant represents the error
in the clock’s setting—the difference between the actual and indi-
cated times . Predictably, the equation says if a clock is running at
the right speed the error (the amount that it is “off”) will remain
(instantaneously) constant. Furthermore, since (S3) implies that

 Correct(c, t) iff [[Σ(c, t)]](t) (S13)

it follows that the constant would be 0 for a correctly set clock, as
expected.

We can summarise these results as follows:

 Correct(c,t) ≡df [[Σ(c, t)]](t) (S14)

 Right-speed(c,t,∆t) ≡df (S15)
 ∀∆t’ | 0≤t’≤t [[σc,t+Δ∆t]] = [[σc,t]]+∆t
implying that ∀∆t’ | 0≤t’≤t [[ψ(σc,t+Δ∆t)]] = [[σc,t]]+∆t
implying that ∀∆t’ | 0≤t’≤t [Σ(c,t+∆t)] = [Σ(c,t)]+∆t

 Right-speedanalog(c,t) ≡df (S16)

and in their terms define what it is for a clock to be “working
properly” from time t to t+∆t”

Working(c,t,∆t) ≡df Correct(c,t) ⋀ Right-speed(c,t,∆t) (S17)

 12 Strictly speaking this is not quite accurate, since both [[…]] and Σ should
depend on c and t: the function we are differentiating should really be
λc,t . [[Σ(c,t)]]. But being strict would add only complexity, not insight.

 8 · Semantics of Clocks

 399

Workinganalog(c,t) ≡df Correct(c,t) ⋀ Right-speedanalog(c,t) (S18)

For either version, the constraint can be shown to be satisfied
(over the interval, or instantaneously, depending) in exactly the
following condition:

 [[Σ(c,t)]] = λt . τt (S19)

Given the abbreviation adopted above, we can state this even
more simply:
 [[Σ]] = λt . τt (S20)

I would be the first to admit that (S20) is obvious—at least retro-
actively, in the scnse that, once stated, it is hard to imagine think-
ing anything else. In English, it says that the state function and

the interpretation function should be
proportional inverses: given a clock
that (so to speak) maps time onto
some sort of compelx motion, the ap-
propriate interpretation function is
merely that unction that maps that
motion back on the o’clock properties
of the linear progression of time that
was started with. So the putative clock
of figure 5, for example—with a mil-
lion-mile pendulum and a 24-hour
period—would have a pointer position
(σ) proportional to sin(t), and an in-

terpretation function analogously proportional to sin-1(σ).13
Still, (S20) is not trivial, for a reason that shows exactly why

clocks were hard to build. It says that working clocks map all

 13 This clock would be even harder to build than you might suppose. At first

blush, it might seem as if the equation of motion for a pendulum would
imply that a very large bob, swinging in an arc at the surface of the earth
(an arc, say, 100 feet in length), whose mass completely dominated the
mass of a long string by which it was suspended from an (energetically-
maintained!) geosynchronous point 1,150,000 miles above the surface of
the earth, would have a period of twenty-four hours. Unfortunately, how-
ever, such a device would have a period of slightly less than an hour and a
half. Why this is so, and how to modify the design appropriately, are left
as an exercise for the reader (hint: the result would be difficult to read).

Figure 5 — The million-mile clock

400 Indiscrete Affairs · I

times onto their o’clock properties. The problem for clockmakers is
that Σ is not directly computable, since—to repeat—neither
times nor o’clock properties enter into causally efficacious behav-
iour. What can be implemented is ψ, not Σ—and ψ is essentially
the temporal derivative of Σ.

And that, in turn, leads us to the most compact characterisa-
tion of the function of clockworks:

 The function of clockworks: to integrate the derivative of
time. To set the hands on the clock’s face is to supply the inte-
gration constant.

 8 Morals and Conclusions
What have we learned? Four things, other than some fun facts to
tell our friends

The first has to do with the interaction among notions of par-
ticipation, realisation, and formality. Clocks’ participation in their
subject matter (being temporal, as a way of measuring time),
which depends on their physical realisation, might seem to violate
the formality constraint that is claimed to hold of computational
systems more generally. In fact, however, clocks’ temporality does
not relieve them of much of the structure that characterises more
traditional systems: separable ψ and φ, the possibility of being
wrong, etc. This similarity of clocks to symbol manipulation sys-
tems arises from the fact that the particular aspect of time that
clocks represent—the o’clock properties—are not within im-
medate causal reach of a clockwork mechanism (or of much else,
for that matter). In (Smith, forthcoming) I argue that this is a
manifestation of a deep truth:

 The limitations of causal reach are the real constraints on repre-
sentational systems.

Formality, as a notion, is merely a cloudy and approximate pro-
jection of these limitations into a particular construal of the sym-
bolic realm.

The second moral has to do with the impact, for theoretical
analysis, of the relations between ψ and φ. The function ψ, real-
ised in clockwork, is what the engineers must implement; without
an (explicit or tacit) understanding of it, functioning clocks could

 8 · Semantics of Clocks

 401

not be designed. The foregoing characterization of what it is for a
clock to work properly, for example, had to reach beond the im-
mediate or causally accessible aspects of the underlying clockwork
mechanism. Whatever one might think about more complex
cases, methodological solipsism does not work in this particular
instance.

Third, the similarity between the state transition functions of
computer science and the temporal derivatives of mechanics, both
of which focus not on time itself but on temporal change, suggest
the possibility of a more unified treatment of representational
dynamics in general. So far most of what I have had to say has
dealt with specific cases. So for example in section 2, I character-
ised inference as a particular species of representational activity

having to do with
changing content
relations to a fixed
subject matter, and
contrasted it to a
clock’s maintenance
of a fixed content
relation to a chang-
ing subject matter.
Remembering what
is perceived is yet a
different sort of rep-
resentational behav-
iour: a form of re-
taining a fixed rela-
tion to a fixed sub-
ject matter, in ways

that make it immune to changes in the agent’s circumstances.
And surely complex navigation in a busy world involves a dy-
namically-changing representational stance to a constantly-
evolving situation. It does not seem impossible that a common
framework could be uncovered

Fourth and finally, by occupying a place very different from
that of either Turing machines or traditional theorem provers,
clocks help illuminate the fundamental constraints governing
computers and representational systems in general. As suggested

Figure 6 — C5: Coordinated Constraints
on Content and Causal Connection

402 Indiscrete Affairs · I

in figure 6, there are two basic kinds of constraint—causal rela-
tions and content relations—that a representational system must
coordinate as it moves through the world

Both kinds, in general, will be complex—much more so than
we have seen in the case of clocks. Two aspects of content that I
have not deal with here, for example, are its “situational” depend-
ence on surrounding circumstances, as discussed for example in
(Barwise 1986b and Perry 1986), and the three-way semantic in-
teractions among language, mind, and world that arise in cases of
communication. Causal connections are similarly complex, and
can be broken down into three main groups:

1. Internal activity of behaviour: the relation between a
system at some time and the same system shortly thereaf-
ter, which we called ψ;

2. External connection: Actions the system takes that affect
the world, and effects on the system of the world around
it—the results, that is, of sensors and effectors (clocks
have none of this, but other systems are clearly not so lim-
ited); and

3. Background dynamics: The progress or flow of the sur-
rounding situation—of which the passage of time would
be counted as one instance, the behaviour of one’s conver-
sational partner, or a passing visual scene.

In the traditional case of pure mathematical inference, there is no
connection (action or sensation), and the background situation,
as we saw, is presumed to stay fixed. Barwise’s particular con-
strual of “formal inference”14 strengthens this constraint by as-
suming that the content relation is also independent of surround-
ing situation. The clock examples give us a different point in the
space: again no connection, an essentially unchanging (and rela-
tively situation-independent) content relation, but an evolving
background situation, mirrored in the internal activity or behav-
iour. Finally, semantic theories of action, involving everything
from intentionally eating supper to making a promise, must deal
with cases where the connection aspect makes a contribution.
They must therefore deal with situations where the surrounding

 14 ‘Formal’ as meaning “non-situated”; see Barwise (1986b), p. 331.

 8 · Semantics of Clocks

 403

situation is affected not only by background dynamics, but as a
result of internal activity on the part of the representational agent.
But simpler systems will require an analysis of external connec-
tion as well: computerised (ABS) automotive brakes systems, for
example, are directly connected (even vulnerable) to the content
of their representations, in a way that seems to free them from
the need to have their representational states externally inter-
preted.

In the end, however, the similarity among these systems strikes
me as far more important than the variance. I might put it this
way. Causal participation in the world is ultimately a two-edged
sword. On the one hand. it is absolutely enabling. Not only could
a system not exist without it, but in a certain sense it is total: eve-
rything the system is and does arises out of Its causally supported
existence. There are no angels. On the other hand, causal connec-
tion on its own—unless further structured—limits a system’s to-
tal participation in the world to those things within immediate
causal reach.

Representation, on this view, is a mechanism that honours the
limits of causal participation, but at the same time stands a sys-
tem in a content relation to aspeccts of the world beyond its
causal reach. The trick that the system must solve is to live within
the limits—and to exploit the freedoms!—of the causal laws in
just such a way as to preserve its representational stance to what
is distal. This much is in common between an inference system
and a clock.

 Acknowledgements
This paper grew out of a bet made with Richard Weyhrauch dur-
ing a discussion late one night in a bar in Alghero, Sardinia, about
what was involved in reading one’s watch. Specifically, I promised
to develop a semantical analysis of the familiar behaviour cited in
the third paragraph of the paper: waiting a second to see whether
a watch moved before reading the time. This paper is part one of
the answer; interpreting a clock will come later. My thanks to him
and other members of the Cost 13 Workshop on Reflection and
Meta-Level Architectures, especially including Jim des Rivières
and John Batali. Thanks also to Jon Barwise, John Etchemendy,
David Israel, John Perry, Susan Stucky, and the other members

404 Indiscrete Affairs · I

of the situation theory and situation semantics (STASS) group at
the Stanford Center for the Study of Language and Information
(CSLI), to Pat Hayes for discussions of measurement, and to John
Lamping for his help on celestial mechanics.

Supported in part by the Xerox Corporation and by the Sys-
tem Development Foundation, through their mutual support of
CSLI; and for preparation for publication in 2009–10 by the
Jackman Humanities Institute of the University of Toronto.

 References
Barwise, Jon, and Perry, John: 1983, Situations and Attitudes, Bradford

Books, Cambridge, MA.
Barwise, Jon: 1986a, “The Situation in Logic—III: Situations, Sets and

<he Axiom of Foundation,” in Alex Wilkie (ed.), Logic Colloquium 84,
North Holland, Amsterdam Also available as CSLI Technical Report
CSLI–85–26 from the Center for the Study of Language and Information,
Stanford University, 1985.

Barwise, Jon: 1986b, “Information and Circumstance,” Notre Dame Journal
of Formal Logic, 27(3) 324–38.

Brachman, Ronald J., and Levesque, Hector J. (eds.): 1985, Readings in
Knowledge Representation Morgan Kaufmann, Los Altos, CA.

Fodor, Jerry: 1975, The Language of Thought, Thomas Y. Crowell Co.,
New York. Paperback version, Harvard University Press Cambridge,
MA, 1979.

Fodor, Jerry: 1980, “Methodological Solipsism Considered as a Research
Strategy in Cognitive Psychology,” The Behavioral and Brain Sciences,
3(1), pp. 63-73 Reprinted in Fodor, Jerry, Representation, Bradford,
Cambridge, MA, 1981.

Mumford, Lewis: 1934, Technics and Civilization, Harcourt, Brace &Co.,
New York Reprinted 1943.

Newell, Allen: 1980, “Physical Symbol Systems,” Cognitive Science 4, 135-
183.

Perry, John: 1986, “Circumstantial Attitudes and Benevolent Cognition,” J.
Butterfield (ed.), Language, Mind and Logic, pp. 123–34, Cambridge
University Press, Cambridge.

Postman, Neil: 1985, Amusing Ourselves to Death: Public Discourse in the
Age of Show Business, Penguin Books, New York.

Smith, Brian Cantwell: 1982, Reflection and Semantics in a Procedural Lan-
guage, Technical Report MIT/LCS 272, M.I.T., Cambridge, MA, 495 pp.
Prologue reprinted in (Brachman and Levesque, 1985), pp.31-39.

 8 · Semantics of Clocks

 405

———: 1984. “Reflection and Semantics in LISP,” Conference Record of the
11th Principles of Programming Languages Conference, pp. 23–35, Salt
Lake City, Utah, Also available as Xerox PARC Intelligent Systems
Laboratory Technical Report ISL-5, Palo Alto, California, 1984.

———: 1986, “The Correspondence Continuum,” appeared with the Pro-
ceedings of the Sixth Canadian AI Conference, Montreal, Canada, May
21-23. Available as CSLI Technical Report CSLI-87-71 from the Center for
the Study of Language and Information, Stanford University, 1987.

——— Is Computation Formal? MIT Press/A Bradford Book Cambridge,
MA. (Forthcoming.) «Explain»

Winograd, Terry, and Flores, Fernando: 1986, Understanding Computers
and Cognition: A New Foundation for Design, Ablex, Norwood, NJ.

406 Indiscrete Affairs · I

— Were this page been blank, that would have been unintentional —

 407

D · Semantics

408 Indiscrete Affairs · I

— Were this page been blank, that would have been unintentional —

 409

9 — Linguistic & Computational Semantics†

 Abstract
I argue that because the very concept of computation rests on no-
tions of interpretation, the semantics of natural languages and the
semantics of computational formalisms are in the deepest sense
the same subject. The attempt to use computational formalisms
in aid of an explanation of natural language semantics, therefore,
is an enterprise that must be undertaken with particular care. I
describe a framework for semantical analysis that I have used in
the computational realm, and suggest that it may serve to under-
write computationally-oriented linguistic semantics as well. The
major feature of this framework is the explicit recognition of both
the declarative and the procedural import of meaningful expres-
sions; I argue that whereas these two viewpoints have tradition-
ally been taken as alternative, any comprehensive semantical the-
ory must account for how both aspects of an expression contrib-
ute to its overall significance.

—————————

I have argued elsewhere1 that the distinguishing mark of those
objects and processes we call computational has to do with attrib-
uted semantics: we humans find computational processes coherent

 † Slightly revised version of a paper that appeared in the Proceedings of the

20th Annual Meeting of the Association for Computational Linguistics, To-
ronto, Ontario, June 1982, pp. 9–15.

I am grateful to Barbara Grosz and Hector Levesque for their com-
ments on an earlier draft of this short paper, and to Jane Robinson for her
original suggestion that it be written.

 1 Smith (1982b).

410 Indiscrete Affairs · I

exactly because we attach semantical significance to their behav-
iour. ingredients, and so forth. Put another way. computers, on
this view. are those devices that we understand by deploying our
linguistic facilities. For example. the reason that a calculator is a
computer, but a car is not, is that we take the ingredients of the
calculator to be symbolic (standing. in this particular case, for
numbers and functions and so forth), and understand the interac-
tions and organisation of the calculator in terms of that interpre-
tation (this part divides, this part represents the sum, and so on).
Even though by and large we are able to produce an explanation
of the behaviour that does not rest on external semantic attribu-
tion (this is the formality condition mentioned by Fodor, Hauge-
land, and others2), we nonetheless speak, when we use computa-
tional terms, in terms of this semantics. These semantical con-
cepts rest at the foundations of the discipline: the particular or-
ganisations that computers have—their computational raison
d’être—emerge not only from their mechanical structure but also
from their semantic interpretability. Similarly. the terms of art
employed in computer science—program, compiler. implementa-
tion, interpreter, and so forth—will ultimately be definable only
with reference to this attributed semantics; they will not, in my
view, ever be found reducible to non-semantical predicates.3

This is a ramifying and problematic position, which I cannot
defend here.4 I may simply note, however, the overwhelming evi-
dence in favour of a semantical approach manifested by everyday
computational language. Even the simple view of computer sci-
ence as the study of symbol manipulation5 reveals this bias. Equally
telling is the fact that programming languages are called languages.

 2 Fodor (1978), Fodor (1980), Haugeland (forthcoming)
 3 At least until the day arrives—if ever—when a successful psychology of

language is presented wherein all of human semanticity is explained in
non-semantical terms.

 4 Problematic because it defines computation in a manner that is derivative
on mind (in that language is fundamentally a mental phenomenon), thus
dashing the hope that computational psychology will offer a release from
the semantic irreducibility of previous accounts of human cognition. Al-
though I state this position and explore some of its consequences in Smith
(1982b), a considerably fuller treatment will be provided in Smith (forth-
coming).

 5 See for example Newell (1980).

 9 · Linguistic & Computational Semantics

 411

In addition, language-derived concepts like name and reference
and semantics permeate computational jargon (to say nothing of
interpreter, value, variable, memory, expression, identifier and so
on)—a fact that would be hard to explain if semantics were not
crucially involved. It is not just that in discussing computation we
use language; rather, in discussing computation we use words that
suggest that we are also talking about linguistic phenomena.

The question I will focus on in this paper, very briefly, is this: if
computational artefacts are fundamentally linguistic, and if,
therefore. it is appropriate to analyse them in terms of formal
theories of semantics (it is apparent that this is a widely held
view), then what is the proper relationship between the so-called
computational semantics that results, and more standard linguistic
semantics (the discipline that studies people and their natural
languages: how we mean, and what we are talking about. and all
of. that good stuff)? And furthermore. what is it to use computa-
tional models to explain natural language semantics, if the compu-
tational models are themselves in need of semantical analysis? On
the face of it, there would seem to be a certain complexity that
should be sorted out.

In answering these questions I will argue approximately as fol-
lows: in the limit computational semantics and linguistic seman-
tics will coincide, at least in underlying conception, if not in sur-
face detail (for example some issues, like ambiguity, may arise in
one case and not in the other). Unfortunately, however, as pres-
ently used in computer science the term ‘semantics’ is given such
an operational cast that it distracts attention from the human at-
tribution of significance to computational structures.6 In contrast,
the most successful models of natural language semantics. em-
bodied for example in standard model theories and even in Mon-

 6 The term “semantics” is only one of a large collection of terms, unfortu-

nately, that are technical terms in computer science and in the attendant
cognitive disciplines (including logic, philosophy of language, linguistics,
and psychology), with different meanings and different connotations. Ref-
erence, interpretation, memory, and value are just a few examples of the oth-
ers. It is our view that in spite of the fact that semantical vocabulary is used
in different ways, the fields are both semantical in fundamentally the same
ways: a unification of terminology would only be for the best.

412 Indiscrete Affairs · I

tague’s program, have concentrated almost exclusively on referen-
tial or denotational aspects of declarative sentences. Judging only
by surface use, in other words, computational semantics and lin-
guistic semantics appear almost orthogonal in concern, even
though they are of course similar in style (for example they both
use meta-theoretic mathematical techniques—functional compo-
sition, and so forth—to recursively specify the semantics of com-
plex expressions from a given set of primitive atoms and forma-

tion rules). It is strik-
ing, however, to ob-
serve two facts. First,
computational seman-
tics is being pushed (by
people and by need)

more and more towards declarative or referential issues. Second,
natural language semantics, particularly in computationally-based
studies, is focusing more and more on pragmatic questions of use
and psychological import. Since computational linguistics oper-
ates under the computational hypothesis of mind, psychological
issues are assumed to be modelled by a field of computational
structures and the state of a processor running over them; thus
these linguistic concerns with ;’use” connect naturally with the
“operational” flavour of standard programming language seman-
tics. It seems not implausible, therefore—I intend to betray cau-
tion with the double negative—that a unifying framework might
be developed.

It will be the intent of this paper to present a specific, if pre-
liminary, proposal for such a framework. First, however, some in-
troductory comments. In a general sense of the term, semantics
may be taken as the study of the relationship between entities or
phenomena in a syntactic domain S and corresponding entities in a
semantic domain S, as pictured in figure 1.

In accord with standard usage, I will call the function mapping
elements from the first domain into elements of the second an in-
terpretation function (to be sharply distinguished7 from what in
computer science is called an interpreter, which is a different beast
altogether). Note that the question of whether an element is syn-

 7 An example of the phenomenon noted in footnote ■■.

Figure 1 — Traditional (simple) semantical model

 9 · Linguistic & Computational Semantics

 413

tactic or semantic is a function of the point of view; the syntactic
domain for one interpretation function can readily be the seman-
tic domain of another (and a semantic domain may of course in-
clude its own syntactic domain).

Not all relationships, of course, count as semantical; the
“grandmother” relationship fits into the picture just sketched, but
stakes no claim on being semantical. Though it has often been

discussed what con-
straints on such a rela-
tionship characterise
genuinely semantical
ones (compositional-
ity or recursive speci-
fiability, and a certain
kind of formal charac-
ter to the syntactic
domain, are among
those typically men-

tioned), I will not pursue such questions here. Rather, we I will
complicate our diagram as indicated in figure 2, so as to enable us
to characterise a rather large class of computational and linguistic
formalisms:

N1 and N2 are intended to be notational or communicational ex-
pressions, in some externally observable and consensually estab-
lished medium of interaction, such as strings of characters,
streams of words, or sequences of display images on a computer
screen. The relationship θ is an interpretation function mapping
notations into internal elements of some process over which the
primary semantical and processing regimens are defined. In first-
order logic, S1 and S2 would be something like abstract derivation
tree types of first-order formulae; if the diagram were applied to
the human mind, under the hypothesis of a formally encoded
mentalese, S1 and S2 would be tokens of internal mentalese, and θ
would be the function computed by the “linguistic” faculty (on a
view such as that of Fodor8). In adopting these terms I mean to
be speaking very generally; thus I mean to avoid, for example, any
claim that tokens of English are internalized (a term I will use for

 8 Fodor (forthcoming)

Figure 2 — Declarative & procedural semantical model

414 Indiscrete Affairs · I

θ) into recognisable mentalese tokens. In particular. the proper
account of θ for humans could well simply describe how the field
of mentalese structures, in some configuration, is transformed
into some other configuration, upon being presented with a par-
ticular English sentence; this would still count, on the view I am
presenting, as a theory of θ.

