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1 — The Foundations of Computing†  

 1 Introduction 
Will computers ever be conscious? Is it appropriate—illumin-
ating, correct, ethical—to understand people in computational 
terms? Will quantum, DNA, or nanocomputers require radical ad-
justments to our theories of computation? How will computing af-
fect science, the arts, intellectual history? 

For most of my life I have been unable to answer these ques-
tions, because I have not known what computation is. More than 
thirty years ago, this uncertainty led me to undertake a long-term 
investigation of the foundations of computer science. That study 
is now largely complete. My aim in this chapter is to summarise a 
few of its major results. 

 2 Project 
The overall goal has been to develop a comprehensive theory of 
computing. Since the outset, I have assumed that such an account 
must meet three criteria: 

1. Empirical: It must do justice to—by explaining, or at least 
supplying the wherewithal with which to explain—the full 
range of computational practice; 

                                                             
†Originally published in Matthias Scheutz (ed), Computationalism: New Di-
rections, MIT Press, 2002. The paper is distilled from, and is intended to 
serve as an introduction to, a series of books that collectively report, in de-
tail, on the investigation identified in §2. The study of computing will be 
published as The Age of Significance (Smith, forthcoming—henceforth 
AOS); the metaphysical territory to which that study leads is introduced in 
On the Origin of Objects (Smith 1996). 



4 Indiscrete Affairs · I 
 

2. Conceptual: As far as possible, it must discharge, and at a 
minimum own up to, its intellectual debts (e.g., to seman-
tics), so that we can understand what it says, where it 
comes from, and what it “costs”; and 

3. Cognitive: It must provide an intelligible foundation for 
the computational theory of mind: the thesis, often known 
as computationalism,1 that underlies traditional artificial 
intelligence and cognitive science. 

The first, “empirical” requirement, of doing justice to practice, 
helps to keep the analysis grounded in real-world examples. By 
being comprehensive in scope, it stands guard against the ten-
dency of narrowly-defined candidates to claim dominion over the 
whole subject matter.2 And it is humbling, since the computer 
revolution so reliably adapts, expands, dodges expectations, and 
in general outstrips our theoretical grasp. But the criterion’s pri-
mary advantage is to provide a vantage point from which to ques-
tion the legitimacy of all extant theoretical perspectives. For I take 
it as a tenet that what Silicon Valley treats as computational is 
computational; to deny that would be considered sufficient 
grounds for rejection. But no such a priori commitment is given to 
any story about computation—including the widely-held recur-
sion- or Turing-theoretic conception of computability, taught in 
computer science departments around the world, that currently 
lays claim to the title “The Theory of Computation.”3 I also reject 

                                                             
1The same thesis is sometimes referred to as cognitivism, though strictly 
speaking the term “cognitivism” denotes a more specific thesis, which takes 
mentation to consist in rational deliberation based on patterns of concep-
tualist (i.e., “cognitive”) inference, reminiscent of formal logic, and usually 
thought to be computationally implemented (see Haugeland 1978). 

2As explained in AOS, the aim is to include not only the machines, devices, 
implementations, architectures, programs, processes, algorithms, lan-
guages, networks, interactions, behaviours, interfaces, etc., that constitute 
computing, but also the design, implementation, maintenance, and even use 
of such systems (such as Microsoft Word). Not, of course, that a theory 
will explain any particular architecture, language, etc. Rather, the point is 
that a foundational theory should explain what an architecture is, what con-
straints architectures must meet, etc. 

3Indeed, I ultimately argue that that theory—trafficking in Turing ma-
chines, notions of “effective computability”, and the like—fails as a theory 
of computing, in spite of its name and its popularity. It is simultaneously 
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all proposals that assume that computation can be defined. By my 
lights, that is, computer science should be viewed as an empirical 
endeavor.4 An adequate theory must make a substantive empirical 
claim about what I call computation in the wild:5 that eruptive 
body of practices, techniques, networks, machines, and behaviour 
that has so palpably revolutionised late twentieth- and early 
twenty-first-century life. 