In contrast, φ is the interpretation function that makes explicit
the standard denotational significance of linguistic terms, relating,
we may presume, expressions in S to the world of discourse. The
relationship between my mental token for T. S. Eliot, for exam-
ple, and the poet himself, would be formulated as part of φ.
Again, I am speaking very broadly; φ is intended to manifest
what, paradigmatically, expressions are about, however that might
best be formulated (φ includes for example the interpretation
functions of standard model theories). ψ, in contrast, relates some
internal structures or states to others—one can imagine it specifi-
cally as the formally computed derivability relationship in a logic
(⊢), as the function computed by the primitive language processor
in a computational machine (i.e., as LISP’s EVAL), or more generally
as the function that relates one configuration of a field of symbols
to another, in terms of the modifications engendered by some in-
ternal processor computing over those states. (φ and ψ are
named, for mnemonic convenience, by analogy with philosophy
and psychology, since a study of φ is a study of the relationship be-
tween expressions and the world—since philosophy takes you
“out of your mind,” so to speak—whereas a study of ψ is a study
of the internal relationships between symbols, all of which, in
contrast, are “within the head” of the person or machine.)

Some simple comments. First, N1, N2, S1, S2, D1, and D2 need not
all necessarily be distinct: in a case where S1 is a self-referential
designator, for example, D1 would be the same as S1; similarly, in
a case where ψ computed a function that was designation-
preserving, then D1 and D2 would be identical. Secondly, we need
not take a stand on which of φ and ψ has a prior claim to being
the semantics of S1. In standard logic, ψ (i.e., derivability: ⊢) is a
relationship, but is far from a function, and there is little tendency
to think of it as semantical; a study of ψ is called proof theory. In
computational systems, on the other hand, ψ is typically much

 9 · Linguistic & Computational Semantics

 415

more constrained, and is also. by and large, analysed mathemati-
cally in terms of functions and so forth, in a manner much more
like standard model theories. Although in my own view it seems a
little far-fetched to call the internal relationships (the “use” of a
symbol) semantical, it is nonetheless true that we are interested in
characterising both, and it is unnecessary to express an a priori
preference. For discussion, therefore, I will refer to the φ-
semantics of a symbol or expression as its declarative import, and
refer to its ψ-semantics as its procedural consequence. I have heard
it said in other quarters that “procedural” and “declarative” theo-
ries of semantics are contenders;9 to the extent that I have been
able to make sense of these notions, it appears that we need both.

It is possible to use figure 2 to characterise a variety of standard
formal systems. In the standard models of the λ-calculus. for ex-
ample, the designation function φ takes λ-expressions onto func-
tions; the procedural regimen ψ, usually consisting of α- and β-
reductions, can be shown to be φ-preserving. Similarly, if in a
standard predicate logic we take φ to be (the inverse of the) satis-
faction relationship, with each element of S being a sentence or
set of sentences, and elements of D being those possible worlds in
which those sentences are true, and similarly take ψ as the deriv-
ability relationship, then soundness and completeness can be ex-
pressed as the equation ψ(S1, S2) ≡ [D1 ⊆ DS2]. As for all formal
systems (these presumably subsume the computational ones), it is
crucial that ψ be specifiable independent of φ. The λ-calculus and
predicate logic systems, furthermore, have no notion of a proces-
sor with state; thus the appropriate ψ involves what we may call
local procedural consequence, relating a simple symbol or set of
symbols to another set. In a more complex computational cir-
cumstance, as I will show below, it is appropriate to characterise a
more complex full procedural consequence involving not only
simple expressions, but fuller encodings of the state of various as-
pects of the computational machine (for example. at least envi-
ronments and continuations in the typical computational case10).

 9 Woods (1981)
 10 For a discussion of continuations see Gordon (1979), Steele and Sussman

(1978), and Smith (1982a); the formal device is developed in Strachey &
Wadsworth (1974).

416 Indiscrete Affairs · I

An important consequence of the analysis illustrated in figure 2 is
that it enables one to ask a question not typically asked ir com-
puter science, about the φ-semantic character of the function com-
puted by ψ. Note that questions about soundness and complete-
ness in logic are exactly questions of this type. In separate re-
search,11 I have shown, by subjecting them to this kind of analy-
sis, that computational formalisms can be usefully analysed in
these terms as well. In particular, I demonstrated that the univer-
sally accepted LISP evaluation protocol is semantically confused, in
the following sense: sometimes it preserves φ (i.e. φ(ψ(S))=φ(S)),
and sometimes it embodies φ (thereby “de-referencing” its inputs:
φ(S)=φ(S). The traditional LISP notion of evaluation. in other
words, conflates simplification and reference relationships, to its
peril (in that report I propose some LISP dialects in which these
two notions are kept much more neatly and strictly separate).
The current moral, however. is merely that our approach allows
the question of the semantical import of ψ to be asked.

As well as considering LISP, we can use our diagram to charac-
terise various linguistically oriented projects carried on under the
banner of “semantics.” Model theories and formal theories of lan-
guage (I am including Tarski and Montague in one sweep) have
concentrated primarily on φ. Natural language semantics in some
quarters12 focuses on θ—i.e., on the “translation” of natural lan-
guage into an internal medium—although the question of what
aspects of a given sentence must be preserved in such a translation
are of course of concern (no translator could ignore the salient
properties, semantical and otherwise, of the target language, be it
mentalese or predicate logic, since the endeavour would otherwise
be without constraint). Lewis (for one) has argued that the pro-
ject of articulating θ—an endeavour he calls “markerese seman-
tics”—cannot really be called semantics at all,13 since it is essen-
tially a translation relationship, although it is worth noting that θ
in computational formalisms is not always trivial, and a case can
at least be made that many superficial aspects of natural language

 11 Smith (1982a).
 12 A classic example is Katz and Postal (1964), but much of the recent A.I.

research in natural language in A.I. can be viewed in this light
 13 Lewis (1972)

 9 · Linguistic & Computational Semantics

 417

use, such as the resolution of indexicals, may be resolved at this
stage (if for example you say “I am warm” then I may internalise
your use of the first person pronoun into my internal name for
you).

Those artificial intelligence researchers working in knowledge
representation, perhaps without too much distortion, can be di-
vided into two groups: (i) those whose primary semantical alle-
giance is to φ, and who—perhaps as a consequence—typically use
an encoding of first-order logic as their representation language;
and (ii) those who concern themselves primarily with ψ, and who
therefore—legitimately enough—reject logic as even suggestive
(ψ in logic—derivability—is a relatively unconstrained relation-
ship, for one thing; secondly, the relationship between the en-
tailment relationship (⊨), to which derivability is a hopeful ap-
proximation, and the proper ψ of rational belief revision, is at
least a matter of debate.14

Programming language semantics, for reasons that can at least
be explored, if not wholly explained, have focused primarily on ψ,
although in ways that tend to confuse it with φ. Except in the case
of PROLOG, which borrows its φ straight from a subset of first-
order logic, and in my own reconstructions of the LISP, men-
tioned earlier,15 I have never seen a semantical account of a pro-
gramming language that gave independent accounts of φ and ψ.
There are complexities, furthermore, in knowing just what the
proper treatment of general languages should be. In a separate
paper16 I argue that the notion program is inherently defined as a
set of expressions whose (φ-) semantic domain includes data
structures (and set-theoretic entities built up over them). In other
words, in a computational process that deals with finance, say, the
general data structures will likely designate individuals and money
and relationships among them, but the terms in that part of the
process called a program will not designate these people and their
money, but will instead designate the data structures that designate
people and money (plus of course relationships and functions over

 14 Israel (1980).
 15 For a discussion of PROLOG see Oocksin & Mellish (1981); the LISPs are

described in Smith (1981).
 16 Smith (forthcoming).

418 Indiscrete Affairs · I

those data structures). Even on a declarative view like mine, in
other words, the appropriate semantic domain for programs is
built up over data structures—a situation strikingly like the stan-
dard semantical accounts that take abstract records or locations
or whatever as elements of the otherwise mathematical domain
for programming language semantics. It may be that this fact that
all base terms in programs are meta-syntactic that has spawned the
confusion between operations and reference in the computational
setting.

Although the details of a general story remain to be worked out,
the LISP case mentioned earlier is instructive, by way of suggestion
as to how a more complete computational theory of language se-
mantics might go.

In particular, because of the context relativity and non-local ef-
fects that can emerge from processing a LISP expression, ψ is not
specifiable in a strict compositional way. When taken to include
the broadest possible notion that maps entire configurations of
the field of symbols and of the processor itself onto other configu-
rations and states—ψ is of course recursively specifiable (the
same fact, in essence, as saying that LISP is a deterministic formal
calculus). A pure characterisation of ψ without a concomitant ac-
count of φ, however, is unmotivated—as empty as a specification
of a derivability relationship would be for a calculus for which no
semantics had been given. Of more interest is the ability to spec-
ify what I call a general significance function Σ, which recur-
sively specifies ψ and φ together (this is what I was able to do for
LISP). In particular, given any expression S1, any configuration of
the rest of the symbols, and any state of the processor, the func-
tion Σ will specify the configuration and state that would result
(i.e., it will specify the use of S1), and also the relationship to the
world that the whole signifies. For example, given a LISP expres-
sion of the form (+ 1 (PROG (SETQ A 2) A)), Σ would specify that
the whole expression designated the number three, that it would
return the numeral ‘3’, and that the machine would be left in a
state in which the binding of the variable A was changed to the
numeral ‘2’. A modest result; what is important is merely (i) that
both declarative import and procedural significance must be re-
constructed in order to tell the full story about LISP; and (ii) that

 9 · Linguistic & Computational Semantics

 419

they must be formulated together.

Rather than pursue this view in detail. it is helpful to set out sev-
eral points that emerge from analyses developed within this
framework:

1. In most programming languages, θ can be specified
compositionally and independently of φ or ψ—this
amounts to a formal statement of Fodor’s modularity thesis
for language.17 In the case of formal systems, θ is often
context-free and compositional, but not always (reader
macros can render it opaque, or at least intensional, and
some languages such as ALGOL are apparently context-
sensitive). It is noteworthy. however. that there have been
computational languages for which θ could not be
specified independently of ψ—a fact that is often stated as
the fact that the programming language “cannot be parsed
except at runtime” (TECO and the first versions of
SMALLTALK had this character).

2. Since LISP is computational, it follows that a full account of
its ψ can be specified independent of φ; this is in essence
the formality condition. It is important to bring out, how-
ever. that a local version of ψ will typically not be composi-
tional in a modem computational formalism, even though
such locality holds in purely extensional context-free side-
effect free languages such as the λ-calculus.

3. It is widely agreed that ψ does not uniquely determine φ
this is the “psychology narrowly construed” and the con-
comitant methodological solipsism of Putnam and Fodor
and others18). However this fact is compatible with our
foundational claim that computational systems are distin-
guished in virtue of having some version of φ as part of
their characterisation. A very similar point can be made for
logic: although any given logic can (presumably) be given a
mathematically-specified model theory, that theory does

 17 Fodor (forthcoming).
 18 The term “methodological solipsism” is from Putnam (1975); see also

Fodor (1980).

420 Indiscrete Affairs · I

not typically tie down what is often called the “standard
model or interpretation”—the interpretation that we use.
This fact does not release us, however, from positing as a
candidate logic only a formalism that humans can inter-
pret.

4. The declarative interpretation function φ cannot be wholly
determined independent of ψ, except in purely declarative
languages (such as the λ-calculus and logic and so forth).
This is to say that without some account of the effect on
the processor of one fragment of a whole linguistic struc-
ture, it may be impossible to say what that processor will
take another fragment as designating. The use of SETQ in
LISP is an example; natural language instances will be ex-
plored below.

This point needs a word of explanation. It is of course
possible to specify φ in mathematical terms without any
explicit mention of a ψ-like function; the approach I use
in LISP defines both ψ and φ in terms of the overarching
function Σ mentioned above, and I could of course sim-
ply define φ without defining ψ at all. Rather, my point is
that any successful definition of φ will effectively have to
do the work of ψ, more or less explicitly, either by defining
some identifiable relationship, or else by embedding that
relationship within the meta-theoretic machinery. I am
arguing, in other words, only that the subject I intend ψ
to cover must be treated in some fashion or other.

What is perhaps surprising about all of this machinery is that it
must be brought to bear on a purely procedural language—all
three relationships (θ, φ. and ψ) figure crucially in an account of
even as simple a language as LISP. I are not suggesting that LISP is
like natural languages. To point out just one crucial difference.
there is no way in LISP or in any other programming language (ex-
cept PROLOG) to say anything at all—whereas the ability to say
things is clearly a foundational aspect of any human language.
The problem in the procedural languages is one of what we may
call assertional force; although it is possible to construct a sen-
tence-like expression with a clear declarative semantics (such as
some equivalent of “X=3”), one cannot use it in such a way as to ac-

 9 · Linguistic & Computational Semantics

 421

tually mean it—so as to have it carry any assertional weight. That
is, though it is trivial to set some variable X to 3. or to ask whether
X is 3. there is no way to state that X is 3. It should be admitted,
however, that computational languages bearing assertional force
are under considerable current investigation. This general interest
is probably one of the reasons for PROLOG’s emergent popularity;
other computational systems with an explicit declarative charac-
ter include for example specification languages, data base models,
constraint languages, and knowledge representation languages in
Artificial Intelligence (AI). We can only assume that the appro-
priate semantics for all of these formalisms will align even more
closely with an illuminating semantics for natural language.

What does all of this have to do with natural language, and with
computational linguistics? The essential point is this: if this char-
acterisation of formal systems is tenable, and if the techniques of
standard programming language semantics can be fit into this
mould. then it may be possible to combine those approaches with
the techniques of programming language semantics and of logic
and model theories, to construct complex and interacting ac-
counts of ψ and of φ. To take just one example, the techniques
that are used to construct mathematical accounts of environ-
ments and continuations might be brought to bear on the issue of
dealing with the complex circumstances involving discourse mod-
els, theories of focus in dealing with anaphora, and so on; both
cases involve an attempt to construct a recursively specifiable ac-
count of non-local interactions among disparate fragments of a
composite text. But the contributions can proceed in the other di-
rection as well: even from a very simple application of this frame-
work to this circumstance of LISP, for example. we have been able
to show how an accepted computational notion fails to cohere
with our attributed linguistically based understanding, involving
us in a major reconstruction of LISP’s foundations. The similari-
ties are striking.

My claim, in sum, is that similar phenomena occur in pro-
gramming languages and natural languages, and that each disci-
pline could benefit from the semantical techniques developed in
the other. Some examples of these similar phenomena will help to
motivate this view. The first is the issue with the appropriate use

422 Indiscrete Affairs · I

of noun phrases: as well as employing a noun phrase in a standard
extensional (referential) position, natural language semantics has
concerned itself with more difficult cases such as intensional con-
texts (as in the underlined designator in “I didn’t know that The
Big Apple was an island,” where the co-designating term ‘New
York’ cannot be substituted without changing the meaning), the
so-called attributive/referential distinction of Donellan19 (the dif-
ference, roughly, between using a noun phrase like “the man with
a martini” to inform you that someone is drinking a martini, as
opposed to a situation where one uses the hearer’s belief or
assumption that someone is drinking a martini to refer to him),
and so on. Another example different from either of these is
provided by the underlined term in “For the next 20 years let’s
restrict the President’s salary to $20,000,” on the reading in which
after Reagan steps down he is allowed to earn as much as he
pleases, but his successor comes under the constraint. The
analogous computational cases include for example the use of an
expression like (the formal analog of) “make the sixth array element
be 10” (i.e., A(6) ::= 10), where we mean not that the current
sixth element should be 10 (the current sixth array element might
at the moment be 9, and 9 cannot be 10), but rather that we
would like the description “the sixth array element” to refer to 10
(so-called “L-values,” analogous to MacLISP’s SETF construct). Or,
to take a different case, suppose we say “set X to the sixth array
element” (i.e., x ::= A(6)), where we mean not that X should be set
to the current sixth array clement, but that it should always be
equal to that element (stated computationally this might be
phrased as saying that X should “track” A(6); stated linguistically
we might say that X should mean “the sixth array element”).
Although this is not a standard type of assignment, the new
constraint languages provide exactly such facilities, and macros
(classic computational intensional operators) can be used in more
traditional languages for such purposes. Or, for a final example,
consider the standard declaration: INTEGER X, in which the term ‘X’
refers neither to the variable itself (variables are variables, not
numbers), nor to its current designation, but rather to whatever
will satisfy the description “the value of X” at any point in the course of
a computation. All in all, we cannot ignore the attempt on the

 19 Dannenan (1966).

 9 · Linguistic & Computational Semantics

 423

we cannot ignore the attempt on the computationalists’ part to
provide complex mechanisms so strikingly similar to the complex
ways we use noun phrases in English.

A very different sort of linguistic phenomenon that occurs in
both programming languages and in natural language is what we
might call “premature exits”: cases where the processing of a local
fragment aborts the standard interpretation of an encompassing
discourse. If for example I say to you “I was walking down the
street that leads to the house that Mary’s aunt used to ... oh, forget it;
I was taking a walk, and lo and behold…”, then the fragment “for-
get it” must be understood as being used to discard the analysis of
some amount of the previous clause. The grammatical structure
of the subsequent phrase determines how much has been dis-
carded, of course; the sentence would still be comprehensible if
the phrase “an old house I like” followed the “forget it.” We are
not accustomed to semantical theories that deal with phenomena
like this, of course, but it is clear that any serious attempt to
model real language understanding will have to face them. My
present point is merely that continuations20 enable computational
formalisms to deal exactly with the computational analogs of this:
so-called escape operators such as MacLISP’s THROW and CATCH and
QUIT.

In addition, a full semantics of language will want to deal with
such sentences as “If by ‘‘flustrated’’ you mean what I think, then she
was certainly flustrated.” The proper treatment of the first clause
in this sentence will presumably involve lots of ψ-sorts of consid-
erations: its contribution to the remainder of the sentence has
more to do with the mental states of speaker and hearer than
with the world being described by the presumed conversation.
Once again, the overarching computational hypothesis suggests
that the way these psychological effects must be modelled is in
terms of alterations in the state of an internal process running
over a field of computational structures,

As well as these specific examples, a couple of more general mor-
als can be drawn, important in that they speak directly to styles of
practice that we see in the literature. The first concerns the sug-

 20 See note 10 (■■), above.

424 Indiscrete Affairs · I

gestion, apparently of some currency, that we reject the notion of
logical form, and “do semantics directly” in a computational
model On my account this is a mistake, pure and simple: to buy
into the computational framework is to believe that the ingredi-
ents in any computational process are inherently linguistic, in
need of interpretation. Thus they too will need semantics; the in-
ternalisation of English into a computer (θ) is a translation rela-
tionship (in the sense of preserving φ, presumably)—even if it is
wildly contextual, and even if the internal language is very differ-
ent in structure from the structure of English. It has sometimes
been informally suggested, in an analogous vein, that Montague
semantics cannot be taken seriously computationally, because the
models that Montague proposes are “too big”—how could you
possibly carry these infinite functions around in your head, we are
asked to wonder. But of course this argument commits a
use/mention mistake: the only valid computational reading of
Montague would mean that mentalese (S) would consist of desig-
nators of the functions Montague proposes, and those designators
can of course be a few short formulae,

It is another consequence of the view I am presenting that any
semanticist who proposes some kind of “mental structure” in his
or her account of language is committed to providing an interpre-
tation of that structure. Consider for example a proposal that
posits a notion of “focus” for a discourse fragment. Such a focus
might be viewed as a (possibly abstract) entity in the world, or as
a element of computational structure playing such-and-such role
in the behavioural model of language understanding. It might
seem that these are alternative accounts: what I am arguing is that
an interpretation of the latter must give it a designation (φ); thus
there would be a computational structure (being biased, I will call
it the focus-designator), and a designation (which I will call the fo-
cus-itself). The complete account of focus would have to specify
both of these (either directly, or else by relying on the generic de-
clarative semantics to mediate between them), and also tell a story
about how the focus-designator plays a causal role (ψ) in engen-
dering the proper behaviour in the computational model of lan-
guage understanding.

There is one final problem to be considered: what it is to de-
sign an internal formalism S (the task, we may presume, of any-

 9 · Linguistic & Computational Semantics

 425

one designing a knowledge representation language). Since, on
my view, we must have a semantics, we have the option either of
having the semantics informally described (or, even worse, tacitly
assumed), or else we ean present an explicit account, either by de-
fining such a story ourselves or by borrowing from someone else.
If the LISP case can be taken as suggestive, a purely declarative
model theory will be inadequate to handle the sorts of computa-
tional interactions that programming languages have required
(and there is no a priori reason to assume that successful compu-
tational models for natural language will be found that are simpler
than the programming languages the community has found nec-
essary for the modest sorts of tasks computers are presently able
to perform). However it is also reasonable to expect that no direct
analog to programming language semantics will suffice, since they
have to date been so concerned with purely procedural (behav-
ioural) consequence. It seems at least reasonable to suppose that a
general interpretation function, of the Σ sort mentioned earlier,
may be required.

Consider for example the KLONE language presented by
Brachman et al.21 Although no semantics for KLONE has been
presented, either procedural or declarative, its proponents have
worked both in investigating the θ-semantics (how to translate
English into KLONE), and in developing an informal account of
the procedural aspects. Curiously, recent directions in that pro-
ject would suggest that its authors expect to be able to provide a
“declarative-only” account of KLONE semantics (i.e., expect to be
able to present an account of φ independent of ψ), in spite of the
foregoing remarks. My only comment is to remark that independ-
ence of procedural consequence is not a pre-requisite to an ade-
quate semantics; the two can be recursively specifiable together;
thus this apparent position is stronger than formally necessary—
which makes it perhaps of considerable interest.

In sum, I claim that any semantical account of either natural lan-
guage or computational language must specify θ, ψ, and φ; if any
are left out, the account is not complete. I have argued, further-
more, that there is any fundamental distinction to be drawn be-

 21 Brachman (1979).

426 Indiscrete Affairs · I

tween so-called procedural languages (of which LISP is the para-
digmatic example in AI) and other more declarative languages
(encodings of logic, or representation languages). I deny as well,
contrary to at least some popular belief, the view that a mathe-
matically well-specified semantics for a candidate “mentalese”
must be satisfied by giving an independently specified declarative
semantics (as would be possible for an encoding of logic, for ex-
ample). The designers of KRL,22 for example, for principled rea-
sons, denied the possibility of giving a semantics independent of
the procedures in which the KRL structures participated; my own
simple account of LISP has at least suggested that such an ap-
proach could be pursued on a mathematically sound footing.
Note however, in spite of my endorsement of what might be
called a procedural semantics, that this in no way frees one from
giving a declarative semantics as well; procedural semantics and de-
clarative semantics are two pieces of a total story; they are not al-
ternatives.

 References
Bobrow, Daniel G., and Winograd, Terry, “An Overview of KRL: A

Knowledge Representation Language”, Cognitive Science 1 pp. 346,
1977.

Brachman, Ronald, “On the Epistemological Status of Semantic Net-
works”, in Findler, Nicholas V. (ed.), Associative Networks: Representa-
tion and Use of Knowledge by Computers, New York: Academic Press,
1979.

Clocksin, W. F., and Mellish, C. S., Programming in Prolog, Berlin:
Springer-Verlag, 1981.

Donnellan, K., “Reference and Definite Descriptions”, Philosophical Review
75:3 (1966) pp. 281-304; reprinted in Rosenberg and Travis (eds.),
Readings in the Philosophy of Language, PrenticeHall, 1971.

Fodor, Jerry, “Tom Swift and his Procedural Grandmother”, Cognition 6,
1978; reprinted in Fodor (1981).

———, “Methodological Solipsism Considered as a Research Strategy in
Cognitive Psychology”, The Behavioral and Brain Sciences. 3:1 (1980) pp.
63-73: reprinted in Haugeland (cd.), Mind Design, Cambridge: Grad-
ford, 1981, and in Fodor (1981).

 22 Bobrow and Winograd (1977).

 9 · Linguistic & Computational Semantics

 427

Israel, David, “What’s Wrong with Non-Monotonic Logic1”, Proceedings
of the First Annual Conference of the American Association for Artifi-
cial Intelligence, Stanford, California, 1980, pp. 99-101.

Katz. Jerrold, and Postal, Paul, An Integrated Theory of Linguistic Descrip-
tions, Cambridge: M.LT. Press, 1964.

Lewis, David, “General Semantics”, in Davidson and Harman (eds.), Se-
mantics 0/ Natural Langauges, Dordrecht, Holland: D. Reidel, 1972, pp.
169-218.

Newell, Allen, “Physical Symbol Systems”, Cognitive Science 4, pp. 135-183,
1980,

Putnam, Hilary, “The meaning of ‘meaning’’’, in Putnam, Hilary, Mind,
Language and Reality, Cambridge, U.K.: Cambridge University Press,
1975.

Smith, Brian Cantwell, Reflection and Semantics in· a Procedural Language,
Laboratory for Computer Science Report LCS·TR·272, M.I.T., Cam-
bridge, Mass., 1982 (a).

———, “Semantic Attribution and the Formality Condition”, presented at
the Eighth Annual Mecting of the Society for Philosophy and Psychol-
ogy, London, Ontario, Canada, May 1316, 1982 (b). 15

———, The Computational Metaphor, Cambridge: Bradford (forthcom-
ing).

Stcele, Guy, and Sussman, Gerald 1., “The Art of the Interpreter, or the
Modularity Complex (parts Zero, One, and Two)”, M.I.T. Artificial In-
telligence Laboratory Memo AIM-453, Cambridge, Mass, 1978.

Strachey, C.. and Wadsworth, C. P., “Continuations—a Mathematical
Semantics for Handling Full Jumps”, PRG·H, Programming Research
Group, University of Oxford, 1974.

Woods, William A., “Procedural Semantics as a Theory of Meaning”, Re-
port No. 4627, Bolt Beranek and Newman, 50 Moulton St, Cambridge,
Mass., 02138; reprinted in Joshi, A., Sag, 1., and Webbcr, B., Computa-
tional Aspects 0/ Linguistic Structures and Discourse Sel/ings, Cambridge,
U.K.: Cambridge University Press, 1982.

428 Indiscrete Affairs · I

— Were this page been blank, that would have been unintentional —

 429

10 — The Correspondence Continuum†

 Abstract
It is argued that current techniques for analysing the semantics of
knowledge representation systems in Artificial Intelligence (AI)
are too rigid to account for the complexities of representational
practice, and unable to explain intricate relations among represen-
tation, specification, implementation, communication, modeling, and
computation. Doing justice to such phenomena challenges such
stapes of traditional analysis as clear use/mention distinctions,
strict metalanguage hierarchies, distinct “syntactic” and “seman-
tic” accounts—even logic’s notion of model-theory itself.

By way of alternative, the paper advocates the development of
a general theory of correspondence, able to support an indefi-
nite continuum of circumstantially dependent representation re-
lations, ranging from fine-grained syntactic distinctions at the
level of language and implementation, through functional data
types, abstract models, and indirect classification, all the way to
the represented situation in the real world. The overall structure
and some general properties of such a correspondence theory are
described, and its consequences for semantic analysis surveyed.

†(A summary of) an earlier version of this paper was presented at the Sixth
Canadian Conference on Artificial Intelligence, Montreal, Quebec, Canada,
May 21–23, 1986,. While the paper did not appear in the Proceedings
(having been submitted far too late), some copies were distributed at the
meeting, and it was subsequently released as Report No. CSLI-87-71, Cen-
ter for the Study of Language and Information, Stanford, California, in
Jan. 1987.

Thanks to Jon Barwise, Jim des Rivieres, and John Lamping for com-
ments on early (1986) draft. The research was supported by Xerox Cor-
poration, and by a System Development Foundation award to the Center
for the Study of Language and Information at Stanford University.

430 Indiscrete Affairs · I

 1 Introduction
Certain genitive phrases of the form ‘a of b’ are ambiguous. On
the subjective reading of ‘love of children’, for example, it is the
children who do the loving, as in (1). On the objective reading, in
contrast, children are recipients of the affection, as in (2).

1. Though bitter from years of being ridiculed by adults, the
old man was grateful for the love of children.

2. Though increasingly impatient with his peers, the old man
never lost his love of children.

The problem arises when the head noun phrase a (‘love’) signifies
an asymmetric two-place relation, since it is then unclear which
argument place is filled by the b term following ‘of’. As shown in
these examples, the distinction is generally clear-cut, with the in-
tended reading selected by context (this is why it a question of
ambiguity, not vagueness).

The phrase “the representation of knowledge” is of this am-
biguous type. Oddly enough, though, it is not clear which reading
is intended. Is knowledge being represented (objective), or is
knowledge doing the representing (subjective)? Both interpreta-
tions seem reasonable. For example, suppose we build a medical
artificial intelligence (AI) system called DOC using FKRL, our “fa-
vourite knowledge representation language.” On the objective
reading, the ingredient structures would be viewed as representing
DOC’s knowledge, presumably implying that a semantics for FKRL
should map FKRL structures onto knowledge (or perhaps onto a
set-theoretic model of it, such as a possible-world structure). On
the subjective reading, in contrast, DOC’s knowledge, embodied in
FKRL structures, would itself be taken as representational. In this
case semantic analysis would map the representational structures
onto the states of affairs in the world that DOC knows about—
states of affairs involving drugs, diseases, and diagnoses.

To add to the confusion, it is not even clear exactly what the
difference between the two readings would come to, in the knowl-
edge representation case. It seems that a possible world structure
modelling belief might be the same as a structure modelling the
states of affairs that the belief is about. And yet beliefs and
worldly states of affairs are not the same: the former, for example,

 10 · Correspondence Continuum

 431

ample, are psychological, the latter not (at least in general). Thus,
whereas an erudite doctor might be said to possess great knowl-
edge, it would be senseless to say that she possesses great states of
affairs.

Some of the confusion has a simple source: both ‘representa-
tion’ and ‘knowledge’ designate asymmetric, relational notions.
Furthermore, the two relations are of the same general type; they
both characterise phenomena that are about something—
phenomena that refer to the world, that have meaning or content.
For example, to say that a series of marks on a page is a represen-
tation of Winston Churchill is to say that there is some relation
between those marks and the late British Prime Minister. Simi-
larly, to say that your lawyer’s knowledge is faulty is to comment
on the relation between what is going on inside the lawyer’s head
and what is going on outside. Because they are both based on an
underlying (asymmetric) relation of content, representation and
knowledge are considered to be semantic or intentional notions
(other intentional notions include language, belief, model, theory,
specification). But to say that is not to say very much, at least not
yet. It certainly does not explain how representation and knowl-
edge differ. Nor does it clarify our starting question of how, in the
knowledge representation case, they are supposed to relate.

This paper will try to sort this all out. Specifically, taking seman-
tics as the general enterprise of describing intentional phenom-
ena, I will address the question of what it is to give a semantic
analysis of a knowledge representation system. I.e., whereas most
semantical analyses focus on particular types of semantic entities
or structures—possible world structures, partial situations, etc.—
my concern will be with the overall framework in terms of which
such analyses are conducted.

There are several reasons this is an urgent task. The first we
have already discussed: as implied by the confusion in the name,
there are several interacting intentional notions involved, which
should be sorted out. Second, it is increasingly thought necessary
to give semantical accounts of proposed representation systems,
in order to convey rigour and coherence onto what would other-
wise be viewed as ad hoc symbol mongering. In 1974 Pat Hayes,
long a champion of this view, called AI’s reluctance to provide se-

432 Indiscrete Affairs · I

mantical accounts for representation schemes “a regrettable
source of confusion and misunderstanding”,1 and went on in
1977 to write as follows:

“One of the first task which faces a theory of representation is
to give some account of what a representation or representa-
tional language means. Without such an account, compari-
sons between representations or languages can only be very
superficial. Logical model theory provides such an analysis.2

In writing these words Hayes was defending logic against what he
took to be the a-semantical orientation of the proceduralist tradi-
tion. In this he seems to have succeeded: similar sentiments have
since gained widespread allegiance. We should certainly under-
stand anything so popular.

On the other hand, this very success leads to the third reason
for the present investigation. I believe that current theoretical
tools, particularly the traditional model-theory that Hayes cites
and most everyone uses, are inadequate to the knowledge repre-
sentation task, and need substantial revamping. Perhaps ironi-
cally, many of the problems I will canvass are foreshadowed in
Hayes’ original papers—the relation between so-called proposi-
tional and analogue representation, to take just one example,
which has yet to be adequately reconstructed. Logical model the-
ory, which does not address analogue questions, has if anything
gained momentum as the knowledge representer’s semantical
technique of choice.

Fourth, and finally, many of the lessons learned in the knowl-
edge representation case will hold for all computational systems,
and will even impinge on general semantical analysis; so there is a
certain universality to the inquiry.

 2 A Model of Knowledge Representation
I will adopt a two-factor model of knowledge representation, as
pictured in figure 1 (on the next page). An agent, computational or
human, is taken to comprise a set of internal structures, states, or
aspects, that have some sort of content, and at the same time play

1Hayes, 1974 p. 64.
2Hayes 1977, pp. 559.

 10 · Correspondence Continuum

 433

a role in engendering the agent’s overall behaviour. In order to fo-
cus on their internal nature, I will call these structures impres-
sions, to distinguish them from expressions, assumed to be ele-
ments of an external language. Think of impressions as data
structures, as elements of a knowledge representation language,
or as partial mental states—not much will depend here on details.
The essential point about impressions is that they have two par-
tially independent, though coordinated, properties.

First is what I will call functional role (or ‘role’, for short)—
indicated as a in the diagram. Impressions must arise, somehow,

in virtue of the history
and coupling of the agent
to its environment, and
must give rise to the sys-
tem’s future activity or
behaviour. Furthermore,
as well as having these
backwards- and for-
wards-looking aspects,
impressions must be
causally efficacious in the
present—must bump up
against each other, or be
manipulated by some

sort of internal agency, so as to constitute the whole of which
they are the parts. So a given impression, such as one expressing
the fact that a robot does not have much time left until it needs a
recharge, might arise from the integration of information gleaned
from internal sensor readings, engender inference involving time
and expected electrical use, and lead the robot to scramble around
the hall in search of an electrical outlet.

Functional role is not enough, however. In order to count as
representations, as opposed merely to being causal ingredients
like the cam shaft in a car, impressions must also stand in a con-
tent relation to the states of affairs in the world in which the
agent is embedded. I will call this second factor representational
import (or just ‘import’, where the meaning is clear)—indicated
in the diagram as b.

Representational import is not an alternative to functional

Figure 1 — A two-factor model of knowledge representation

434 Indiscrete Affairs · I

role, or a particular kind: it is something additional. Thus
whereas the level of sap in a maple tree arises from a complex his-
tory involving the weather, structure of the trunk, etc., and gives
rise to complex future behaviour, such as amount of sugar pro-
duced, density of new foliage, etc., that is about all there is to say
about it. In spite of being correlated with facts in its environment,
sap does not have any representational import partly because the
correlation is too strong (sap cannot be wrong), and partly be-
cause no concepts are employed (sap does not represent the world
as being one way as opposed to another; it is merely locked into it as
a totality). In contrast, for an impression to represent spring’s be-
ing on the way, there would have to be an additional uniformity
relating its structure to the structure of that fact—a uniformity
that would be missed in an isolated account of functional role.3

For example, suppose I have the impression that water con-
ducts electricity. All kinds of backwards-looking functional roles
could have led to this: my own hapless experience trying to heat
the bath water with an electric iron; stories I have been told;
books I have read; deductions from knowledge of the ionization
potential of molecules held together by hydrogen bonds. Simi-
larly, at least within wide limits, there is no predicting what for-
ward-looking role this impression might give rise to: things I
might say, or situations I may strenuously avoid, such as climbing
onto high-tension wires during rainstorms. The point is that, in
spite of this richness of role, including inferential role, there re-
mains a striking and relatively simple uniformity connecting the

3Saying just what distinguishes representational from purely functional
ingredients is a difficult philosophical problem. My own emphasis on the
two criteria cited here—a certain “disconnection” between representation
and what is represented, and the claim that a representation must repre-
sent the world as being a certain way—is discussed in Smith [[forthcoming
(a), chapter 4]], and in Smith [[forthcoming (b)]]. The issue has been ad-
dressed by many writers in the philosophy of psychology, such as Fodor,
Searle, and Stich, especially in assessing the relation between proposed
functional and representational theories of mind. «Refs?» Computational
readers will note, however, that many of these philosophers get at repre-
sentation by analogy to computation, whereas my own view is approxi-
mately the opposite: that we must get at computation by first understand-
ing representation. There is more overlap in subject matter than concur-
rence in views.

 10 · Correspondence Continuum

 435

impression and the fact it represents—the most penetrating regu-
larity in terms of which to explain my behaviour. In brief, it is the
connection between the impression itself and the fact that water
conducts electricity. This is the regularity of content or representa-
tional import.

The two factors must be coordinated in a special way: the
states of affairs that the impression represents (its import) and
the behaviour that it gives rise to (its role) must be such that the
agent can be truthfully said to know the fact, which involves being
able to act in accord with it, etc. The trick, in spelling this out, is
to tie the two roles together into an integral whole without
thereby undermining the integrity of the distinction between
them—a project that requires combining traditional semantical
techniques with the AI and philosophical literature on knowledge
as action, pragmatic reasoning, and even causal theories of refer-
ence. I will not attempt that integration here, but will merely call
the coordinated combination of factors the full significance of
an impression.

In (Smith 1982a & 1985), I labelled this two factor orientation
to representational significance the Knowledge Representation
Hypothesis. In the philosophy of mind an analogous view has
been labelled a dual-component semantics for psychology.4 Tech-
nical variations have appeared under various descriptions; what is
perhaps most striking is its familiarity in even the familiar realm
of formal logic. In a traditional proof-theoretic framework—say,
if the agent was an implementation of a natural deduction theo-
rem-prover for first-order logic—one might view representational
import as the semantics of an expression, and functional role as its
proof-theoretic consequence. This last characterisation, however,
misleadingly suggests that the full significance of a representation
system must satisfy the following two constraints:

1. That the two factors be essentially independent (in which
case I will call the representational system declarative); and

2. That functional role arise solely from syntactic properties
of the representational structures.

Adherence to a general two-factor analysis, however, in no way

4Field (1977, 1978); Loar (1982); Block (1985).

436 Indiscrete Affairs · I

commits one to this particularly strong way of dividing things
up.5 3-Lisp, for example,6 a simple programming language de-
signed within a two-factor framework, explicitly violated both as-
sumptions: import and role were both essentially semantic;7 it
was also shown that they were theoretically explicable only in in-
timate conjunction.8 Other analyses, such as that suggested by
Barwise and Perry,9 propose alternative ways of tying content and
behaviour together. In fact it is partly because there are so many
ways of getting at roughly the same intuition that I have pre-
sented it here somewhat abstractly.

The two-factor nature of knowledge representation is the most
important aspect for semantical analysis to clarify. In order to
make sense of current semantical techniques, however, we need
another distinction, which cross-cuts it.

Especially in the philosophical literature, semanticists some-
times distinguish the meaning of a structure from its content or
interpretation (not, at least not in any straightforward way, to be
confused with the computer science notion of interpretation; see
section 5, below, and Smith (1984)). Very roughly, the former is
what all instances or uses of a given structure type have in com-
mon; the latter, what a particular use or instance of that type re-

5David Israel has challenged the view, almost universally held in AI, that
the notions of proof, deduction, inference, etc., even in mathematical logic,
should be conceived in syntactic terms. «Refs» This syntactic orientation
is not even universally accepted within what is called formal logic, since it
rests on only one of many possible readings of the term ‘formal’ (see Smith
[[forthcoming (a)]].

6Smith (1982a, 1984).
7Reasons why the functional (procedural) parts count as semantic are
spelled out in Smith [[forthcoming (a)]].

8First factor derivability (£) and second factor satisfaction are traditionally
tied together through entailment (|=) and proofs of soundness and com-
pleteness, but these particular notions are coherent only as a kind of global
constraint on what are otherwise locally independent factors. The kind of
“intimate conjunction” employed in 3-Lisp, and being imagined here for
more general models of reasoning and computation, is one of much more
local interdependence. As pointed out in Smith (1982b), computational
practice already encompasses a wide range of such local interactions; see
also Smith (1987).

9Barwise and Perry (1983).

 10 · Correspondence Continuum

 437

fers to, or gets at, in all its specificity. Typically, facts about the
context or setting provide the additional information that gets
from meaning to interpretation. So for example the first person
pronoun ‘I’, under this analysis, has the meaning of referring to
whoever uses it: when Bono says ‘I’ he refers to himself; if you do,
you refer to yourself. This is why two people can scream at each
other “I’m right; you’re wrong!”—they both use the same sen-
tence, and the meaning is constant; it is the respective interpreta-
tions or contents that are contradictory. So we might model the
meaning of ‘I’ as the following function of speakers, times, and lo-
cations as follows:

[[‘I’]]=ls,t,l · s

In a given situation of use (speaker so at time to in location po) the
interpretation would thus be so.

It is tempting to identify meaning as the semantics of types, in-
terpretation as the semantics of tokens—but the second of these
is misleading. John Perry, for example, has imagined a case of two
deaf mutes, so poor they must share a single tattered card saying
I’m a poor deaf mute; won’t you give me some money.10 Standing to-
gether at the street corner, they alternately hand the card to pass-
ers by. Each time the card is used, the words ‘I’ and ‘me’ change
their reference: one token, constant meaning, changing interpre-
tation. Similarly, consider an analogous computational example: a
machine with a single distinguished internal structure used to
mean ‘now’. The meaning is constant, and the particular structure
may persist, but the interpretation changes with each passing
nanosecond. Uses, or utterances, are what have interpretations;
not concrete instances or tokens.

The meaning/interpretation vocabulary is not common in the
AI or computer science literature, but the circumstantial depend-
ence with which it deals is ubiquitous. Even the simple inclusion
of explicit environment and memory arguments in denotational
analyses of programming languages11 manifests a sensitivity to the
importance to interpretation of contextual factors. In Smith
(1986) I layout a whole variety of ways in which the content of

10«Ref»
11See for example Gordon (1979).

438 Indiscrete Affairs · I

computational structures, including impressions, can depend on
facts of circumstance or context: internal facts (what program is
running, how other internal structures are arranged, etc.), exter-
nal facts (where the computer is located, whom it is conversing
with, etc.), and even some facts that seem to cross the boundary
(what time it is). The importance of these kinds of circumstantial
dependence will be assumed in what follows.