The second, “conceptual” criterion, that a theory own up to—
and as far as possible repay— its intellectual debts, is in a way no 
more than standard theoretical hygiene. But it is important to 
highlight, in the computational case, for two intertwined reasons. 
First, it turns out that several candidate theories of computing (in-
cluding the official “Theory of Computation” mentioned above), 
as well as many of the reigning but largely tacit ideas about com-
puting held in surrounding disciplines, implicitly rely, without 
explanation, on such substantial, recalcitrant notions as interpre-
tation,6 representation, and semantics.7 Second, which only makes 
matters worse, there is a widespread tendency in the surrounding 
intellectual terrain to point to computation as a possible theory of 
those very recalcitrant notions. Unless we ferret out all such de-

                                                                                                                                                  
too broad, in applying to more things than computers, and too narrow, in 
that it fails to apply to some things that are computers. More seriously, 
what it is a theory of, is not computing. See §5.2. 

4Methodological issues arise, owing to the fact that we (at least seem to) 
make up the evidence. Although this ultimately has metaphysical as well as 
methodological implications, it undermines the empirical character of 
computer science no more than it does in, say, sociology or linguistics. 

5Adapted from Hutchins’ Cognition in the Wild (1995). 
6‘Interpretation’ is a technical notion in computing; how it relates to the use 
of the term in ordinary language, or to what ‘interpretation’ is thought to 
signify in literary or critical discussions, is typical of the sort of question to 
be addressed in the full analysis. 

7A notable example of such a far-from-innocent assumption is the wide-
spread theoretical tendency to distinguish (i) an abstract and presumptively 
fundamental notion of “computation” from (ii) a concrete but derivative 
notion of a “computer”—the latter simply being taken to be any physical 
device able to carry out a computation. It turns out, on inspection, that this 
assumption builds in a residually dualist stance towards what is essentially 
the mind/body problem—a stance I eventually want to argue against, and 
at any rate not a thesis that should be built into a theory of computing as a 
presumptive but inexplicit premise. 
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pendencies, and lay them in plain view, we run at least two serious 
risks: (i) of endorsing accounts that are either based on, or give 
rise to, vicious conceptual circularity; and (ii) of promulgating 
and legitimating various unwarranted preconceptions or paro-
chial (e.g., modernist) biases— such as of a strict mind-body du-
alism. 

The third “cognitive” criterion—that an adequate theory of 
computation provide an intelligible foundation for a theory of 
mind—is of a somewhat different character. Like the second, it is 
more a metatheoretic requirement on the form of a theory than a 
constraint on its substantive content. But its elevation to a primary 
criterion is non-standard, and needs explaining. 

Its inclusion is not simply based on the fact that the computa-
tional theory of mind (the idea that we, too, might be computers) is 
one of the most provocative and ramifying ideas in intellectual 
history, underwriting artificial intelligence, cognitive psychology, 
and contemporary philosophy of mind. Several other ideas about 
computing are just as sweeping in scope (such as proposals to 
unify the foundations of quantum mechanics with the founda-
tions of information), but have not spawned their own methodo-
logical criteria. Rather, what distinguishes the computational the-
ory of mind, in the present context, has to do with the epistemo-
logical consequences that would follow, if it were true. 

Theorizing is undeniably a cognitive endeavor. If the computa-
tional theory of mind were correct, therefore, a theory of computa-
tion would be reflexive—applying not only (at the object-level) to 
computing in general, but also (at the meta-level) to the process of 
theorizing. That is, the theory’s claims about the nature of com-
puting would apply to the theory itself. On pain of contradiction, 
therefore, unless one determines the reflexive implications of any 
candidate theory (of computing) on the form that the theory itself 
should take, and assesses the theory from such a reflexively con-
sistent position, one will not be able to judge whether it is correct.8 