Furthermore, both aspects of significance—functional role and
representational import—can be cir-
cumstantially dependent. What
¬FLIES(x) means, when attached to
the BIRD node in a default reasoning
system, and what inferences it leads a
system to draw, can both depend on
the presence or absence of other in-
termediating impressions. I will use

functional meaning and representational meaning to get at
the respective factors of an impression’s significance abstracted
away from details and circumstances of particular instantiation or
use. Similarly, functional content and representational content
will refer, respectively, to the actions a use of an impression actu-
ally engenders, and to the situation it actually represents.

Given these distinctions, my overall question is this: what
would a semantical analysis be of the full significance of impressions?
In the broadest terms, it will clearly have to distinguish import
and role, meaning and content, and show how they all come to-
gether into a coordinated whole. But we need details. I will pro-
ceed in steps, concentrating first on representational import.
Later I will return to the question of how to tie it together with
functional role.

 3 The Present State
Virtually all the theoretical techniques in our current semantical
arsenal were developed to deal with representational import. In
particular, present practice proceeds roughly as suggested in fig-
ure 2. First, a source domain is identified as the set of elements
for which a semantical analysis is to be given. Traditionally, this is
called the syntactic domain; in the knowledge representation
case it is the set of impressions comprising the agent (I will talk

Figure 2 — The standard semantical model

 10 · Correspondence Continuum

 439

more about the difference in a moment). Second, a semantic
domain is similarly identified, roughly taken to be what the ele-
ments of the representational domain, expressions or impres-
sions, are about (more about ‘aboutness’, too, in a bit). Third, the
semantic relation between domains, usually called the interpreta-
tion function, is then described extensionally, in the sense that
particular elements of the syntactic domain are mapped, piece-
wise, onto the corresponding particular elements of the semantic
domain. It may be, in the theorist’s actual presentation of the se-
mantic relation to the reader or audience or a colleague or what-
ever, that considerable information about the structure of this re-
lation will be manifested, but strictly speaking this additional
structure is not part of what is provided (or perhaps, to borrow
from the Tractatus, we could say that it is shown but not said).
Just as for functions and relations more generally, piecewise cor-
respondence is assumed to be sufficient, at least for theoretic pur-
poses.

So far, however, I have not said enough to distinguish the ex-
tensional analysis of a semantic relation from the extensional
analysis of any old relation at all. But in practice more assump-
tions are adopted. I will label as model-theoretic those semanti-
cal analyses that accept (which I do not!) the following additional
claims:

1. The elements of the representational domain are assumed
to be linguistic. Debates rage over what language is, but at
least the following seems agreed: complex linguistic ele-
ments are taken to be linear sequences of some sort
(strings, utterances, whatever), with an inductively speci-
fied recursive structure founded on an initial base set of
atomic elements called a vocabulary, and assembled ac-
cording to rules of composition specified in a grammar.
Furthermore, the interpretation relation is usually defined
compositionally, so that meanings (not contents!) are as-
signed both to the vocabulary items and to the recursive
structures engendered by the grammatical rules, in such a
way that the meaning of a complex whole arises in a sys-
tematic way from the meanings of its parts. A particularly
strong version of compositionality requires that the mean-

440 Indiscrete Affairs · I

ing of a whole be definable, often by function composition,
in terms of the meanings of the parts, but other possibili-
ties, such as that the whole’s meaning be characterised, or
even just constrained, by systems of regularities among the
parts, are growing in popularity. We need not take a posi-
tion here on details; I will assume that these are variants on
model-theoretic approaches.

2. In a case where the elements of syntactic domain S corre-
spond to elements of semantic domain D1, and the ele-
ments of D1 are themselves linguistic, bearing their own
interpretation relation to another semantic domain D2,
then the elements of the original domain S are called meta-
linguistic. Furthermore, the semantic relation is taken to
be non-transitive, thereby embodying the idea of a strict
use/mention distinction, and engendering the familiar hi-
erarchy of metalanguages. This distinction is motivated by
such obvious facts as that the six-character quoted expres-
sion “ ‘Nile’ ” designates a short word, which in turn desig-
nates a long river, but from those two facts it does not fol-
low—nor is it true—that the original six-character expres-
sion “ ‘Nile’ ” itself designates the river.

3. The interpretation relation, as suggested in figure 2, is
typically taken to be a function, implying that the import or
content of an expression is not ambiguous. But ambiguity
is a relative term: a linguistic element may look ambiguous
if the circumstantial dependence of content has not been
fully articulated, and may therefore be resolved by the
meaning/interpretation distinction. We have already seen
how the functional assumption is generalised to handle
such complexities: whatever information disambiguates a
given use of an otherwise ambiguous expression is included
as a parameter of meaning; content is then obtained from
the meaning by fixing that parameter. For example, the in-
terpretation of the indexical expression ‘I’, discussed above,
was parameterised on speakers (formally, for reasons to be
explained in a moment, it was parameterized on speakers,
times, and locations—though only the speaker affected the
resulting interpretation). Similarly, if ‘grue’ means blue if

 10 · Correspondence Continuum

 441

used before
some time t0,
and ‘green’
afterwards,12
then its in-
terpretation

would be
parameter-

ized on time
of use, lead-
ing to its be-

ing assigned roughly the following meaning:

[[‘grue’]]=ls,t,l · if t < t0 then BLUE else GREEN

Thus the true situation is more accurately pictured by fig-
ure 3, with dependence on circumstantial or contextual
factors folded into the interpretation. As mentioned ear-
lier, the discussion in Smith (1986) was intended to show
how facts about both internal and external context can af-
fect interpretation in this way.13

4. It is not necessary—not even usual—to require that the
semantic domain D be the real domain that the expres-
sions are about. Rather, D is required to be a set-theoretic
structure, viewed as a model of the real semantic domain.

12See Goodman (1983).
13Functional parameterization deals with circumstantial dependence, but
in a specific and limited way. In particular, by assuming that the linguistic
element, plus circumstantial facts, together determine the interpretation,
it implies that this is the direction of “information flow”—that under-
standing proceeds from knowledge of language, plus knowledge of circum-
stance, to knowledge of content. In practice, however, the flow can easily
run in the other direction: someone hearing an utterance may know about
the situation being described, and use that information to determine the
structure of the linguistic element, or of such circumstantial factors as dis-
course structure. For these and other reasons a genuinely relational theory
of meaning and content would be preferable (see Barwise and Perry
(1983)); I use the functional analysis here only because of its familiarity,
and because my current argument is not particularly sensitive to the dis-
tinction.

Figure 3 — Parameterised interpretation

442 Indiscrete Affairs · I

This last assumption serves a variety of useful functions: it means
that semantical analysis remains “purely” mathematical, rather
than having to spell out complete metaphysical assumptions
about the true nature of the world. So for example a belief or
proposition might be modelled as a function from possible worlds
to truth-values, without the theorist needing to believe that that
is what beliefs really are (but of course they are not functions in
fact: it is entirely reasonable to ask “What are your friend’s be-
liefs?”, and absurd to ask “What are your friend’s functions from
possible worlds to truth-values?”). Similarly, in the semantical

analysis of a language
used to describe Tur-
ing machines, the se-
mantical domain is
usually taken to be sets
of quadruples, not ac-
tual devices complete
with tapes, read/write
heads, finite state con-
trollers, and so forth.
The quadruples are
viewed as a model of the
Turing machine, and—
this is the crucial point
modelling is assumed to
be “free,” in the sense

that the theorist is granted license to engage in unconstrained
modelling without having to account for it explicitly in his or her
theory. To put it another way, modelling is invisible through the
standard semanticist’s glasses.14

Sometimes, of course, when the linguistic or representational
elements are genuinely about mathematical objects—theories of
arithmetic, for example, or representations of the factorial func-
tion—the true interpretation (called the ‘intended interpreta-
tion’) may be one of the model structures. In general, however,

14Sometimes, as for example in Montague semantics, the syntactic domain
is modelled as well, but I will not worry about that here—it is merely an
extension of the same points being made.

Figure 4 — Parameterised model-theoretic interpretation

 10 · Correspondence Continuum

 443

and almost universally in the knowledge representation case in ar-
tificial intelligence, we are interested in representations of more
general states of affairs in the world, such as levels of digitalis in
heart patients. So the picture of semantics should be updated as
in figure 4.

Finally, in discussions to follow, we will encounter complex
situations that include both modelling and iterated representa-
tion of the sort discussed in the second assumption. So it is im-
portant to summarise how the standard picture would look in
such cases. Since modelling is typically ignored, such a situation
would traditionally be described as a strict series of non-transitive
denotation relations, each analysed piecewise. Our comments
about modelling might suggest that the true situation is more
complex, consisting of a series of non-transitive denotation
relations, followed by an indefinite amount of promiscuous
modelling. But in fact, since there may be promiscuous (i.e., in-
visible) modelling at each stage of the language hierarchy, as for
example when a language is encoded in arithmetic (as is common
in recursive function theory, for example), what we really have is
this: a strictly non-transitive sequence, each step consisting of a
denotation relation followed by an indefinite amount of
promiscuous modelling. This situation is pictured in figure 5.15

15At least in this paper, I do not intend these remarks to challenge the ap-
propriateness of these techniques for the intellectual project for which
they were developed: the metamathematical inquiry into the foundations
of mathematics. My current complaint is only about its adequacy for use
in AI, knowledge representation, and any other situation in which the true
state of affairs being represented is one in the real and messy world of eve-
ryday life.

444 Indiscrete Affairs · I

 4 Impressions
The first step, in analysing the appropriateness, for the represen-
tational problems presented in section 2, of the semantical tech-

niques described in
section 3, is to de-
cide how we are go-
ing to treat impres-
sions. Because I spe-
cifically introduced
the term to cover
any internal aspect,
state (or partial
state), or structure,
we want a fairly gen-
eral answer. It turns

out to be a surprisingly complex subject. If we can clear it up first,
therefore, subsequent semantical analysis will be that much more
tractable.

The most important point is this: as semanticists—whether our
home field is in philosophy, artificial intelligence, logic, psychol-
ogy, computer science, or artificial intelligence—we do not yet
have any developed theoretical terminology whose primary function is
to describe impressions. In particular, impressions are not necessar-
ily linguistic objects, since the notion of language arises from the
structure of communication and consensual interaction, not
causal ingredients. Nor does mathematics provide any directly
applicable notions: mathematical structures are abstractions—
Platonic ideals, not fragments or constituents of activity. For ex-
ample, in discussing two-factor semantical analysis in section 2, I
talked about impressions being “causally efficacious”; these are
not terms in the standard mathematical repertoire, nor, at least in
general, are pure mathematical objects thought to possess causal
powers. I have introduced the term ‘impression’ as a small step
towards repairing this deficiency (as I did with ‘structural field’ in
the 3-Lisp case), but of course it is simply a general, covering
term. What we lack is a theory of types of impressions, types of
important relations among impressions, analyses of how impres-
sions can simultaneously cause and represent, and so forth. It is
not that we are entirely without terms for such things: data struc-

Figure 5 — Model-theoretic analysis of iterated representation

 10 · Correspondence Continuum

 445

tures, data bases, knowledge bases, data types, functions (in the ‘pro-
cedure’ sense), and code are all types of impression—as are more
specific AI constructs such as semantic nets, inheritance graphs, and
taxonomic lattices. Rather, what we need is a general theory, in
terms of which these diverse kinds could be characterised.

Lacking a general theory, what do we theorists do instead? Dif-
ferent things. Perhaps the most common practice, especially in AI
and the philosophy of mind, is to treat impressions metaphori-
cally—in particular, as analogous to language. Thus in the cogni-
tive case we have talk about “language of thought”, “mentalese”,
“syntactic” theories of mind, etc.—as for example championed by
Fodor, Stich, and others.16 Artificial intellience typically follows
the same path, talking about “expressions”, knowledge represen-
tation “languages”, etc.—as does anyone who views impressions
as “formulae.” In philosophy this stance is commonly referred to
as the representational theory of mind—a somewhat unfortu-
nate epithet, not because the term ‘representation’ is inherently so
narrow,17 but because this usage tends, without explicit admis-
sion, severely to constrain the notion of representation to its lin-
guistic or even syntactic shadow. Instead I will call it a linguistic
theory of impressions. Two facts about this theory are impor-
tant for present purposes: (i) that we recognise its hypothetical
nature—the fact that it represents a substantial claim; and (ii)
that so long as this language remains metaphorical, we be careful
to monitor connotations not necessarily warranted in the new
domain.18 For example, in 3-Lisp I called certain number-
designating impressions numerals, but the metaphorical nature of
the terminology misled me as well as others, causing me to attrib-

16See Fodor (1975), Stich (1985).
17See «whatever Rehabilitating Representation becomes».
18Boyd (1979) argues persuasively that metaphorical scientific language can
play a role, especially initially, in enabling a community to establish in-
creasingly substantial reference to a new domain. On such an account, the
use of linguistic terminology to discuss impressions might, over the years,
gradually lose its metaphorical overtones, and take on full-fledged referen-
tial connection to this new domain. But as Boyd himself points out, in or-
der for this process to take hold, the metaphor must start out being at
least partially correct. My concern in this particular case, as the rest of this
section tries to suggest, is that many of the connotations of the use of lin-
guistic language to describe impressions are in fact unwarranted..

446 Indiscrete Affairs · I

ute semantical properties to impressions motivated more by lin-
guistic connotation than by genuine functional need (for example,
my adoption of a strict use/mention hierarchy, distinguishing the
number three, the impression-numeral ‘3’, and the expression-
numeral “3”).

Those bred in the knowledge representation tradition may
find the linguistic approach to impressions obvious, but it is im-
portant to recognize that it is not universally accepted. It is well
known that philosophical debates rage about whether representa-
tion is the best notion in terms of which to characterise human
mental states. What is perhaps more surprising is the fact that a
number of alternative views are advocated even within computa-
tional circles. First, many people have realised, in opposition to
the linguistic claim in its narrowest form, that there is no need for
internal structures to be anything like identical to written ones.
The mildest position of this sort is John McCarthy’s notion of
“abstract syntax”, which effectively amounts merely to a way to
free impressions from gratuitous details of notation.19 I made a
stronger move in the same direction in developing 3-Lisp, using
the term “structural field” for the totality of impressions, even
though I then described individual impression types using termi-
nology that I now feel was excessively derivative from linguistic
analysis. My move was stronger than McCarthy’s not only be-
cause the granularity of distinction in the 3-Lisp field was less
than is usual in even abstract linguistic cases, but also because the
mapping between expressions and impressions (as well as that be-
tween impressions that real world or tax-domain) was taken to be
contextually sensitive. (Partly for reasons of circularity and struc-
ture-sharing, the external notation was neither isomorphic to in-
ternal impressions, nor complete. Furthermore, in certain com-
plex cases like Lisp’s closures, the impression structure was far
more complex than linguistic notation could readily express.)

Other positions on impressions have been proposed. The view
embodied in the design of 3-Lisp—that viewing impressions as
syntactic or linguistic is non-ideal because it commits the theorist
to too fine-grained a set of internal distinctions—was not mine
alone; it is increasingly supported in various quarters of AI. Two

19«Ref»

 10 · Correspondence Continuum

 447

suggested alternatives are of particular importance. Levesque
(1984) retains allegiance to knowledge representation as a cover-
ing notion, but argues for a functional analysis of machine states,
with explicit reference to the notion of an abstract data type, as
opposed to a view of them as comprising “collections of symbolic
structures.”20 Apparently more radically, Rosenschein (1985)
criticises the entire representational stance, which he character-
ises as viewing “the state of the machine as encoding symbolic
data objects”; Rosenschein argues instead for the notion of a situ-
ated automaton, with intentional properties (which he calls
“knowledge”) defined in terms of “objective correlations between
machine states and world states”.21

Supporting these anti-syntactical proposals, moreover, is the
attitude towards impressions adopted in current theoretical com-
puter science. Spelling that approach out is difficult, however, be-
cause of a facade of potentially distracting theoretical techniques
that are standardly employed, which obscure (from the present
vantage point) exactly what is going on. So I will digress from the
subject of impressions, for a moment, to examine what computer
sciences calls the denotational semantics of programming lan-
guages, and then return to the present topic once we have that
firmly in hand.

 5 Programs, Processes, and Indirect Classification
The abstract data type movement in programming language de-

20«Ref»
21History is often repeated, we are told, but here it is being repeated in re-
verse direction. The gradual shift from functionalism to representational-
ism in the philosophy of mind is apparently being played out backwards in
AI, which started with a very strong representationalist stance, and is
steadily moving away from it, towards what are explicitly admitted to be
purely functional accounts (see Levesque (1984), Newell (1982), etc.). My
own view is that both traditions, in opposite order, suffer from the lack of
a full fledged theory of representation. Based on the idea that the only rig-
orous concept of representation is a narrow, purely syntactic version, they
oscillate between its gratuitous detail and consequent semantic implausi-
bility, on the one hand, and contextually insensitive and menacingly be-
haviourist pure functionalism, on the other. I believe both are inadequate,
and conclude that we should free representation from its syntactic stric-
tures, rather than rejecting the notion entirely.

448 Indiscrete Affairs · I

sign, and the denotational approach to programming language
semantics, are best understood as attempts to characterise the
structure of computational processes in other than linguistic
terms. They are motivated by the following obvious fact: when we
develop computational processes, we cannot build processes di-
rectly. Instead, we cause them to come into existence by writing
programs. In their discourse, AI programmers often gloss the dis-
tinction between the program and the process, viewing programs
as functional ingredients that are either inside processes (a move
in which programs are effectively taken to be impressions—partly
motivated by the widespread use of interpreted, interactive lan-
guages like Lisp), or sit in the background causing them to exist,
etc. Such assumptions are betrayed in such informal parlance as
“The program is still running”, “The program reads in a number and
then prints out the answer”, etc.

Nonetheless, as every programmer knows full well, programs—
textual objects that are printed out on paper or on the screen, that
are edited with EMACS and other editors, etc.—do not do any-
thing; they are inert. Rather, what happens is that these passive
structures are used by interpreters and compilers (about which
more in a minute) to engender behaviour with appropriate prop-
erties.

 10 · Correspondence Continuum

 449

The situation is depicted in figure 6. As just stated, the AI and
knowledge representation community typically views programs,
along with elements of knowledge representation languages, as
constituents of or elements within computational processes—i.e.,
as impressions. I will call this the ingrediential view, as suggested
in figure 6b. By far the more standard computer science concep-
tion, in contrast, is what I will call the specificational view, pic-
tured in 6a: programs taken as specifications or descriptions of
computations, albeit as special descriptions that can be viewed as
prescriptions by the machine or interpreter. Different from both is
a third, conversational, view, in which programs constitute the
dialog or discourse that the programmer has with the machine—
a view that I will examine in later, in section 6.

Figure 6 — Three Perspectives on Programs

450 Indiscrete Affairs · I

The hugely important point, which will greatly affect our seman-
tic analysis, is the following: traditional computer science takes “se-
mantics” to be the job of mapping programs onto processes—not, as
external observers, philosophers, linguists, etc., might expect, to
be that of mapping the resulting processes onto the world. It is
only under this C.S. conception, furthermore, that “interpreters”
are properly named.

Concerned as I am in this paper, with knowledge representa-
tion, my task is different: exactly to describe that relation with
which computer science does not concern itself—between those
(resulting) processes and the worlds in which they are embedded. It
follows that, in the traditional terminology, the semantic domains
of traditional programming language analyses should be the
knowledge representer’s so-called syntactic domains. Confusion
over this point amounts to the commission of a use/mention er-
ror—exactly the sort of thing that careful semantical analysis is so
much at pains to eliminate.22

It may seem odd to look for impressions in the semantic do-
main of a semantic analysis of a programming language. Denota-
tional semanticists, after all, typically deal in semantic domains
consisting of abstract mathematical structures—functions, sets,
numbers, partial orders, and the like—which do not seem very
much like causally efficacious impressions. But this apparent dis-
crepancy is explained by the fact that traditional denotational se-
mantics is model-theoretic. As we have already seen, the model is
not the true domain of interpretation, but some other structure,
typically abstract, set in correspondence with it. As suggested ear-
lier, this technique enables theorists at least partially to avoid ex-
actly the metaphysical questions we are interested in: questions
about the true nature of impressions themselves.23

22Although I will eventually challenge the idea of a rigid use/mention dis-
tinction, that does not mean that many so-called “use-mention confu-
sions,” such as this, are not serious..

23Some readers will object that computer science analyses treat computa-
tional processes only in terms of surface behaviour—input/output rela-
tions without positing any internal structure at all, let alone impressions.
But this is not so clear, not only because I have defined impression in a
rather general way, but also because this view assumes a purely “exten-
sional” reading of the semantical analyses themselves. As has been argued
by Fodor and others in the mental case, some sort of representational in-

 10 · Correspondence Continuum

 451

Not all questions are avoided by employing model-theoretic
strategies, of course, since the structure of the model is intended
in some way to correspond to the structure of the impressions.
The question is how the correspondence goes (i.e., what is the re-
lation between a set-theoretic structure and an FKRL impression?).
To get at the answer, note that modelling is an instance of the
rather general practice of describing a set of complex phenomena
only by setting them in relation to another, presumably more fa-
miliar, set of structures. Barwise and Perry call this “indirect
classification”.24 An observer establishes (perhaps implicitly) a
relation between the domain in question and some other domain,
and then describes particular phenomena in the first domain only
with reference to some corresponding phenomena in the second.