                                                             
8For example, it would be inconsistent simultaneously to claim the follow-
ing three things: (i) as many do, that scientific theories should be expressed 
from an entirely third-person, non-subjective point of view; (ii) as an in-
trinsic fact about all computational processes, that genuine reference is 
possible only from a first-person, subjective vantage point (“first-person” 
from the perspective of the machine, that is); and (iii) that the computa-
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More specifically, suppose that mind is in fact computational, 
and that we were to judge a candidate (object-level) theory of com-
puting from the perspective of an implicit meta-theory inconsistent 
with that candidate theory. And then suppose that, when judged 
from that perspective, the candidate theory is determined to be 
good or bad. There would be no reason to trust such a conclusion. 
For the conclusion might be due not to the empirical adequacy or 
failings of the theory under consideration, but rather to the con-
ceptual inadequacy of the presumed meta-theory.9 

In sum, the plausibility of the computational theory of mind re-
quires that a proper analysis of a candidate theory of computing 
must consider: (i) what computational theory of mind would be 
generated, in its terms; (ii) what form theories in general would 
take, on such a model of mind; (iii) what the candidate theory of 
computing in question would look like, when framed as such a 
theory; (iv) whether the resulting theory (of computing), so 
framed, would hold true of computation-in-the-wild; and (v) 
whether, if it did turn out to be true (i.e., empirically), mentation 
and theorizing would, by those lights, also be computational. All 
this is required, for reflexive integrity. To do these things, we need 
to understand whether—and how—the theory could underwrite 
a theory of mind. Hence the cognitive criterion. 

It is essential to understand, however, that the cognitive crite-
rion requires only that we understand what form a computational 
theory of mind would take; it does not reflect any commitment to 
accept such a theory. In committing myself to honor the criterion, 
that is, I make no advance commitment to computationalism’s be-
ing true or false. I just want to know what it says. 

None of this is to say that the content of the computational the-
ory of mind is left open. Computationalism’s fundamental the-
sis—that the mind is computational—is given substance by the 
first, empirical criterion. Computationalism, that is—at least as I 

                                                                                                                                                  
tional theory of mind is true. If one were to believe in the ineliminably first-
person character of computational reference, and that human reference is 
a species of computational reference, then consistency would demand that 
such a theory be stated from a first-person point of view—since, by hypothe-
sis, no other way of presenting the theory would refer. 

9Note that the situation is symmetric; reflexive inconsistencies can generate 
both false negatives and false positives. 
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read it—is not a theory-laden or “opaque” proposal, in the sense of 
framing or resting on a specific hypothesis about what computers 
are. Rather, it has more an ostensive or “transparent” character: it 
claims that people (i.e., us) are computers in whatever way that 
computers (i.e., those things over there) are computers, or at least 
in whatever way some of those things are computers.10 

It follows that specific theoretical formulations of computation-
alism (whether pro or con) are doubly contingent. Thus consider, 
on the positive side, Newell and Simon’s popular (1976) “physical 
symbol system hypothesis,” according to which human intelli-
gence is claimed to consist of physical symbol manipulation; or 
Fodor’s (1975, 1980) claim that thinking consists of formal sym-
bol manipulation; or Dreyfus’ (1992) assertion that computation-
alism (as opposed to connectionism) requires the explicit manipu-
lation of explicit symbols; or—on the critical side—van Gelder’s 
(1996) claim that computationalism is both false and misleading, 
deserving to be replaced by dynamical alternatives. Not only do all 
these writers make hypothetical statements about people, that they 
are or are not physical, formal, or explicit symbol manipulators, 
respectively; they do so by making (hypothetical) statements about 
computers, that they are in some essential or illuminating way 
characterizable in the same way. Because I take the latter claims to 
be as subservient to empirical adequacy as the former, there are two 
ways in which these writers could be wrong. In claiming that peo-
ple are formal symbol manipulators, for example, Fodor would 
naturally be wrong if computers were formal symbol manipulators 
and people were not. But he would also be wrong, while the compu-
tational theory of mind itself might still be true, if computers were 
not formal symbol manipulators, either. Similarly, van Gelder’s 
brief against computational theories of mind is vulnerable to his 
understanding of what computing is actually like. If, as I believe, 
computation-in-the-wild is not as he characterises it, then the 
sting of his critique is entirely eliminated. 

                                                             
10The computational theory of mind does not claim that minds and com-
puters are equivalent (in the sense that anything that is a mind is a com-
puter, and vice versa). Rather, the idea is that minds are (at least) a kind of 
computer, and furthermore that the kind is itself computationally character-
ised (i.e., that the characteristic predicate on the restricted class of comput-
ers that are minds is itself to be framed in computational terms). 
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In sum, computational cognitive science is, like computer sci-
ence, hostage to the foundational project:11 of formulating a com-
prehensive, true, and intellectually satisfying theory of computing 
that honors all three criteria. 

Not one of them is easy to meet. 

 3 Seven Construals of Computing 
Some will argue that we already know what computation is. That 
in turn breaks into two questions: (i) is there a story—an account 
that people think answers the question of what computing is (what 
computers are); and (ii) is that story right? 

Regarding the first question, the answer is not no, but it is not a 
simple yes, either. More than one idea is at play in current theoretic 
discourse. Over the years, I have found it convenient to distin-
guish seven primary construals of computation, each requiring its 
own analysis: 

1. Formal Symbol Manipulation (FSM): the idea, derivative 
from a century’s work in formal logic and metamathemat-
ics, of a machine manipulating symbolic or (at least poten-
tially) meaningful expressions without regard to their in-
terpretation or semantic content; 

2. Effective Computability (EC): what can be done, and how 
hard it is to do it, mechanically, as it were, by an abstract 
analogue of a “mere machine”; 

3. Execution of an algorithm (ALG) or rule-following (RF): 
what is involved, and what behaviour is thereby produced, 

                                                             
11Foundationalism is widely decried, these days—especially in social and 
critical discourses. Attempting a foundational reconstruction of the sort I 
am attempting here may therefore be discredited, by some, in advance. As 
suggested in Smith (1996), however, I do not believe that any of the argu-
ments that have been raised against foundationalism (particularly: against 
the valorization of a small set of types or categories as holding an unques-
tioned and/or uniquely privileged status) amounts to an argument against 
rigorously plumbing the depths of an intellectual subject matter. In this 
paper, my use of the term ‘foundational’ should be taken as informal and, 
to an extent, lay (I am as committed as anyone to the fallacies and even 
dangers of master narratives, ideological inscription, and/or uniquely privi-
leging any category or type). 
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in following a set of rules or instructions, such as when 
making dessert; 

4. Calculation of a Function (FUN): the behaviour, when 
given as input an argument to a mathematical function, of 
producing as output the value of that function applied to 
that argument; 

5. Digital State Machine (DSM): the idea of an automaton 
with a finite, disjoint set of internally homogeneous ma-
chine states—as parodied in the “clunk, clunk, clunk” gait 
of a 1950’s cartoon robot; 

6. Information Processing (IP): what is involved in storing, 
manipulating, displaying, and otherwise trafficking in in-
formation, whatever information might be; and 

7. Physical Symbol Systems (PSS): the idea, made famous 
by Newell and Simon (1976), that, somehow or other, com-
puters interact with, and perhaps also are made of, symbols 
in a way that depends on their mutual physical embodi-
ment. 

These seven construals have formed the core of our thinking about 
computation over the last fifty years, but no claim is made that this 
list is exhaustive.12 At least to date, however, it is these seven that 
have shouldered the lion’s share of responsibility for framing the 
intellectual debate. 

By far the most important step in getting to the heart of the 
foundational question, I believe, is to recognise that these seven 
construals are all conceptually distinct. In part because of their 
great familiarity (we have long since lost our innocence), and in 
part because “real” computers seem to exemplify more than one of 
them—including those often-imagined but seldom-seen Turing 
machines, complete with controllers, read-write heads, and in-
definitely long tapes—it is sometimes uncritically thought that all 
seven can be viewed as rough synonyms, as if they were different 
ways of getting at the same thing. Indeed, this conflationary ten-
dency is rampant in the literature, much of which moves around 
among them as if doing so were intellectually free. But that is a 

                                                             
12See the sidebar at the top of the next page. 
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mistake. The supposition that any two of these construals amount 
to the same thing, let alone that all seven do, is simply false. 