An obvious case, important to our present subject matter, is
the folk classification of people’s thoughts and beliefs: we describe
what a person P believes by describing the situation that would be
the case if what P believes were true. When you ask me to de-
scribe my thought, there is a perspective from which I am literally
incapable of answering, since in English we have neither vocabu-
lary nor intuitions about the direct structure of thoughts—i.e.,
about what is inside our minds, which is where most people
would say thoughts lie. Rather, I am liable to say something like
the following: “I was thinking that Palo Alto is too far from Fin-
land.” That is, I describe my thought or thought process indi-
rectly, by adverting to a fact (Palo Alto’s being too far from Fin-
land) that would be the case if my thought were true. The exam-
ples we looked at in discussing model-theoretic semantics were
just like this: the general practice is to establish an association be-
tween something and something else, and then to get at the some-
thing else by referring to the something. So for example we set up
a correspondence between Turing machine states and quadru-
ples, which lets us describe a particular state by referring to a par-

gredients will often be posited by theory merely in order to state the
proper behavioural regularities. The abstract data types of denotational
analysis can be viewed purely as theoretic entities, without classificatory
import, but an argument would have to be made that they do not repre-
sent impression structure; the mere fact that they re not claimed to do so is
not sufficient.

24Barwise and Perry (1983).

452 Indiscrete Affairs · I

ticular quadruple.
These examples illustrate an important general property of all

indirect classification: what is specific about a given entity in the
primary domain is set in correspondence with what is specific
about the corresponding entity in the classificatory domain. Thus
a theoretical computer need not encode, in the domain of quad-
ruples, the fact that Turing machines have tapes, or that the third
element of the quadruple corresponds to the mark under the
read/write head, or that the numbers 0 and 1 are used to classify
a mark or a blank, or anything else that is true for all the relevant
cases. All that is required is that a particular quadruple contain
enough information to determine what particular state, transition,
etc., that it is being used to classify.

What distinguishes the denotational approach to program-
ming language semantics from arbitrary indirect classification,
and leads to potential confusion, is the practice of identifying the
classificatory entity with what is thereby classified. Such identifi-
cation is not necessary; one could classify Turing machine #23
with quadruple #1437 without going on to claim that Turing ma-
chine #23 is quadruple #1437 (or even, more strongly, that to be a
Turing machine is to be a quadruple—which of course is in fact
false). The identification is considered to be acceptable when the
two structures are thought isomorphic, but isomorphism is always
relative to an assumed metric of equivalence. In the computational
cases we are concerned with, where a second semantical factor
(functional role) lurks in the background, in need of explanation,
we cannot afford to identify for one purpose, two things that may
differ in respects that matter for other purposes. In particular,
two structures that look to be isomorphic from the point of view
of representational import may differ, crucially, in terms of func-
tional role. For example, as we have already pointed out, no ab-
stract mathematical structure is even a candidate for the kind of
efficacious causality we will need in order to connect impressions
with action. Distinct but isomorphic mathematical structures
may be used to classify embodied mechanisms with very different
causal powers. So we need to proceed extremely cautiously.

We will encounter further issues about modelling in the next sec-
tion, but for now let me return to programming languages.

 10 · Correspondence Continuum

 453

In spite of its being contrary to the dominant view in AI and
cognitive science, in what follows I will informally adopt the
specificational view of programs, since it provides the most free-
dom, is least biased with respect to impression structure, and is
most compatible with current computational theory. Thus I will

assume: first, that pro-
grams are inert linguis-
tic entities, built up of
expressions; second,
that, in contrast, proc-
esses are active, mani-
fest behaviour, com-
posed in part of caus-
ally-effective impres-
sions; and third—
which is where the
specificational perspec-
tive takes hold—that
denotational semantics

in computer science is an analysis of the program-process relation
that indirectly classifies computational processes in terms of abstract
mathematical models. The situation is pictured in figure 7.

In terms of this picture, I can now explain the theoretical dis-
traction I alluded to earlier, in introducing this section. It arises
from the combination of two problems: (i) failing to distinguish
between the specificational and ingrediential views of programs;
and (ii) being seduced by model-theoretic properties of the model
(its abstract, mathematical character) into thinking it must model
content. The result is to lead one to identify the model Mc of the
computational process C with the model Mw of the state of affairs
W that the process is genuinely about—as shown in figure 8.

Figure 7 — Model·theoretic analysis of program semantics

454 Indiscrete Affairs · I

The fact that the programming language tradition calls its
analyses semantical, in other words, coupled with the fact that
they it tends to use abstract domains for purposes of indirect clas-
sification, is liable to mislead AI researchers into thinking that the
semantic domains of programming languages model the content of
the computational processes that the programs engender. But this is
false, at least in general. There is simply no assumption, in the stan-

dard semantical analy-
sis of programming
languages, that compu-
tational processes are
themselves semantic or
intentional entities.
That is, no further
semantic relation is
required, acknowl-
edged, or described.
All that is explained is
the relation between
program and engen-
dered computational
process.

In the AI case,
however, and particu-
larly when dealing
with knowledge rep-
resentation systems,
we assume that the
ingredients inside the

processes we are interested in, which we are calling impressions,
are themselves intentional (this was the essence of our adopting a
representational, as opposed to a merely functional, stance in sec-
tion 2). Even if we were to adopt a model-theoretic approach in
our semantical task, therefore, we would be interested in the rela-
tion between impressions in C (or in the model Mc) and the
model Mw.

I have already said that there is no a priori reason to assume
that these two models Mc and Mw will be the same. But a
stronger thing can be said: if one assumes that Mc is an adequate

Figure 8 — Models vs. Interpretations of Processes

 10 · Correspondence Continuum

 455

model of process C, and that Mw is an adequate model of what C
is about, then

 To identify Mc and Mw is to assume that the representational
import relation of knowledge representation systems is one of
isomorphism.

Far from treating impressions as a language, this would be to treat
them as a simulacrum of the world. Or to put the same point an-
other way: to adopt, as a model of a knowledge representation
system’s semantics, a denotational analysis of the programming
language used to specify it, is either to assume that the primary
representation relation, between process and world, is one of
isomorphism, or else—even worse—to ignore that relation com-
pletely (thereby maintaining a solipsistic stance towards compu-
tations themselves). Either result is unhappy: simultaneously false
and terrifically misleading.

It helps to look at some examples, starting very simply.
In purely mathematical cases, as mentioned, Mc and Mw may

truly coincide. For example, suppose we write a program to calcu-
late the factorial function. We may presume this literally means
the following: that we write a program to specify a process that is
about numbers and the factorial relation. In this case W is a
structured domain of numbers and functions. Moreover, a deno-
tational semanticist in computer science would almost surely use
the same structures (numbers and the factorial function) as an
abstract mathematical model (Mc) in terms of which to classify
the process. Not only can Mc and Mw be identified, in other
words; in this situation Mc, Mw, and Ware identical.

As is perfectly evident, however, this identity relies on some
very special properties of the example. Suppose we set out to de-
signing a robot to pull off bank heists, in contrast, and represent
(in FKRL) the commonsensical fact that anything to the right of
the robot is neither to the left of it nor straight in front. In order to
motivate an appropriate Mc, we need to understand the relation
between FKRL programs (now viewed as specifications) and FKRL

impressions. So imagine the notation for FKRL programs is remi-
niscent of logical notation, and that we could “write down” some-
thing like the following “in FKRL”—which is to say, we could write

456 Indiscrete Affairs · I

the following FKRL expression E to serve as the external notation
for the desired FKRL impression:

;x [RIGHT(x) ⇒ (¬LEFT(x) ∧ ¬FRONT(x))]

Suppose, furthermore, that this FKRL expression is more specific
than the impression that it will generate in two ways. First, there
is to be no fact of the matter, in the resulting impression, about
what particular variable was used in the program; the expression
might equally well have used y or z. Second, although matters of
lexical notation force one of the conjuncts to be first (¬LEFT(x) in
this case), we will assume that impressions are internally realised
as unordered sets. Thus the following expression would have
generated an indistinguishable impression:

;x [RIGHT(w) ⇒ (¬FRONT(w) ∧ ¬LEFT(w))]
xxGiven these assumptions, we can then take on the task of pro-
viding a semantical analysis of FKRL programs—which is to say,
an analysis of the relation between the FKRL expressive specifica-
tions and the resulting FKRL impressions—using the model-
theoretic approach of indirect classification. It is unlikely that we
would do no more than constrain the models of this impression
to those that satisfy the logical implication, since we can presume
that more fine-grained details of the impression’s structure will
play a functional role in licensing inference (such as the fact that
the negation signs have not been pulled to the front, as they have
in the semantically equivalent ¬'x [RIGHT(w) ∧ (FRONT(w) ■■

LEFT(w))]). So we might classify it using something like a term
model, with the set of all equivalent expressions (including all
those expressively differing only in the names bound variables
and/or the ordered of conjuncts). Or if we were warranted in tak-
ing a more abstract approach, we might develop our analysis in
terms of an interpretation function that mapped RIGHT, FRONT,
and LEFT onto three distinct unary predicates, and classified the
impression in terms of the set of all models satisfying the given
implication.

To relate this to figure 8, I will use E for the quantified expres-

×«Check this paragraph for correctness and intelligibility … seems awk-
ward, and a bit incoherent re specifications and expressions?»

 10 · Correspondence Continuum

 457

sion, I for the specified impression, C1 for the first classification,
C1 for the second, and W for the impression’s interpretation—as
suggested in figure 9.25 It should be obvious, first, that C1 and C2
are both more abstract than E, in the information-theoretic sense
of being less rich. Second, C2 is in turn more abstract than C2,
since this model makes fewer distinctions (identifying all seman-
tically equivalent expressions). Finally, both C1 and C2 have addi-
tional properties that are, as we might say, “semantically inert”:
properties that in this application neither themselves are, nor do
they model, nor do they classify any properties of I, E, or W (for
example C1 and C2 are both sets, even though none of E, I, nor W
is a set).

Given all of this, we are finally ready to ask the question to which
this has been lead-
ing: is either of C1
or C2 a candidate
for being a model
of W—i.e., a can-
didate for serving
as a model-
theoretic stand-in
for the representa-
tional import of I?
And the answer, to
bring it all home, is
no.

The fundamen-
tal problem is that
“being to the right
of” is not a one-

place relation: one thing is “to the right” of another thing, in the
world, only relative to the position and orientation of the first. Thus
C2 will not do, as a model of the representational content of I,
since it does not contain enough information to determine, for
example, whether impression I is true. If we wanted to model W,

25The impression is depicted as inside the robot’s head because the real
interpretation function is being understood as holding between the robot’s
mind and the policeman in front of it.)

Figure 9: Indirect semantic classification of FKRL programs

458 Indiscrete Affairs · I

then various additional circumstantial factors—including the po-
sition and orientation of the robot—would have to be brought in
explicitly. In dealing with W we need to deal with actual position
in the world, to put this another way (“in the world” is where
ones encounters police).

There is no formal problem with adding circumstantial pa-
rameters to an interpretation function, and thereby distinguishing
meaning and content. We saw how to do that in section 3.
Rather, the point of the exercise is to see what it is that these cir-
cumstances affect: the semantic relation between process (I) and
world (W), in particular, not the relation between program (E) and
process (I).

xxIt is not accidental that we are considering a context-
dependent case, since context dependence (a virtually ubiquitous
semantical phenomenon, in my view) brings into focus the abso-
lute importance of locating all relevant semantical phenomena
and relations in their proper place. xxIt is far more likely that the
machine’s behaviour will revolve around regularities framed in
terms of what’s in front of it, to its right, or to its left, not in terms
of what is in a given position. If the robot’s external circumstances
were mistakenly introduced in the E ⇒ C2 relation, the resulting
C2 would fail as a model of I. For example, it would be of no help
in explaining matters if I somehow broke and caused the robot
always to ignore things on its left, since “on its left” would not be
a notion in this modified C2 .

In general, of course, nothing prohibits a theorist’s classifying
something by its content (as we did in the factorial case). Exactly
such a strategy, in fact, is arguably what underlies our standard
(indeed, at the moment, only) way of describing the propositional
attitudes constitutive of folk psychology (‘knows that’, ‘believes
that’, ‘hopes that’, ‘fears that’, etc.).26 The point is only that we

×«This paragraph may need complete rewriting (certainly it needs to be
thought through, carefully, in order to determine whether that is so) …»

xx«Is this sentence coherent?»
26Folk psychology faces exactly the same problem we have just surveyed. In
particular: (i) it classifies people’s mental states by content; (ii) the purpose
of these classifications is to explain how people behave and what they do;
and (iii) the content of people’s mental states is determined in part by their

 10 · Correspondence Continuum

 459

must not assume that all indirect classification is of this type.
More seriously, simple indirect classification by semantical con-
tent will in general fail as a strategy for semantically analysing the
impressions of circumstantially dependent agents.

 6 Impressions, Expressions, and Complications
I said in section 4 that no there is no generally agreed, direct way
of describing impressions. So far we have seen two quite different
alternatives: a metaphorical approach, using the language of lin-
guistic expressions (section 4), and an indirect approach, classify-
ing them in terms of abstract mathematical structures (section 5).

Before leaving the subject, we must
recognise a third.

It is common in informal AI prac-
tice, and standard in what is called
‘operational’ semantics in the pro-
gramming language community, to
describe the impressions and behav-
iour of a given computational process
in terms of the corresponding impres-
sions or behaviour of a lower-level ma-

chine on which the process is implemented. This relation is depicted
in figure 10. For example, if we were to adopt this approach to
analyse the semantics of FKRL impressions we might do so by pre-
senting the Lisp code that has been developed to serve as the im-
plementation of FKRL impressions.

From a theoretical point of view this approach is hardly satis-
fying, since it just causes the problem to recur at a lower level—
raising questions about how to describe the implementing ma-
chine. In practice, however, it is widely accepted because it is of-
ten possible either (i) to refer either to a familiar underlying ma-
chine,27 or (ii) to model the input/output behaviour of the result-

circumstances. These facts have led some writers, such as Stich (1985) to
conclude that folk psychology will never be scientifically reconstructable,
but in my view this seems to be an unwarranted pessimism; the problem,
rather, is to see how folk psychology compensates for the external circum-
stantial dependence.

27As usual, and as the example about Lisp code suggests, practice is in fact
one level more complex than this analysis suggests. One gives the opera-

Figure 10: The Implementation Relation

460 Indiscrete Affairs · I

ing machine in terms of ordinary mathematical functions. The re-
lation between traditional denotational and operational semantics
of programming languages, therefore, is primarily one of abstrac-
tion: by using coarse-grained functions as classificatory devices,
the so-called “denotational” account gets at less detail than does
the operational account. But the fact that they are theoretically
distinct ways of getting at the same phenomenon is betrayed by
the fact that it is standard practice to prove the two types of account
equivalent. In particular, they are two different theoretical ap-
proaches to analysing the nature of the computational process itself;
neither takes up the question to which we have been addressed:
not of analysing the computational process qua process, as it
were, but of analysing that process’s semantic import!28

For our purposes, the importance of this third approach lies in
its introduction of implementation as yet another intentional rela-
tion for semantical analysis to contend with. As with representation

tional semantics of a programming language L, viewed specificationally, by
translating expressions types of L into complex expressions types of pro-
grams, written in an implementing language L' that implements L. The
language-process relation for L' is what is usually assumed.

28There was some misunderstanding, when 3-Lisp was introduced (Smith
(1982, 1984)) about the two semantical factors in terms of which it was
analysed and designed (‘f’ and ‘c’>, they were called, but they corresponded
directly to first and second factors in the framework being presented
here). Unfamiliar with the two-factor framework, many computer scien-
tists assumed they were merely new names for operational and denota-
tional accounts, respectively. This was false, but in retrospect the confu-
sion can be attributed to three things: (i) the fact that 3-Lisp was designed
on an “ingredient” view of programs, whereas, as described in the text,
programming language analysis is typically carried on within the specifica-
tional tradition; (ii) 3-Lisp’s represented “world” was constrained to being
one of pure mathematical abstractions and internal structures (since it was
presented as a computational model of introspection), so that the domain
that 3-Lisp impressions represented was the same one that would nor-
mally be used for both operational and denotational semantics—i.e., the
domain of impressions and of the obvious mathematical models of them;
and (iii) because of this restricted domain, the interpretations of 3-Lisp
impressions were not dependent on external circumstances, so that the
clear difference between model and interpretation, noted at the end of sec-
tion 5, did not apply.

These three reasons conspired together; it has only been in the last few
years that the various intricacies of their relationship have been clarified.

 10 · Correspondence Continuum

 461

and belief, implementation is a directed, asymmetric, intentional
notion: to say of X that it is an implementation is to imply the ex-
istence of a Y such that X is an implementation of Y. Further-
more, the implementation boundary is opaque to other semanti-
cal relations—i.e., it cannot be viewed as invisible modelling, or
easily composed. For example, if we implement FKRL impressions
in Prolog, and if the representational import of Prolog impres-
sions can truthfully be given as standard first order model-
theoretic semantics,29 then it would not follow that the represen-
tational import of FKRL was the representational import of
Prolog. At best the interpretation of Prolog impressions—the
elements of Prolog’s semantic domain—would be FKRL impres-
sions themselves.

It is almost time to summarise the various distinctions we have
made, and assemble a coherent overall picture. Before doing that,
however, we must tie up two loose ends.

First, in the previous section we distinguished the representa-
tional content of impressions from the entities that theorists use
to classify them indirectly, identifying a modelling relation be-
tween the two. But we have not yet taken this observation to its
obvious conclusion: modelling, like representation, specification,
knowledge, implementation, etc., is itself a semantic, intentional,
notion. Like many other things we have seen, a model is not a

29I doubt this, for reasons that can easily be explained using terminology
we have already introduced. As classically understood, standard first order
logic is both declarative and syntactic, in the sense of section 2. Real-life
Prolog programs, however, violate the assumed independence of factors:
their role affects their import. Lacking techniques for spelling this out (ie.,
techniques for providing explicit two-factor analyses), most computer sci-
entists who give semantics for Prolog programs in fact provide model-
theoretic analyses of functional role, using term models and such, in the
sense explained in section 5. Logicians, expecting analyses of representa-
tional import, quite reasonably find these reconstructions odd. Further-
more, to the extent that it is functional role, not representational import,
that is retained, Prolog’s claim to clear semantics is thereby undermined.

Note that a model-theoretic analysis of functional role (first factor), on
the ingredient view of programs, is liable at least partially to coincide with
a mathematical model of representational content (second factor) of the
programs used (on the specificational model) to describe them. The sub-
ject matter is rife with such potential semantical confusions.

462 Indiscrete Affairs · I

model all on its own; models are models of something. A balsa
airplane, for example, might be a model of a real airplane no
longer around, or of one being designed. Similarly, the sets of
quadruples we have talked of are models of a Turing machine; the
numbers 0 and 1 are often used as models of Truth and Falsity.
Thus we need, ideally, to give a semantical analysis of the model-
ling relation, if techniques of modelling or indirect classification
are ever used. I.e., in the terms of figure 9, we need semantic
analyses of the C1 ⇒ I (or C2 ⇒ I) and Mw ⇒ W relations, as
well as of E ⇒ I and I ⇒ W.

Second, all the computational processes we have looked at so
far are limited in the following obvious way: we have imagined

them acting in the world
(driving around, computing
factorial), but we have not
provided them with any
communicative abilities.
They cannot talk. In order
to be realistic, therefore, we
should complicate our pic-
tures yet one more time, as
indicated in figure 11. In
order to contain the com-
plexity, I have omitted all
models and indirect classi-
fication from the diagram,
showing only the genuine
intentional relations that
actually obtain in a given
case. I will use the general

term notation for the relation between expressions and impres-
sions that they give rise to or express, and the more specific in-
ternalisation and externalisation to get at each direction of in-
formation flow. The analog, in the human case, is the relation be-
tween the sentences we speak and hear, and the impressions in
our minds (mentalese or whatever) to which they correspond. To
the extent that impressions are viewed linguistically, internalisa-
tion might be analysed as a species of translation, but it is impor-
tant not to bias terminology in advance.

Figure 11: Programs that specify communicating agents

 10 · Correspondence Continuum

 463

Issues of notation tie back to an issue we left unresolved above.
Very often, the languages computer systems “speak”—query lan-
guages for data bases, editing commands for word processors,
manipulation protocols for spread sheets—are visibly distinct
from the programming languages used to create them. Many AI
programming languages, however, such as Lisp, Smalltalk, Logo,
and recent versions of Prolog, are primarily interactive, suggesting
the third model of programming suggested in figure 6 (c), above.
Furthermore, the increasing incidence of “user-friendly” comput-
ers suggests that this interactive model of computer language will
only spread In addition, since it is the correct model for natural
language, people will be biased towards an interactive stance to
the extent that people understand computer languages by analogy
to their native linguistic skills. Thus we have a genuinely triple
ambiguity in the term ‘program,’ which only raises the chances of
semantic confusion. Ironically, confusion between the specifica-
tional and interactive models of programming, coupled with the
fact that the program⇒process relation is mediated by what is
called an interpreter, has lead many computationalists to think of
internalisation as the fundamental semantic relation—thereby
embracing exactly the view that Lewis deridingly calls “markerese
semantics.”30 On the other hand, AI practice suggests what Lewis’s
analysis does not: that internalisation is a substantial intentional
relation in its own right. If nothing else, more adequate vocabu-
lary might facilitate better interdisciplinary communication.

We are ready, then, to summarise four major themes in the inves-
tigation so far.

1. We distinguished functional role and representational im-
port, and set ourselves the long-range goal of an integrated
account of full significance, consisting of partially inde-
pendent but coordinated accounts of each semantical fac-
tor.