For example, consider the formal symbol manipulation con-
strual (FSM). It explicitly characterises computing in terms of a 
semantic or intentional aspect, if for no other reason than that 
without some such intentional character there would be no war-
rant in calling it symbol manipulation.13 In contrast, the digital 
state machine construal (DSM) makes no such reference to inten-
tional properties. If a Lincoln-log contraption were digital but not 
symbolic, and a system manipulating continuous symbols were 
formal but not digital, they would be differentially counted as 
computational by the two construals. Not only do FSM and DSM 
mean different things, in other words; they (at least plausibly) 
have overlapping but distinct extensions. 

The effective computability (EC) and algorithm execution (ALG) 
construals similarly differ on the crucial issue of semantics. 
Whereas the effective computability construal, at least in the 
hands of computer scientists, seems free of intentional connota-
tion,14 the idea of algorithm execution, at least as I have character-
ised it, seems not only to involve rules or recipes, which presuma-
bly do mean something, but also (pace Wittgenstein) to require 
some sort of understanding on the part of the agent producing the 
behaviour. 

Semantics is not the only open issue; there is also an issue of 
abstractness versus concreteness. For example, it is unclear 
whether the notions of “machine” and “taking an effective step” in-
ternal to the EC construal make fundamental reference to causal 
powers, material realization, or other concrete physical properties, 
or whether, as most current theoretical discussions suggest, effec-
tive computability should be taken as an entirely abstract mathe-
matical notion. Again, if we do not understand this crucial aspect 
of the “mind-body problem for machines,” how can we expect com-
putational metaphors to help us in the case of people? 

                                                             
13See footnote 22. 
14At least some logicians and philosophers, in contrast, do read the effective 
computability construal semantically. This difference is exactly the sort of 
question that needs to be disentangled and explained in the full analysis. 
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There are still other differences among construals. They differ 
on whether they inherently focus on internal structure or external 
input/output, for example—that is, on whether: (i) they treat 
computation as fundamentally a way of being structured or consti-
tuted, so that surface or externally observable behaviour is deriva-
tive; or whether (ii) the having of a particular behaviour is the es-
sential locus of being computational, with questions about how 
that is achieved left unspecified and uncared about. The formal 
symbol manipulation and digital state machine construals are of 
the former, structurally constitutional sort; effective computability 
is of the latter, behavioural variety; algorithm execution appears to 
lie somewhere in the middle. 

The construals also differ in the degree of attention and alle-
giance they have garnered in different disciplines. Formal symbol 
manipulation (FSM) has for many years been the conception of 
computing that is privileged in artificial intelligence and philoso-
phy of mind, but it receives almost no attention in computer sci-
ence. Theoretical computer science focuses primarily on the effec-
tive computability (EC) and algorithm (ALG) construals, whereas 
mathematicians, logicians, and most philosophers of logic and 
mathematics pay primary allegiance to the functional conception 
(FUN). Publicly, in contrast, it is surely the information processing 

Additional Construals 

Especially as the boundaries between computer science and surrounding intellectual 
territory erode (itself a development predicted by this analysis; see section 8), several 
ideas that originated in other fields are making their way into the center of compu-
tational theorizing as alternative conceptions of computing. At least three are im-
portant enough to be seen as construals in their own right (though the first is not 
usually assumed to have any direct connection with computing, and the latter two 
are not normally assumed to be quite as “low-level” or foundational as the primary 
seven): 

8. Dynamics (DYN): the notion of a dynamical system, linear or non-linear, as 
popularized in discussions of attractors, turbulence, criticality, emergence, 
etc.; 

9. Interactive Agents (IA): active agents enmeshed in an embedding envi-
ronment, interacting and communicating with other agents (and perhaps 
also with people); and 
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(IP) construal that receives the major focus—being by far the most 
likely characterization of computation to appear in the Wall Street 
Journal, and the idea responsible for such popular slogans as “the 
information age” and “the information highway.” 

Not only must the seven construals be distinguished one from 
another; additional distinctions must be made within each one. 
Thus the idea of information processing (IP) needs to be broken 
down, in turn, into at least three sub-readings, depending on how 
‘information’ is understood: (i) as a lay notion, dating from per-
haps the nineteenth-century, of something like an abstract, pub-
licly-accessible commodity, carrying a certain degree of autono-
mous authority; (ii) so-called “information theory,” an at least 
seemingly semantics-free notion that originated with Shannon 
and Weaver (1949), spread out through much of cybernetics and 
communication theory, is implicated in Kolmogorov, Chaitin, and 
similar complexity measures, and has more recently been tied to 
notions of energy and, particularly, entropy; and (iii) the seman-
tical notion of information advocated by Dretske (1981), Barwise 
and Perry (1983), Halpern (1987), and others, which in contrast 
to the second deals explicitly with semantic content and veridical-
ity. 

Clarifying all these issues, bringing the salient assumptions to 

 
 
 
10. Self-organizing or Complex Adaptive Systems (CAS): a notion—often associated 

with the Santa Fe Institute—of self-organizing systems that respond to their envi-
ronment by adjusting their organization or structure, so as to survive and (perhaps 
even) prosper. 

Additional construals may need to be added, over time. Moreover, there are even those who 
deny that computation has any ontologically distinct identity. Thus Agre (1997b), for exam-
ple, claims that computation should instead be methodologically individuated (note that this 
eviscerates the computational theory of mind). 

11.Physical Implementation (PHY): a methodological hypothesis that computation is 
not ontologically distinct, but rather that computational practice is human expertise 
in the physical or material implementation of (apparently arbitrary) systems.  
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the fore, showing where they agree and where they differ, tracing 
the roles they have played in the last fifty years—questions like 
this must be part of any foundational reconstruction. But in a 
sense these issues are all secondary. For none has the bite of the 
second question raised at the beginning of the section: of whether 
any of the enumerated accounts is right. 

Naturally, one has to say just what this question means—has 
to answer the question “Right of what?”—in order to avoid the su-
perficial response: “Of course such and such a construal is right; 
that’s how computation is defined!” This is where the empirical cri-
terion takes hold. More seriously, I am prepared to argue for a 
much more radical conclusion, which we can dub as the first ma-
jor result:15 

C1. When subjected to the empirical demands of practice and 
the (reflexively mandated) conceptual demands of cognitive 
science, all seven primary construals fail—for deep, overlap-
ping, but distinct, reasons. 

 4 Diagnosis I: General 
What is the problem? Why do these theories all fail? 

The answers come at many levels. In the next section I discuss 
some construal-specific problems. But a general thing can be said 
first. Throughout, the most profound difficulties have to do with 
semantics. It is widely (if tacitly) recognised that computation is 
in one way or another a symbolic or representational or informa-
tion-based or semantical—that is, as philosophers would say, an 
intentional—phenomenon.16 Somehow or other, though in ways 

                                                             
15This numbering system (C1–C9) is used only for purposes of this paper; it 
will not necessarily be used in AOS. 

16Although the term ‘intentional’ is primarily philosophical, there are many 
philosophers, to say nothing of some computer and cognitive scientists, 
who would deny that computation is an intentional phenomenon. Reasons 
vary, but the most common goes something like this: (i) that computation 
is both syntactic and formal, where ‘formal’ means “independent of seman-
tics”; and (ii) that intentionality has fundamentally to do with semantics; 
and therefore (iii) that computation is thereby not intentional. I believe this 
is wrong, both empirically (that computation is purely syntactic) and con-
ceptually (that being syntactic is a way of not being intentional); I also dis-
agree that being intentional has only to do with semantics, which the denial 
requires. See footnote 22. 
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we do not yet understand, the states of a computer can model or 
simulate or represent or stand for or carry information about or 
signify other states in the world (or at least can be taken by people 
to do so). This semantical or intentional character of computation 
is betrayed by such phrases as symbol manipulation, information 
processing, programming languages, knowledge representation, data-
bases, and so on. Indeed, if computing were not intentional, it 
would be spectacular that so many intentional words of English 
systematically serve as technical terms in computer science.17 Fur-
thermore—and this is important to understand—it is the inten-
tionality of the computational that motivates the cognitivist hy-
pothesis. The only compelling reason to suppose that we (or 
minds or intelligence) might be computers stems from the fact that 
we, too, deal with representations, symbols, meaning, information, 
and the like.19 