2. We claimed that since we do not yet have adequate vo-
cabulary for talking directly about impressions, we typi-
cally avail ourselves of any one of three alternative ap-

30Lewis (1972).

464 Indiscrete Affairs · I

proaches:
a. Using metaphorical terminology, such as the language of

linguistic expressions;
b. Using indirect classification, typically in terms of abstract

mathematical structures; and
c. Abstracting over implementations, which makes the prob-

lem recur.

Differences among these alternatives, and differences in
the fields in which they are popular, have obscured our
ability to agree on underlying impression structure itself.

3. Setting aside considerations of functional role, we identi-
fied the following important relations, each at least a can-
didate for its own semantic analysis:
a. The specification relation, between a program and the

process or impressions it engenders;
b. Internalisation and externalisation relations,xx between

expressions used by a system to communicate with its
users, and the impressions they give rise to or express;

c. The implementation relation, between impressions at
one level of description, and other lower-level impres-
sions in terms of which they are implemented; and

d. The primary representation relation, between impres-
sions (process) and the states of affairs in the world
with which the agent is concerned.

All four of these can be called genuine, in the sense that
they are all a necessary part of the life of the representa-
tional agent in question—they have not been posited solely
for purposes of theoretical analysis. Other relations be-
tween the same structures could be added, of which the
most important is probably the relation between commu-
nicative expressions (language) and the world—the sub-
ject, in the human case, of natural language semantics. I

×«Check: I think I am confusing about the words ‘notation,’ ‘externalisa-
tion,’ ‘internalisation,’ etc. — including in the diagrams. Make it all consis-
tent.»

 10 · Correspondence Continuum

 465

will adopt these four relations, however, as primary, be-
cause they are all candidates for full two-factor accounts.
Put another way, they are all of a causal nature, in a way
that the direct relation between language and the world is
not. Note also that impressions participate in all four rela-
tions (which puts extra pressure on our ability to describe
them in their own right), being the semantic domain in the
first three, the so-called “syntactic” domain only in the last.

4. In addition to identifying these genuine semantical rela-
tions, we uncovered numerous relations of modelling or in-
direct classification, cross-cutting all of the above three. To
distinguish them from the genuine relations, I will call
them theoretic, since they are introduced for the purposes
of us, qua theorists, rather than for the agent itself. None-
theless, if we as theorists employ them, they too must be
semantically understood. If we were to use model-
theoretic techniques to understand the four genuine rela-
tions listed above, we would bring to eight the total num-
ber of interacting correspondence relations. The complex-
ity can get a little daunting. It is no wonder that it is some-
times hard to tell, when presented with a “semantic analy-
sis,” just what it means.

All these results contribute to the general series of challenges I am
mounting against straightforward model-theoretic semantics.

1. The first specific challenge was implicit in our two-factor
analysis itself, and its concomitant rejection of the inde-
pendence of functional role and representational content.

2. The second arose when we removed the constriction that
impressions be syntactic or linguistic in nature, and em-
braced instead a much wider range of representational pos-
sibilities.

3. The third challenge stems from the multitude of genuine
intentional relations just cited—specification, internalisa-
tion, implementation, representation, etc.—more than one of
which will require its own two-factor analysis.

4. The fourth derives from the fact that standard theoretical
techniques of indirect classification and modelling intro-

466 Indiscrete Affairs · I

duce, at the level of theory, a whole spectrum of additional
correspondence relations, at least distractingly similar to
semantic relations, if not semantic relations in their own
right. If we do not understand them they will pollute our
attempts to clarify the semantic relations we are primarily
interested in.

Nor are we done raising challenges. In the next section I will turn
to a fifth, coming to a sixth at the end of the paper.

 7 The Correspondence Continuum
I said in section 3 that the model-theoretic tradition characteristi-
cally assumes a non-transitive denotation relation, motivated by
clear linguistic cases: an English description of a French descrip-
tion of dessert, for example—such as “the four words neige, la, a,
and oeuf, in reverse order”—is a description of language, not a de-
scription of something to eat. At the same time, we saw tradi-
tional analyses freely compose modelling relations, as for example
when a number encoding a description of a Turing machine is
identified with the Turing machine in question. This free compo-
sition goes hand in hand with modeling’s traditional invisibility.

Unfortunately, however, these two cases—non-transitive de-
notation, and transitive modelling—do not cover the whole spec-
trum of semantic relations. In the general case, intentional rela-
tions combine in much more complex ways. We will look at three
examples.

First, suppose I remark on a photograph you have taken of one
of my favourite sailing ships, and you then present me with a copy
made by photographing the original. It would be pedantic for me
to maintain, on grounds of use/mention hygiene, that the copy is
not a photo of the ship, but rather a photo of a photo of a ship.
For most purposes, the relation between the copy and the original
print is sufficiently close that I can harmlessly compose the two
correspondence relations (copy-original and original-ship), yield-
ing a result (copy-ship) essentially identical to the second. But not
for all purposes: if, on close inspection, I claim that there is a tear
in the ship’s sails, you might appropriately reply that no, the tear,
rather, is in the original photograph that the copy was made
from. Or I might be interested in the quality of your photo-

 10 · Correspondence Continuum

 467

graphic technique, and use the copy as a representation of your
original work. The appropriateness of the ability to compose, or
to “look through” a copy to what is represented, can depend on
the purpose to which a semantic relation is put.

Second, imagine connecting an FKRL system to a visual recogni-
tion system, consisting of a TV
camera, special-purpose line-
finding hardware, a figure-
recognition module, etc. In
such a case one might be
tempted to say that the con-
figuration of pulses on the
cameras represented in the
intensity of incoming light,
and that the resulting FKRL
impression represented the
object under view. Yet al-
though the former objects play
a causal role in supporting the
latter, it is not clear how the
two representation relations fit
together—the second seems to
“leap completely over” the first.
In spite of systematic corre-

spondences among the constituent structures, the representation
relations seem curiously independent. It is as if the structural cor-
respondences compose, but the representation relations do not.xx

Third, in designing 3-Lisp, I distinguished impressions called
numerals from canonical impressions denoting them (identified as
a species of handles), in spite of the fact that the denotation rela-
tion was an exact isomorphism. I did so because, trained in avoid-
ing use/mention confusions, and viewing impressions as analo-
gous to language, I thought representation relations could not
compose. Various colleagues suggested that this strictness bor-
dered on pedantry, and recommended that I simply identify the
two impressions. Others even suggested that I identify both of
them with the number designated, since as far as they could see

xx«That paragraph may need substantial help … »

Figure 12: 3-Lisp’s plethora of representation relations

468 Indiscrete Affairs · I

the impression-number relation was also one of isomorphism.31
But my allegiance to semantic strictness was strong: as shown in
figure 12, I refused to say that the two-character expression writ-
ten ‘23’ (without the quote marks) represented the number
twenty-three; rather, when speaking carefully, I said that it no-
tated an impression that designated that number. Similarly, I was
forced to say that the three-character expression ‘ '23 ‘ (i.e., a sin-
gle quote mark prefacing the two-digit numeral) notated a handle
impression that designated a numeral impression that designated
a number. By the same token, the five-character expression
‘ “'23” ’ notated a handle that designated an expression that no-
tated the numeral impression that designated the number. And

so on.
While 3-Lisp was cer-

tainly semantically clean, in
retrospect some of its rigid-
ity seems gratuitous, even if
I remain opposed to any
identification of strings with
impressions, or of impres-
sions with numbers. It is
overwhelmingly convenient
to be able to point to a fig-
ure on a computer screen
and say, simply, that it
represents a number. More
seriously, it is not obvious
that one might not even be
correct in doing so. And yet
at the same time there are
occasions when it is crucial
to distinguish among ex-
pressions, impressions, and
numbers.

All of these examples il-
lustrate my fifth challenge to traditional model theory: neither

31In point of fact only one factor of the full significance was an isomor-
phism.

Figure 13: Semantic Soup: The Correspondence Continuum

 10 · Correspondence Continuum

 469

strict non-transitivity, nor indiscriminate identification, is always ap-
propriate.x In each cited case, as so often happens, theoretical
technique is not up to the demands of practice. The true situation
is more accurately pictured in figure 13. The idea is this: a given
intentional structure—language, process, impression, model—is
set in correspondence with one or more other structures, each of
which is in turn set in correspondence with still others, at some
point reaching (we hope) the states of affairs in the world that the
original structures were genuinely about.

It is this structure that I call the correspondence contin-
uum—a “semantic soup” in which to locate transitive and non-
transitive linguistic relations, relations of modelling and encoding,
implementation and realisation, the rest. Several points are im-
portant.

First, I will not presume, in the general case, anything about
composition, relative structure, circumstantial dependence, or any
other traditional issue: such questions will have to be answered
individually, based on particular facts about specific cases. Some-
times, and for some purposes, these representation relations will
happily compose; other times not. Sometimes some properties
(such as ambiguity!) will be preserved even across a whole string
of such correspondence relations, even though other properties
(such as one-to-one correspondence of objects) are lost. In the
next section I will begin to sketch out an analysis of correspon-
dence relations that will show how this might go.

Second, one should not think of this as necessarily a single di-
mension; the diagram is meant to be able to accommodate the
multiple dimensions of representation (notation, representation,
specification, etc.). As we have just seen in 3-Lisp’s case, and as
we saw so often in the last section, part of the task, in analysing
the semantics of computational processes, is to tie together differ-
ent correspondence relations that are neither totally independent,
nor arranged in a simple linear order.

The general picture given in figure 13 is intended as a replace-

x«Say, somewhere—perhaps here, or anyway point to it here, even if the
main point is made elsewhere—that these are the sorts of thought that
have led to the design of the fan calculus.»

470 Indiscrete Affairs · I

ment for the simplistic diagram of figure 2, even for the most ba-
sic intentional relations. In the remainder of the paper I will try to
address a few of the numerous questions it raises.

Here is one, for starters. Which, if any, of these correspon-
dence relations should be counted as genuinely semantic, inten-
tional, representational? Surely not all. For example, to take an-
other visual example, at the very moment I write this there is a se-
ries of correspondences of some sort between activity in my visual
cortex, the signal on my optic nerve, the pattern of intensity on
my retina, the structure of the light waves entering my eye, the
surface shape on which the sunlight falls, and the cat sitting near
me on the window-seat. And yet it is the cat that I see, not any of
these intermediary structures. A causal analysis of perception,
that is, would require a cascade of correspondences, but in this
case only the full composition, but not any of the ingredients, would
count as a genuine representation (though it does not follow that
these intervening structures are thereby any less important).
Similarly, even if I indirectly classify impressions with functions
from possible worlds to states of affairs, and then map those
mathematical structures onto genuine situations in the world, the
agent itself will attend only to the situations in question, entirely
unaffected my abstract classifying structures.

Both of these cases, and many of the phenomena cited in the
previous section, suggest that the number of important corre-
spondence relations greatly outstrips the number that are of a
genuinely semantic or intentional nature. Such arguments lead to
a simple and obvious conclusion: critical correspondence of non-
identicals is a far more general phenomenon than representation or
interpretation.32 First, it permeates theory, in terms of indirect
classification and modelling. Second, it permeates practice, as
manifested in such notions as implementation, encoding, realisa-
tion, presentation, specification, internalisation, and externalisa-
tion, as well in as our initial concerns of representation and
knowledge. Third, although not all these correspondence rela-
tions should be counted as fully intentional, there is no chance

32This implies, of course, that there must be much more to representation
than correspondence. Hence footnote 1 «check»; correspondence on its
own requires neither disconnection nor registration.

 10 · Correspondence Continuum

 471

that we will understand semantics unless we are first clear on how
they all fit together. So my recommendation is that we peel corre-
spondence away from more difficult semantic issues, and make it
a subject matter in its own right.33

Let us look, then, at what a theory of correspondence might be
like, before returning to semantics and to knowledge representa-
tion.

 8 A Sketch of a Theory of Correspondence
In broad outline, I will adopt a
quite simple approach to the
structure of correspondence.
First, I will identify two do-
mains, presumed to consist of a
pre-determined collection of
situations, objects, properties,
and relations. Call them domain
and co-domain (though this is

not category theory), and say that an element of the domain cor-

33Strictly speaking I do not believe this, for two reasons. First, my meta-
physical predilection is to attribute the notions of object, property, and
relation to a collaborative interaction between mind and world, so that the
world alone need not be held responsible for objects’ boundaries and kinds
(naive realism), nor need they be viewed as pure constructs of cognition
(variants of solipsism or idealism). Second, I am at least prepared seriously
to entertain the hypothesis that minds, fundamentally, are embodied rep-
resentational processes. In conjunction these two views raise the following
“chicken and egg” problem: if minds are required in order to know how
the world is structured, and if minds are representational, then representa-
tion must seemingly be studied before correspondence, in order to estab-
lish the categories in terms of which the correspondences will be articu-
lated. On the other hand, for reasons spelled out in the text, I think the
chances of getting representation right without a prior theory of corre-
spondence are rather limited.

These considerations interact with another distinction. Which person
is being held responsible for the categorisation of the domains in question:
the agent under study, or the theorist? I assess the interaction among
these issues in Smith [[forthcoming (b)]]; the net result is simply the rather
predictable conclusion that the two notions (correspondence and repre-
sentation) must be viewed as something of an indissoluble pair. This con-
clusion, however, does not in any way challenge the view being expressed
here: that they are not the same.

Figure 14: The General Structure of Correspondence

472 Indiscrete Affairs · I

responds to an element of the co-domain. Furthermore, without
introducing any assumption of symmetry, I will speak most gen-
erally of correspondence relations, rather than functions, and
make room for circumstantial parameterization in the usual way.
The situation is pictured in figure 14. (The resemblance to figures
2 and 3 is obvious; we can now see those figures were right for
correspondence, but wrong—because too simple—for the com-
plex general story about semantics).

Given these two domains, specific correspondence relations are
defined between states of affairs in each domain—not between
the domains themselves, nor between objects, properties, or situa-
tions on their own, but between things being a certain way in one
domain, and things being a certain way in the other. Thus, the
light’s being red corresponds (or so we hope) to cars’ stopping.
Similarly, we might say that the sequential concatenation of the
numeral ‘2’, the sign ‘+’, and the numeral ‘3’ corresponds to the
addition function’s being applied to the numbers two and three,
which in turn corresponds to the number five.34 Even in cases
where there is a simple correspondence of objects, as when the
numeral ‘3’ stands for the number three, it is really the object’s be-
ing that and not some other numeral that corresponds to the num-
ber’s being that and not some other number. The numeral may have
all sorts of other properties—such as consisting of one curved and
one straight line—which do not correspond to anything in the
co-domain at all.

There are several reasons to require an explicit specification of
domains, and to lay responsibility for the correspondence relation
on states of affairs (rather than on objects per se). In general, ob-
jects exemplify infinitely many properties, and participate in infi-
nitely many relations—in this sense the world is overwhelmingly
rich. Even questions of object identity do not escape this richness,
as precise attempts to define numerals quickly reveal (does the
expression “124+124” contain one, two, three, or six numerals?).
It is therefore necessary, in characterising a particular correspon-
dence relation, to identify in advance the particular set of objects,

34Note that this phrasing suggests iterated correspondence: expressions to
function applications, and from there to values. The connection between
iterated correspondence and so-called “intensional” analyses of functions
and relations is discussed at the end of this section.

 10 · Correspondence Continuum

 473

properties, and relations in each domain that are constitutive of
the significant states of affairs—what I will call a prior registra-
tion35 of the domains—and then to identify, with reference to
that registration, how states of affairs in the domain correspond
to states of affairs in the co-domain. This is partly because states
of affairs, at least as I am using the notion,36 are individuated by
the relations and properties they instantiate (a number’s being the
sum of two plus two, and the same number’s being the positive
square root of sixteen, are different states of affairs, on this view).
But it also seems true to common sense, as the red light example
suggests.37

(As well as adopting these two theoretical assumptions, there
is another which I will explicitly set aside. Many writers, includ-
ing theorists as far back as Peirce, have expressed the deep intui-
tion that representation is a three-place, not a two-place, relation,
involving not only representation and represented, but also inter-
preter, observer, or, in Peirce’s case, interpretant. Thus a text, and
probably even a simple map, is taken not to be a representation
on its own, but to represent only for some other agent or purpose
(or both). I sympathise in the representational case, but we are
talking here about a simpler notion of correspondence, where the
question is much less clear. For example, one could view a binary
correspondence relation between X and Y as a relation that an in-
terpreter posits or reacts to, in taking X to represent Y. Thus
your map may not represent New York unless you or some other
person takes it to do so, but that act of taking it to represent New
York involves attributing or establishing a binary correspondence
relation of a certain type—of a type, furthermore, that might be
characterised in terms of the theory I am proposing. In addition,
given my general recognition of the importance of circumstantial

35«Point towards O3 and registration; is this the first place I use the
term?»

36My intention is to employ the term in a way compatible with its technical
use in Situation Theory [Barwise, 1986a], although nothing in the text
requires that particular analysis.

37The theoretical stance of taking registration as prior to correspondence,
and correspondence as at least partially independent from representation,
is not one I am ultimately satisfied with; see footnote 18 «check», and
Smith [[forthcoming (b)]]. It seems well motivated, though, at least as a
way of getting to the next stage in semantical clarity.

474 Indiscrete Affairs · I

dependence, it is not obvious that the role of interpreter has been
excluded. But however this goes—and even if one were to argue
convincingly that even correspondence should be analysed as tri-
partite—my present purpose is to define a project, not to report
on its conclusion. Such questions should ultimately be answered
by theory, not prejudged. And I would hazard that the distinc-
tions to be made, here, in terms of correspondence treated as bi-
nary would carry over, though perhaps be thereby complicated, in
a three-element version.)38

I will call the relevant states of affairs in the domain and co-
domain the source and target, respectively. So the source ex-
pression “72°10’ E, 44°20’ N” might correspond to a bucolic target in
northeast Vermont. In general, correspondence relations will be
defined in terms of source and target types, in such a way that in-
stances of the source type would correspond to instances of the
target type in some determinate fashion. For example, the map-
ping from sets of quadruples to Turing machines would be estab-
lished so that a particular quadruple’s having certain elements
would correspond to the controller of the corresponding Turing
machine’s satisfying a particular transition function (though what
Turing machine that transition function was a transition function
of might be assumed, for the whole set of quadruples, and thus
not explicated “corresponded to” by anything). This approach
makes sense of the intuition about modelling suggested in section
5: that what is specific (or particular) about one state of affairs—
the source—determines what is specific (or particular) about an-
other—the target.

In setting out an initial analysis of this sort,39 I call a particular
correspondence relation iconic if each object, property, and rela-
tion in the source corresponds, respectively, to some object, prop-
erty, and relation in the target. I.e., the abstract type (object,

38In cases where a third agent—an interpreter—is present, a possible solu-
tion is presented to the problems raised in footnotes 18 «check» and 21
«check»: the agent can’ register both representation and represented. But
there are two problems with this. First, of course, we have to ask how
agents register, which brings the problem back to roost. Second, it is a
strong and possibly false claim that interpreters register signs and language
they use (as opposed to mention).

39«See Smith (forthcoming(c))—check!»

 10 · Correspondence Continuum

 475

property, or relation) of the source is the same as the abstract
type of its target. A particularly important case of iconicity occurs
when a source object, property, or relation corresponds to itself in
the target: I will say in such a case that the target structure is ab-
sorbed in the source. For example, left-to-right adjacency is ab-
sorbed in the grammar rule “EXP ⇒ OP(EXP,EXP)” for a simple term
language for arithmetic. Similarly, to suppose that the necessity of
set membership, in a model-theoretic analysis of modality, mod-
els necessity in the world is to assume, counter-factually, that ne-
cessity is absorbed. In contrast, a target property or relation is
said to be reified if it is corresponded to by an object in the
source (reification is not defined on objects). Thus for example
the syntax of predicate calculus reifies properties, because it rep-
resents them with (instances of) predicate letters, which at least
in standard syntactical analyses are registered as objects.

A correspondence relation is called polar when an existentially
positive source (something’s being the case) corresponds to an ex-
istentially negative target (something’s not being the case), or vice
versa. Hotel lobbies provide an example, where a key’s being pre-
sent in the mail slot at the registration desk indicates the fact that
the client is gone. A relation is called typological if it can be de-
fined without reference to distinguished individual objects in the
domain or co-domain. Thus the standard Cartesian relation of
ordered pairs of real numbers to points on a plane fails to be ty-
pological on four counts: origin, orientation of x-axis, unit length,
and something to distinguish left and right orientation, such as a
distinguished normal to the plane. Finally, when either or both
domains are analysed mereologically—in terms of notions of part
and whole—either or both ends of the correspondence can be de-
fined compositionally, in the sense that what corresponds to (or
is corresponded to by) a whole is systematically constituted out of
what corresponds to (or, again, is corresponded to by) its parts. If
the part/whole relation is itself absorbed, a very strong version of
compositional correspondence obtains, where parts of a source
correspond to parts of that source’s target.

Many other such relations can be defined, ranging from this
simple sort up through more complex cases having to do with
sentences, quantification, use, circumstantial dependence, etc.
The intent here is not solely to develop a theoretical typology

476 Indiscrete Affairs · I

(though that is often useful, especially early in theoretical devel-
opment), but eventually to identify an algebraic basis of corre-
spondence in terms of which to analyse arbitrary relations. Given
such an algebra, for example, and an analysis of two relations C1
and C2 in terms of the orthogonal set of basic features, it should
be possible to predict the exact structure of the composed relation
C1 º C2• Thus we would expect the composition of two iconic re-
lations to be iconic, iconic relations to be both left and right iden-
tities (with respect to this algebra), and so on and so forth. Note,
however, that the appropriateness conditions for composition are
very strong: C1 º C2 makes sense only if the targets of C1 are of
exactly the same type as the sources of C2. Traditional isomor-
phism will not do, since isomorphism is just another correspon-
dence relation C3; the combination would have to be analysed as
C1 º C3 º C2•

As the isomorphism example suggests, a correspondence the-
ory of this sort would provide theorists (I primarily have semanti-
cists and computer scientists in mind, but of course the account
would be general) with an extraordinarily fine-grained pair of
glasses with which to analyse arbitrary structured relationship be-
tween domains. Every conceivable coding, representation, model-
ling, implementation, and isomorphism relation would be made
blatantly visible. Whereas category theory can be viewed as highly
abstract, in other words, correspondence theory would be exactly
the opposite: unremittingly concrete.x This does not mean that ab-
stract objects could not be studied within such a framework, of
course; only that no further abstraction by the theory would be
permitted unless explicitly accounted for (beyond that provided
by the initial registration of the domains). Thus, whereas a
model-theoretic analysis of the interpretation of the English word
‘cat’ might map it onto a mathematical set, a correspondence-
theory based semantic account could not do so (or if it did, it
would be wrong). There is no problem in providing a correspon-
dence-theoretic analysis of the relation between the word ‘cat’ and
the set-theoretic structure used by model theory to classify it, but
that, as the correspondence theory would make explicit, is quite a

x«Say more about this divergence with category theory—and also point
towards the criterion of concreteness in O3.»

 10 · Correspondence Continuum

 477

different thing.
It is a consequence of this fine granularity that many standard

mathematical techniques, such as that of identifying structures
“up to isomorphism,” would be inapplicable. But this result is to
be expected: since the whole point is to avoid gratuitous model-
ling, and to explain arbitrarily fine-grained distinctions, the the-
ory cannot indulge in any loss of detail.

As well as focusing on the detailed structure of specific corre-
spondences between states of affairs, an adequate theory would
have to address general questions about particular relations, such
as whether every source in the domain corresponds to exactly one
target, whether every target has a source corresponding to it, etc.
It would be natural, that is, to define correspondence versions of
such standard notions of totality, completeness, and ambiguity.
But this starts to feel a little odd, because of its familiarity. Are we
just reinventing traditional mathematical accounts of functions
and relations? How do our categories of correspondence relate to
such standard notions as isomorphism, homomorphism, injec-
tion?

The answer appears to be the following. It has often been
pointed out that standard so-called extensional analyses of func-
tions and relations, in terms of piece-wise pairings, ignore the
structure of the connection between the domain and co-domain,
even though that structure is often important in practice—such
as when the function is to be computed, or the relation recognised,
or when the connection is causal, defined in terms of the constitu-
ent properties. Extensional mathematical analyses abstract away
from such concerns; when we describe functions in natural or
formal languages, however, or embody them in machines, we
typically betray a great deal of additional information. Thus the
standard term designating the factorial function

if n =0 then 1 else n–factorial(n–l)

implicitly suggests a way of computing factorial, even though that
information is lost in the standard extensional analysis, which
would merely map the foregoing expression onto the infinite set
of ordered pairs {<0,1>, <1,1>, <2,2>, <3,6>, …}.

In the general case the information conveyed by a functional
description can be sorted into three kinds, as suggested in figure

478 Indiscrete Affairs · I

15: information about (i) the structure of the domain, (ii) the
structure of the co-domain, and (iii) the structure of the relation
between the two (the first two clearly merge when, as is often the
case for simple functions, the domain and co-domain are the
same).

Recognising the importance of this other information, various
people have attempted to develop what are called intensional
analyses of functions, relations, etc. The idea, or so it is claimed,
is to make this extra information explicit. But from our point of
view there is something curious about the way in which this is
traditionally done. Because these efforts have arisen in the context
of computation, recursive function theory, and a general concern

with procedures, the ap-
proach is in fact not one of
making these three kinds of
information explicit, but
rather of making explicit the
structure of an algorithm for
computing the function (or
relation). Thus Moschovakis
(1984) has proposed treating

an algorithm as a first class mathematical entity in its own right,
and a variety of writers have at least argued for dealing directly
with procedures, such as those recommending procedural treat-
ments of semantics.40

There is nothing wrong with explicating the notion of an algo-
rithm, of course. But there is no reason to suppose that, even if
successful, this project will make explicit the three kinds of in-
formation cited above. For example, no matter how explicit I am
in giving you directions for driving across Boston, the structure of
the city will at best be borne implicitly in the resulting descrip-
tions of routes. Imagine trying to reconstruct a Boston city map
by sorting through every route traveled by a long-time cab driver,
gradually culling information about the town from such se-
quences as “Drive two blocks up Trapelo Rd, turn right on
Grove,” or heroic attempts explain how to get from Jamaica Plain
to Logan airport without using a tunnel. Making the algorithm

40E.g., see Woods (1981).

Figure 15: The three structures of correspondence

 10 · Correspondence Continuum

 479

specific will not even make explicit the structure of the relation it
computes, let alone the structure of the related domains.

In contrast, a correspondence theory can be viewed as almost a
dual project: it would provide an informationally rich account of
the structure of the relation between structured domains, though
it would remain silent (unless that project were explicitly taken
up) on any question of computing this relation. It would get at the
three relevant structures (of domain, co-domain, and correspon-
dence) directly, rather than taking them to be indirectly mani-
fested by specific ways of going from a given domain element to
its corresponding co-domain element.

As for which project has a better claim on being an “inten-
sional” analysis of functions and relations, I cannot say—nor, pre-
sumably, does it matter. For one thing, the very theory of corre-
spondence I am proposing will among other things obviate the
worth of such terms as “intensional” and “extensional.” More im-
portant is to recognise the essential difference, and compatibility,

between the two ac-
counts. As suggested in
figure 16, the distinction
between fine-grained (“in-
tensional”) and coarse-
grained (“extensional”, or
piece-wise) analyses is
orthogonal to the ques-
tion of effectiveness or
computation. We can
thus classify the standard

set-theoretic model of functions and relations as coarse-grained
and non-effective, recursive theory as coarse-grained but effective,
and the theory of algorithms as fine-grained and effective. A theory
of correspondence then occupies its rightful place as the fourth
possibility: a fine-grained but non-effective theory of relationship.

The location of a correspondence theory in this diagram is well
suited to the semantic purposes for which we have needed it. One
of the most fundamental facts about most genuine semantic rela-
tions, such as reference, is that they are not computed, in any co-
herent sense of that word. When I say “Bach died in 1750,” and
thereby refer to a long-dead composer, nothing happens in order

Figure 16: Analyses of Relationship

480 Indiscrete Affairs · I

to make the reference work; it just is. It is thus entirely to be ex-
pected that semantical examples should push us towards a fine-
grained but non-computational analysis of structured correspon-
dence.

 9 Semantics Revisited
The availability of a correspondence theory would change seman-
tical analysis in at least these ways:

1. As promised, the following traditional notions would be
replaced: (i) a strict hierarchy of (meta-)languages, (ii) in-
visible but promiscuous modelling, and (iii)) the notion of
an absolute use/mention distinction.

2. It would provide the theorist with sufficient equipment to
analyse such otherwise unanalysed notions as encoding, and
to discern and thereby avoid problems of gratuitous arti-
facts.x

3. It should provide, for the first time, adequate vocabulary in
terms of which to analyse and assess such non-linguistic
representational structures as images and analogue repre-
sentations.

4. It would enables us to explain some lurking problems and
unexplained worries that have plagued traditional ap-
proaches.

I will look at each of these briefly.
First, dismantling an absolute use/mention distinction does

not mean licensing automatic composition of all correspondence
relations. On the contrary, the intent of the algebraic basis of cor-
respondence sketched in section 8 is to enable us to see what sorts
of properties will propagate through iterated correspondences,
and which ones will not. The popular closed-world assumption in
AI, for example, is in essence an assumption that object identity is
absorbed; in any given application it should be straightforward to
verify whether this property is preserved across one or more cor-
respondence relations in question. Similarly, the assumption that

x«I should include an example of what I mean by ‘gratuitous artefacts’—
presumably non-significant properties of models?»

 10 · Correspondence Continuum

 481

words have referents could be justified, even by someone commit-
ted to the logical priority of mental impressions, just in case the
internalisation and representation relations could be unproblem-
atically combined. Even in written natural language, use vs. men-
tion apparently shades off into matters of degree; thus we have (in
something like increasing “semantic withdrawal”):41,42,xx

1. Margaritaville is lively;
2. Margaritaville is so-called for dubious reasons;
3. They call it Margaritaville;
4. When I asked where they lived, they said “Margaritaville”;
5. “Margaritaville” is a fictional name
6. I am sorry to have to be the one to tell you, but “Marga-

rita-
 ville” is hyphenated;

7. “ ” is smudged.

Particular analyses of use and mention would depend on the se-
mantic relations employed; once again letting go of the strict
theoretic distinction paves the way for accommodating a wealth
of familiar facts.

As well as undermining use/mention distinctions, the corre-
spondence continuum challenges the clear difference between
“syntactic” and “semantic” analyses of representational formal-
isms—an especially important consequence given the allegiance
commanded by this historically entrenched distinction. On the
face of it, it might seem that we are simply removing an important
method of discriminating accounts, which would be a negative re-

41Acceptance of the last two seems to vary, among people I have informally
surveyed.

42Introspection suggests that quotation marks are primarily, if not always,
used to refer to linguistic types. As a possible counter-example, Geoff
Nunberg has suggested: “ ‘Fiat lux’ started this whole mess’ “, but at best
that refers to an utterance of the Latin sentence different from the (en-
closed) one used to refer to it. There does seem to be merit to the view
that quoted expressions cannot be used to refer to their constituting in-
ternal tokens.

xx«Point out that the referent of ‘Margaritaville’ differs in all of these
cases—yet to come up with a semantic analysis that identifies, in advance,
all of the Δ∆s that the full range of quotation requires would lead to unten-
able pedantry …»

482 Indiscrete Affairs · I

sult. The claim, though, is that no simple “syntactic”/”semantic”
distinction gets at a natural joints in the underlying subject mat-
ter, no matter how profound the ultimate difference, as it were,
between map and territory.

For example, many writers have claimed to provide semantical
analyses using models set-theoretically constructed out of basic
syntactic elements such as sentences, ground terms, etc. (i.e., so-
called “term models”). A typical AI case is found in Moore and
Hendrix’s proposal for a semantical model for belief;43 similarly,
term models are often used in giving semantical analyses of logic-
based programming languages, such as in Goguen and Meseguer’s
EQLOG.44 Although stamped with the official “semantics” insignia,
they are often used as abstract models of (i.e., to classify) syntactic
or computational properties, such as inter-reducibility of terms in
a rewrite system (a-interconvertibility in the l-calculus, for exam-
ple), effective derivability, etc.

My point is not to indict this practice, nor to dispute its theo-
retical importance. Rather, the point is this: if one is committed
to a simple binary “syntactic”/”semantic” distinction, as on the
traditional view, then such proposals would have to be counted as
syntactic, and hence as false advertising—since for example the
semantical interpretation of a formula such as DEAF(BEETHOVEN)
would have only to do with syntax, nothing to do with the com-
poser himself. On the more complex view we are proposing,
needless to say, room is provided for such analyses as these.
Whether they are labeled ‘semantical’ becomes a substantial is-
sue—but the main point is that the theorist would need to make
plain exactly what kinds of relations are being analysed, what
kinds of facts or properties or states of affairs (e.g., in models) are
being used to classify what others; what relations in the overall
picture are computational, representational, whatever. The cru-
cial points are just two: (i) the space of possibilities is not con-
stricted in advance, by the nature of the theoretical framework;
and (ii) a substantial (and presumably intellectually hygienic)
premium would be put on stringent honesty about what is being
claimed to be what.

43Moore and Hendrix (1979).
44Goguen and Meseguer’s (1984).

 10 · Correspondence Continuum

 483

The second main consequence of the new approach arises from
its fine-grainedness, which thereby facilitates direct views onto
otherwise invisible relations. These last fall into two kinds: (i)
subject-matter relations that have heretofore evaded satisfactory
analysis, like encoding and implementation; and (ii) theoretic re-
lations like modelling, which have affected and sometimes dis-
tracted analysis. With respect to this fine-grainedness of ap-
proach, correspondence theory can be understood, in its relation
to traditional semantics and model theory, as analogous to the re-
lation between situation theory45 and traditional set theory. In
both cases, the classical system makes far fewer distinctions than
at least some analyses demand. Thus situation theory, like other
property theories, populates the world with properties, relations,
facts, states of affairs, and the like, thereby embracing a much
richer ontological foundation than the set theory we are used to.
My brief against traditional model-theoretic analyses of languages
and modelling is similar to Barwise and Perry’s against set theory:
it glosses much of the very detail we need to understand. Moreo-
ver, the enterprises of situation theory and correspondence theory
are related in much stronger ways than by analogy. Any candidate
correspondence theory will have to be based on a much richer on-
tological foundation than is espoused in set theory, for at least the
following reason: in virtue of its explicit rejection of invisible
modelling, correspondence theory will have to be able, in its own
right, to cope directly with the full registrations of domain and
co-domain.

For example, suppose someone wanted to use the proposed
correspondence theory to assess the familiar representation rela-
tion between pairs of real numbers and points on a plane. In the
model-theoretic tradition, the first job would to develop models
of both phenomena. However, since ordered pairs are an emi-
nently good model both of themselves and of points, the repre-
sentation relation would look to be one of identity. For a
correspondence theory to see the relation, it would have to license
both ordered pairs of real numbers and points on a plane as
legitimate, distinct, entities—as first class citizens, to use the
computational phrase. Thus a set-theoretic base would simply
not work.

45Barwise (1986a).

484 Indiscrete Affairs · I

Given an adequate ontological foundation, however, and a con-
comitant account of correspondence, one should be able to repair
some well-recognised lacks in current computer theorising, all of
the “too coarse-grained” variety. The broad metric of Turing
equivalence (relied on to demonstrate the “equivalence” of various
models of computing) is a particularly blatant example—since
virtually every imagined computer language, modulo standard
idealizations of indefinite memory and time, turns out to be of
equivalent power. The problem is that the very notion of Turing
equivalence itself rests on promiscuous modelling; in showing one
machine equivalent to another, one does not really show them to
be the same; rather, what is shown is that one can implement one
in the other. More seriously, all sorts of rather close correspon-
dence relations—implementation, encoding, modelling, etc.—
have similarly fallen between the cracks of theoretical assessment,
being “closer,” so to speak, than is typical of the representational
import of language, but still distinct from identity. The hope is
that a proper categorisation of correspondence will be a first step
towards more adequate foundations and more subtle compari-
sons.

The third semantical consequence has to do with the potential
integration and unified treatment of a wide variety of apparently
disparate kinds of representation. Ever since the earliest days of
Artificial Intelligence debates have raged about the relative merits
and properties of so-called analogue, pictorial, and/or imagistic
representations, vis. a vis those that are sentential, propositional or,
as Sloman calls them, “Fregean.”46 Maps and diagrams are para-
digmatic examples of the former; natural language sentences and
formulae in first-order logic, of the latter. In spite of a diverse lit-
erature probing these distinctions and explicating cross-cutting
distinctions buried in them,47 however, no comprehensive frame-
work has emerged in which to reconstruct the underlying in-
sights. It is difficult not to notice that writers on these topics of-
ten refer back to Wittgenstein and Peirce, who wrestled with

46Sloman (1975).
47A representative series of articles by Dennett, Fodor, Kosslyn & Pomer-
antz, Pylyshyn, and Rey can be found in part two (Imagery) of Block’s
(1981). See also Sloman (Pylyshyn (1984); Sloman, (1975) and Pylyshyn
(1984 chapters 7 & 8).

 10 · Correspondence Continuum

 485

these issues before the development of modern semantical tech-
nique.

This literature conveys an unmistakable picture of complexity
inherent even in the most paradigmatic examples. For example,
Sloman (1975) attempts to differentiate analogic and Fregean rep-
resentation by supposing that the former manifests a certain kind
of correspondence (he neither explains nor constrains it) between
the part structures of representation and represented. On the face
of it, this would seem to amount to a structural correspondence
between relations, of the sort we saw in discussing iconicity, cou-
pled with a mereological registration of both source and target
domains. The pure characterisation, in other words, seems ex-
actly the sort that a correspondence theory should be able to ex-
plicate. Sloman’s proposal, however, seems much less successful
as a way of clearly discriminating between analogue and proposi-
tional representation. For example, as many have pointed out,48 it
does not have the intended bite unless one ties down the notion
of “part.” For a bar chart to remain analogue, the conception of
part in the target domain must be taken quite liberally; on the
other hand, such sentences as “Adrian, Amelia, and Aaron ar-
rived in that order” seem to employ part relations in source (sen-
tence) structure to signify part relations in the target (what is de-
scribed). So the distinction is not so clear. Furthermore, there is
no doubt that even paradigmatic analogue representations or im-
ages represent only with respect to a correspondence relation,49 so
the constraint on mereological correspondence would need to be
spelled out, in exactly the way that the proposed algebra of corre-
spondence types suggests.

Without delving into specific examples, several general things
seem clear. For one thing, the persistent intuition that representa-
tions come in a wide variety of kinds seems exactly right. For an-
other, analysing these kinds will require exactly the sort of fine-
grained correspondence theory we are proposing. Finally, it is un-
likely that common examples will sort into any small, mutually
exclusive, set of nameable classes. Instead, we should license a full
range of types of correspondence, kinds of circumstantial depend-

48See for example the discussion in Pylyshyn (1978).
49See for example Fodor (1975).

486 Indiscrete Affairs · I

ence, and varieties of registration (continuous, discrete, composi-
tional), in terms of which subsequently to characterise pictures,
maps, graphs, schedules, models, images, and so forth, as well as
sentences, formulae, and elements of language. The latter group,
one would guess, will in general be more complex than the for-
mer, and may involve additional kinds of circumstantial depend-
ence, compositional structure, or relational complexities such as
polarity. But they surely will not be totally distinct. [[strange
mark]]

In section 7 I introduced the phrase “correspondence contin-
uum” to connote the interacting complex of difference correspon-
dence relations we often find connecting representation and rep-
resented. However, I equally intended the words to suggest the
different kind of continuity arising here: of a full range of varia-
tion of type of representational structure.

A simple example will illustrate how continuous these types
can be. Modern architectural blueprints used in building con-
struction contain what, to the uninitiated, can be a bewildering
range of symbols, ranging from obviously analogue outlines of
room shapes, through suggestive icons indicating plumbing and
kitchen fixtures, heaters, etc., through slightly stylised icons for
electrical outlets, light switches, etc. (with a number of slashes to
indicate number of individual outlets, an ‘S’ to mark whether they
are switched, etc.), through general purpose furniture icons with
simple inscribed names (desk, bed, etc.), through icons with
manufacturer’s annotations (“Vermont Castings,” “Wolf,” etc.),
through intermixed sketches, diagrams, and annotations on con-
struction technique, all permeated with arrows, English com-
ments, stamps of approval, scribblings to cancel out parts of the
specification, and so on and so forth. That there is a rich variety
of representation seems without doubt; that a theoretical scalpel
could carve the assemblage into a few neat categories, extraordi-
narily unlikely.

The moral is unchanged: in variety, detail, and forms of corre-
spondence, current representational practice vastly outstrips cur-
rent semantical technique. Recognising that most extant theoreti-
cal apparatus was developed primarily in service of very particular
representational systems employed for logic and meta-
mathematics, we should instead embrace what Ken Olson has

 10 · Correspondence Continuum

 487

suggested:50 a return to as various and thick a structure of corre-
spondence relations as Peirce ever imagined. Unlike Peirce, how-
ever, we can avail ourselves of the full battery of rigorous mathe-
matical methods, axiomatic systems, and so forth, that have been
developed since his time. Given such a project, we might even be
able to rescue some of the richness of the “semiotic” tradition
from what has been perceived to be its vagueness and descriptive
complexity.

The fourth and final consequence listed at the beginning of
this section has to do with lurking problems in the traditional ap-
proach. Those problems, however, arise from fundamental meta-
physical questions, and will as such be addressed in the next sec-
tion.

 10 Theories, Models, and Metaphysics
Figure 13 painted a continuum of relations, starting on the left
with the linguistic or representational structure under analysis,
and progressing in some fashion towards the “real world” on the
right. I have suggested that a correspondence theory would pro-
vide us with an ability to characterise the relations among the
structures comprising this whole, but I have not addressed the
question of how one would locate oneself in the resulting contin-
uum. If, as I have suggested, the practice of calling certain rela-
tions “syntactic” and others “semantic” is not helpful, is there any
other way to distinguish one analysis from another? Or, to put
the same question the other way around, can we say anything
about traditional approaches? How are they located on this as-yet
rather unstructured map?

Four things can be said.
First, if the picture we have been developing is even roughly

correct, it predicts that we will encounter structures at various
stages across the continuum—relatively more “linguistic” or “syn-
tactic” ones, closer to the primary representational source on the
left, others midway across, perhaps having to do with meaning or
other semantic (or efficient) uniformities, and others relatively
more directly metaphysical or ontological, closer to the full buzz-
ing confusion on the right. That the distinction becomes a matter

50«Ref Olson—PhD at Stanford?»

488 Indiscrete Affairs · I

of degree, rather than a binary decision, makes sense of various
traditional debates and disagreements. In particular, it is some-
what of a theoretical relief.

To be specific, many people (I am one) have worried about the
metaphysical foundations of particular model-theoretic analyses
of language,51 feeling that the proposed model structures reflect,
at least in part, the structure of language, not the structure of the
world the language is about. For example, consider an analysis
(such as a term model) that posits distinct one, two, and three-
place relations for various different uses of the verb ‘break’ (as in
“The window broke,” “The hockey puck broke the window,” and
“I broke the window with a hockey puck”). Or imagine an analy-
sis that distinguishes the Pope’s saying Mass from the fact of the
Pope’s saying Mass. Or imagine (not hard!) debates about the
metaphysical reality of possible worlds, with some people saying
that they are real, others saying that they are merely theoretical
devices with which to classify language, others claiming that ar-
guments about the reality of semantical constructs miss the point,
which is after all to prove various mathematical facts about the
linguistic structures themselves. Or suppose someone were to
doubt, on metaphysical grounds, the received wisdom that posi-
tive and negative facts are on a par, believing instead that this
symmetry is a device of language, not a fixture in the world.

If one were to adopt the traditional binary view, then all such
questions must be settled one way or the other. I.e., you would
have to reject an otherwise appealing semantical analysis if the
semantical structures it proposed were metaphysically unconvinc-
ing. On the kind of view I am suggesting, however, the whole con-
tinuum of possibilities is exactly what one would expect. You could
accept a term model semantics, for example, but understand it as
living rather close to the left hand side, and then ask for further
relations to anchor it in, or relate it to states of affairs, further to
the right. The structure of the continuum, that is, gives you a way
of accepting your fellow theorists’ intellectual contributions, even
while disagreeing with their metaphysical predilections.

51The difficulties are blatant in term models, evident in Kripke style possi-
ble world structures, but still apparent, at least to my mind, in the struc-
ture of the situation-theoretic universe (Barwise (1986a)).

 10 · Correspondence Continuum

 489

Second, there are several ways one might locate a particular
correspondent structure in a given semantical analysis. For exam-
ple, it was pointed out early on that much of the semantical con-
tribution of linguistic use arises from circumstances of utterance,
not directly from the structure of the sentence used (as in the “I’m
right; you’re wrong!” example). One of Barwise and Perry’s chief
points about language52 is that this property, which they call effi-
ciency,53 is necessary to the proper functioning of communication.
It is natural, then, to imagine an analysis of language use that
spelled out this circumstantial dependence. It is also easy to imag-
ine, as a semanticist, wanting to avoid the recalcitrant metaphysi-
cal problems that arise when you try to map specific vocabulary
items onto the world itself (see below). So the following approach
might suggest itself: develop a correspondent structure midway
between utterances and the world, in such a way that the entire
circumstantial dependence of language, up to questions about the
metaphysical foundations of vocabulary, has been discharged.
The resulting structure is liable to be infinite, but of course that is
not a theoretical problem.54

This seems a productive way to understand the semantical
structures posited both by possible world semantics and situation
theory. Needless to say, there are important differences between
the two proposals, some of which we can describe: possible world
semantics models what it calls the interpretation of sentences,
whereas situation theory (at least in recent variants) tries to deal
with interpretation directly.x But the point is to reject as too sim-
plistic the question of whether the structures they each propose
are to be viewed as: (i) the structure of the world, albeit highly ide-
alised; or (ii) the structure of language, albeit decontextualised. In-
stead, they can both be understood as intermediate analyses.

Third, it is important to dispel a false assumption about how

52«Ref»
53«Has this been introduced before? If so, refer back; if not, explain?»
54John Etchemendy once suggested that the situation-theoretic universe
could be viewed in this way (the world of situations, types, states of affairs,
etc.—not the language or notation used to describe it): as the world’s only
non-situated language.

x«Or so at least they claimed. Note that I part(ed?) company with this
claim of theirs.»

490 Indiscrete Affairs · I

correspondence relations will go, as we move from left to right.
As many writers have noted, far more distinctions are made in
the syntax of most formal languages than in the model-theoretic

structures posited
as their interpreta-
tions. The most
extreme example
is the traditional
(Fregean) inter-
pretation of all
sentences as de-
noting one of two
values: Truth or

Falsity. But the general situation is much more common: differ-
ent spellings with the same content; different procedures desig-
nating the same function; etc. Similarly, logical proof theory, de-
fined in terms of syntax (towards the left) pays attention to far
more details than does traditional model theory (though of
course proof theory does not pay attention to all details, such as
to when a formula was written, or to whether parentheses or
brackets were used). All of these examples suggest, in general,
that correspondence relations will gradually lose information, as
they move towards the right, as suggested in figure 17. This as-
sumption is for example embedded in approaches that use initial
and final algebras as interpretations for programming constructs.

Considerations of circumstantial dependence, however, and
some metaphysical arguments, suggest that this neat structure
may be an artifact of formal languages, not a general truth of se-
mantics.55 In the general case, in other words, semantics should
not be viewed as a way of moving from fine- to coarse-grained lin-
guistic distinctions. This stance is clearly false if circumstance is
ignored: different uses of the word ‘I’, as we have pointed out so
often, can refer to indefinitely many different people, as can ‘now’
refer to arbitrarily many different times. But more complex phe-
nomena suggest other structures, too. For example, imagine an
analysis of natural language, along the lines suggested above, that

55Barwise (1986b, p. 331), in fact, defines “formal” languages to be exactly
those that are not circumstantially dependent in this way.

Figure 17: The “losing information” view of semantics

 10 · Correspondence Continuum

 491

ignores different people’s sense of the reference of some term
‘guilt’, say, or ‘like’—about which interpersonal agreement is rare.
If there is a fact of the matter, when a given person says “She likes
feeling guilty,” as to what aspect or property of the world is
thereby named, then it follows that the real connection from ut-
terance to world will discriminate more finely than our chosen
semantical analysis.

I choose this example because I can imagine that it would be a
serious mistake to try, in the analysis of language, to compensate
for such differences by writing them in terms of an explicit pa-
rameter for something like “speaker’s conceptual scheme”—what
I will call registration scheme—and then to try to connect such
a thing to our previous conception of a “pre-registered” corre-
spondent domain. For some purposes, that is, we may not want to
capture all the richness of the representation, nor all the richness
of the world, nor all the richness of the connection between the
two. But this fact still does not allow the conclusion that richness
recedes as one moves to the right.

Fourth and finally,x there remains the very serious metaphysi-
cal question of how any analysis at all is going to deal with the
right hand end: the world itself. In fact our continuum seems to
suggest that one of the great appeals of the model-theoretic se-
mantical approach—for natural language, AI, and other sys-
tems—is that it stops the analysis half-way across the continuum.
As suggested above, there are those who worry that the resulting
models are still infected with the structure of the languages they
purport to analyse, but this has its advantages. Theorists who
disagree wildly on the actual structure of the world itself (if that
even means anything coherent) can nonetheless agree on a model-
theoretic structure. More specifically, one would expect propor-
tionally more agreement—among realists, skeptics, idealists, and
theorists of every conceivable metaphysical stripe—to the extent
that one’s semantic analysis establishes a correspondence to a
structure further towards the left. In fact any two people who
agreed on an analysis all the way towards the right would by defini-
tion be of exactly the same metaphysical persuasion; that is what
such agreement would mean.

x«OK, here is the real introduction to O3, metaphysics, etc. … »

492 Indiscrete Affairs · I

The strongest claim I will make about metaphysical grounding
will arise in the next and final section, when I return to the se-
mantics of knowledge representation, but a preliminary point can
be made here. It has to do with semantics as an instance of theo-
retical inquiry. To start with, make the following two relatively
non-controversial assumptions.

1. Assume that we human theorists, when we use language,
are somehow able to refer to the world itself, even if we do
not yet know how. I.e., assume something like the most
modest form of realism possible: just that there is a world,
that we are in it, and that our words somehow enable us to
get at it. This is all perfectly compatible with everyone’s
carving it up in radically different ways, as dictated by na-
ture, nurture, or just plain whim.

2. Assume as well that theories are linguistic vehicles with
which we communicate our understanding to our fellow
person. Or assume that theories are linguistic entities
claimed to be true; for these purposes the difference does
not matter.

Once these two assumptions are granted, the following is an im-
mediate conclusion: To the extent that our theories are legitimate
instances of language, and thus that we who use or understand
them are able to refer to the world, it follows that, as theorists, we
do not lack ways of getting to the right hand end of the diagram.
I, for example, can get there right this minute with the phrase
“this lukewarm cup of coffee to my right.” The problem, of
course, is that I do not necessarily know various things: not only
how it is that I manage to refer to the cup, but also the way in
which I have thereby referred to it. So the metaphysical problem
for semantical theorists is not one of referring to the world by us-
ing theoretical language, but rather something closer to the oppo-
site: there is no way of referring to the world except by using lan-
guage. Neurath’s boat once again.

This much is obvious. What is important about it is that it is
true all the way across the continuum: we have no way to refer to
the representational structure on the left, or to any intermediat-
ing correspondent structure, outside of language either. It only

 10 · Correspondence Continuum

 493

feels more problematic towards the right because it is there that
we encounter a natural tendency to want to escape our own par-
ticular conceptual schemes, especially if we and the representa-
tional structure in question part company. (What he calls “duty”
she calls ‘guilt.”)

This may indeed may be a real limitation: the chances of com-
pletely explaining, all the way to the right, the semantical interpre-

tation of a system whose
conceptual scheme dif-
fers radically from one’s
own, is probably nil.
Radical indeterminacy
of translation, if there is
such a thing, surely has
what we might call radi-
cal indeterminacy of se-
mantics as a sub-species.
But there are more in-
teresting conclusions, as

suggested in figure 18.
To the extent that theorist’s language and representation over-

lap on registration scheme, the problems are clearly that much
less. This is the happier case, of course, but it has this curious
consequence: as analysis moves towards the right, it will look, to
an outside observer, as if the representation in question is gradu-
ally being translated into the theorist’s own language—rather on
the model of deflationary accounts of truth and reference. I.e., we
might say that the noun ‘chat’ (towards the left) is modelled by
the objectified CAT relation (middle), which in turn characterises
the set of real cats (right). I.e., quotation on the left, reification or
nominalization in the middle, and ordinary use on the right. But
this is just as it should be; it is predicted by the diagram. There is
absolutely no reason to conclude, from this observation, that se-
mantics inherently involves translation.

On the other hand, to the extent that the theorist’s registration
scheme is his own, it will be so all the way across the diagram.
Just because the theorist registers the representational structure
itself in terms of a given set of properties and relations (say, as
having a particular syntactic form), there is no reason to believe

Figure 18: Semantics of theories of correspon-

dence

494 Indiscrete Affairs · I

that the representational system registers itself in this way if in-
deed there is any reason to suppose that it registers itself at all.
I.e., if, as I am inclined to suppose, registration involves represen-
tation (as well as vice versa), then the subject system will register
only what is to the right; the rest is registered only for theoretical
purposes.56 As before, conflict can occur only at the right hand
end, but only because that is the only thing that both system and
theorist register.

In sum, the idea that semantics involves translation is a super-
ficial rendering of the much deeper though perfectly straightfor-
ward fact that semantical analysis, like all theoretical investiga-
tion, is carried on in language, left through middle through
right.xx

 11 Knowledge Representation Revisited
Although we may seem to have strayed a fair distance from
knowledge representation, its demands have been our constant
motivation. First, we have seen that the semantical competition
between ‘representation’ and ‘knowledge’x was merely the tip of a
rather large iceberg: without even trying to enumerate an exhaus-
tive list, half a dozen other intentional notions were added to the
semantical roster. Second, with respect to appropriate semantical
technique, I argued for the prior development of a comprehensive
theory of correspondence, and sketched some preparatory phi-
losophical foundations. One way to view this proposed theory is
as a branch of semi-mathematics that would immeasurably aid
semantics in two ways: by clarifying the semantical project itself,
and by providing conceptual vocabulary in terms of which to clas-
sify genuinely semantic relations.

On the other hand, I have tried to say plainly that a theory of
correspondence would not itself be a theory of semantics, or rep-
resentation, or knowledge; in fact, in spite of all the ground we
have covered, I have said virtually nothing here about the essence

56The theorist, of course, can either be us, or else the system introspecting
on itself; see Smith (1986).
×«Think through the foregoing few paragraphs; do they make any sense?»
x«Raises the question: should I here, or in the overall introduction, tie this
back to the “From Symbols to Knowledge” Response to Newell & Simon?
Probably … »

 10 · Correspondence Continuum

 495

of any such notions. Even section 9, which tries to sketch some of
the structure in which semantics would proceed, still does noth-
ing to resolve this piece of homework. Nor can I do more here.
My only intent, by way of a last conclusion, is to make one brief
foray in this direction, which will tie the whole analysis back to
the primary distinction made at the outset, between representa-
tional import and functional role.

The point is simple. I said that functional role and representa-
tional import must be coordinated: the agent must be able to act
sensibly in terms of what it represents, and (perhaps) represent
what it can act sensibly towards. This coordination can be viewed
as a kind of “coming together” of knowledge (second factor) and
action (first factor). Thus, suppose, knowing the paper is almost
over, I reject the lukewarm coffee on my right in favour of a plan
that, which it finally is done, I will try some of the Lagavulin in
the cupboard. When the time comes, I would like my internal
impression that represents the Lagavulin to engender the action
of my crossing the room, pouring out a glass, and raising it to my
mouth. What is of paramount importance, for our purposes, is
the following fact: in the terms of the continuum diagram, this
coming together of representation import and action (which is
one kind of functional role) must be all the way to the right. I want
to drink what is in the world, not a model or indirect classification
of a particularly smoky whiskey, nor a term model of ‘Lagavulin’
expressions, nor a set-theoretic assemblage of sentences or im-
pressions containing representations of the property of being
whiskey. Whatever “stuff itself” is, this much is certain: it is stuff
itself towards which my actions must be directed.

This observation, merely a theoretical consequence of the dual
facts that action takes place in the world, and that functional role
is a kind of action, is the grounds for our sixth and final challenge
to the model-theoretic tradition, promised earlier. Because com-
puter systems participate with us in the world—stop our cars,
launch our weapons, deliver our mail—it is imperative that our
analyses of the representational import of impressions take us all
the way to the real world situations towards which the engen-
dered action will be directed. Tooth decay among children will
not be reduced by a computer’s injecting a mathematical model of
fluorine into a set of possible worlds. In order to see the coordina-

496 Indiscrete Affairs · I

tion between functional role and representational import, that is,
both parts of our two-factor analysis of significance must reach all
the way to the right. Let’s call an analysis that reaches out that far a
grounded account.

So far, then, the only coordination requirement I will put on
theories of full significance is that they be grounded. At least for
the moment, that will have to be requirement enough.

 References
Barwise, Jon (1986a), “Situations, Sets, and the Axiom of Foundation,”

Alex Wilkie ed., Logic Colloquium 84 Amsterdam: North Holland.
———— (1986b), “Information and Circumstance,” Notre Dame Journal

of Formal Logic, Volume 27 Number 3, July 1986.
Barwise, Jon, and Perry, John (1983), Situations and Attitudes, Bradford

Books, Cambridge, MA.
Block, Ned, ed., (1981), Readings in Philosophy of Psychology, Vol 2, Harvard

University Press, Cambridge, MA.
Block, Ned (1985), “Advertisement for a Semantics for Psychology,” Mid-

west Studies in Philosophy X, P. A. French, T. E. Uehling and H. K.
Wettstein, eds.

Boyd, Richard (1979), “Metaphor and Theory Change: What is ‘Metaphor’
a Metaphor For?”, in A. Ortony, ed., Metaphor and Thought, Cambridge
University Press, Cambridge, MA, pp. 356–419.

Brachman, Ronald J., and Levesque, Hector J., eds., (1985), Readings in
Knowledge Representation, Morgan Kaufmann, Los Altos, CA, 571 pp.

Field, Hartry (1977), “Logic, Meaning, and Conceptual Role,” Journal of
Philosophy Vo!. 74.

———— (1978) , “Mental Representation,” Erkenntnis, Vol. 13.
Fodor, Jerry (1975), The Language of Thought, Thomas Y. Crowell Co.:

New York. Paperback version, Harvard University Press (1979), Cam-
bridge, MA.

Goguen, Joseph A. and Meseguer, Jose (1984), “Equality, Types, Modules
and Generics for Logic Programming,” CSLI Technical Report CSLI-84-5,
Stanford University, Stanford, CA.

Goodman, Nelson (1983), Fact, Fiction and Forecast, Harvard University
Press: Cambridge, MA.

Gordon, Michael (1979), The Denotational Description of Programming Lan-
guages: An Introduction, Springer-Verlag: New York.

Hayes, Patrick J. (1974), “Some Problems and Non-Problems in Represen-
tation Theory,” Proc. AISB Summer Conference, University of Sussex,
pp. 63–79. Reprinted in Brachman and Levesque (1985), pp. 3-22.

———— (1977), “In Defence of Logic,” Proc. IJCAI-77, Cambridge, MA pp.
559–65.

Levesque, Hector (1984), “Foundations of a Functional Approach to

 10 · Correspondence Continuum

 497

Knowledge Representation,” Artificial Intelligence, Vol. 23, pp. 155–212.
Lewis, David (1972), “General Semantics,” in D. Davison and G. Harman,

eds., Semantics of Natural Language, D. Reidel, Dordrecht, Holland, pp.
169–218.

Loar, Brian (1982), “Conceptual Role and Truth Conditions,” Notre Dame
Journal of Formal Logic, Vo!. 23(3).

Moore, Robert C., and Hendrix, Gary G. (1979), “Computational Models
of Belief and the Semantics of Belief Sentences,” SRI International Tech-
nical Note 187, Menlo Park, CA.

Moschovakis, Yannis (1984), in Lecture Notes in Mathematics: Vol. 1103 on
Model Theory, Heidelberg: Springer-Verlag.

Newell, AlIen (1982), “The Knowledge Level,” Artificial Intelligence Vol. 18
(1), pp. 87-127.

Olson, Kenneth (1985), personal communication at CSLI.
Pylyshyn, Zenon (1978), “Imagery and Artificial Intelligence,” in C. W.

Savage, ed., Perception and Cognition: Issues in the Foundations of Psychol-
ogy, Minnesota Studies in the Philosophy of Science, Vol. 9. University of
Minnesota Press, Minneapolis, pp. 19–55. Reprinted in Block (1981),
pp. 170–94.

———— (1984), Computation and Cognition: Toward a Foundation for
Cognitive Science, The MIT Press/a Bradford Book, Cambridge, MA.

Rosenschein, Stanley J. (1985), “Formal Theories of Knowledge in AI and
Robotics,” SRI International Technical Note 362 Menlo Park, CA.

Sloman, Aaron (1971), “Interactions Between Philosophy and Artificial In-
telligence: The Role of Intuition and Non-Logical Reasoning in Intelli-
gence,” Artificial Intelligence Vol. 2 pp. 209–25.

———— (1975), “Afterthoughts on Analogical Representation,” Proc.
Theoretical Issues in Natural Language Processing, Cambridge, MA pp.
164–68. Reprinted in Brachman and Levesque (1985) pp. 431–39.

Smith, Brian C. (1982a), Reflection and Semantics in a Procedural Language,
Technical Report MIT/LCS TR-272, Massachusetts Institute of Technol-
ogy, Cambridge, MA, 672 pp. See also Smith (1985).

———— (1982b) “Linguistic and Computational Semantics,” Proceedings
of the 20th Annual Meeting of the Association for Computational Linguis-
tics, Toronto, Ontario, June 1982.

———— (1984), “Reflection and Semantics in Lisp”, Conference Record of
11th POPL pp. 23–35, Salt Lake City, Utah. Also available as Xerox
PARC Intelligent Systems Laboratory Technical Report ISL-5, Palo
Alto, California, 1984.

———— (1985), “Prologue to Reflection and Semantics in a Procedural
Language,” in Brachman and Levesque (1985), pp. 31–39.

———— (1986), “Varieties of Self-Reference”, in Theoretical Aspects of
Reasoning about Knowledge: Proceedings of the 1986 Conference, Morgan
Kaufmann, Los Altos, CA. Also available as CSLI-87-7?, Stanford Univer-
sity, Stanford, CA.

———— (1987), “The Semantics of Clocks”, Synthese, «forthcoming».

498 Indiscrete Affairs · I

———— (forthcoming (a)), Is Computation Formal?, MIT Press/A Brad-
ford Book, Cambridge, MA (1987). «update!»

———— (forthcoming (b)), “Representation and Registration”. «update!»
———— (forthcoming (c)), “Categories of Correspondence”. «update!»
Stich, Steven (1985), From Folk Psychology to Cognitive Science: The Case

Against Belief, MIT Press/A Bradford Book, Cambridge, MA.
Woods, William A. (1981), “Procedural Semantics as a Theory of Mean-

ing,” in A. Joshi, B. Webber, and I. Sag (eds.), Elements of Discourse Un-
derstanding, Cambridge University Press, Cambridge.

 503

Epilogue

504 Indiscrete Affairs · I

— Were this page been blank, that would have been unintentional —

	IA · I — Front Matter
	PN
	IA · I — Front Matter
	IA · I — Section A
	FOC — Text (V80)
	IA · I — Section B
	PR · Prologue (V80)
	PR Chapter 1 (V80)
	POPL (V80)
	Implementation (V80)
	Varieties (V80)
	IA · I — Section C
	Limits (V80a)
	Billion (V60a)
	Clocks (V80)
	IA · I — Section D
	Ling & Comp (V80)
	CContinuum (V80a)
	IA · I — Section E

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