For someone with cognitivist leanings, therefore—as opposed, 
say, to an eliminativist materialist, or to some types of 
connectionist—it is natural to expect that a comprehensive theory 
of computation will have to focus on its semantical aspects. This 
raises problems enough. Consider just the issue of representation. 
To meet the first criterion, of empirical adequacy, a successful 
candidate will have to make sense of the myriad kinds of represen-
tation that saturate real-world systems— from bit maps and im-
ages to knowledge representations and databases; from high-
speed caches to long-term backup tapes; from low-level finite-
element models used in simulation to high-level analytic descrip-
tions supporting reasoning and inference; from text to graphics to 
audio to video to virtual reality. As well as being vast in scope, it 
will also have to combine decisive theoretical bite with exquisite 
resolution, in order to distinguish: models from implementations; 
analyses from simulations; and virtual machines at one level of 
abstraction from virtual machines at another level of abstraction, 
in terms of which the former may be implemented.18 

                                                             
17Thus computer science’s use of (the English words) ‘language,’ ‘represen-
tation,’ ‘data,’ etc. is analogous to physics’ use of ‘work,’ ‘force,’ ‘energy,’ 
etc.—as opposed to its use of ‘charm.’ That is, it reflects a commitment to 
do scientific justice to the center of gravity of the word’s natural meaning, 
rather than being mere whimsical fancy. 

18Physically, we and (at least contemporary) computers are not very much 
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To meet the second, conceptual criterion, moreover, any account 
of this profusion of representational practice must be grounded 
on, or at least defined in terms of, a theory of semantics or content, 
partly in order for the concomitant psychological theory to avoid 
vacuity or circularity, and partly so that even the computational 
part of the theory meet a minimal kind of naturalistic criterion: 
that we understand how computation is part of the natural world. 
This is made all the more difficult by the fact that the word ‘se-
mantics’ is used in an incredible variety of senses across the range 
of the intentional sciences. Indeed, in my experience it is virtually 
impossible, from any one location within that range, to under-
stand the full significance of the term, so disparate is that practice 
in toto.19 

Genuine theories of content, moreover—of what it is that makes 
a given symbol or structure or patch of the world be about or ori-
ented towards some other entity or structure or patch—are notori-
ously hard to come by.20 Some putatively foundational construals 
of computation are implicitly defined in terms of just such a back-
ground theory of semantics, but neither explain what semantics is, 
nor admit that semantical dependence—and thus fail the second, 
conceptual criterion. This includes the first, formal symbol ma-
nipulation construal so favored (and disparaged!) in the cognitive 

                                                                                                                                                  
alike—though it must be said that one of the appeals, to some people at 
least, of the self-organizing or complex-adaptive-system construal (CAS) is 
its prospect of providing a naturalistically palatable and non-intentional but 
nevertheless specific way of discriminating people-cum-computers (and 
perhaps higher animals) from arbitrary physical devices. 

19In computer science, to take a salient example, the term “the semantics of 
α”, where α is an expression or construct in a programming language, 
means approximately the following: the topological (as opposed to geomet-
rical) temporal profile of the behaviour to which execution of this program 
fragment gives rise. By ‘topological’ I mean that the overall temporal order 
of events is dictated, but that their absolute or metric time-structure (e.g., 
exactly how fast the program runs) is not. As a result, a program can usu-
ally be sped up, either by adjusting the code or running it on a faster proc-
essor, without, as is said, “changing the semantics.” 

20Best known are Dretske’s semantic theory of information (1981), which 
has more generally given rise to what is known as “indicator semantics”; 
Fodor’s “asymmetrical-dependence” theory (1987); and Millikan’s “teleo-
semantics” or “biosemantics” (1984, 1989). For comparison among these 
alternatives see, e.g., Fodor (1984) and Millikan (1990). 
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sciences, in spite of its superficial formulation as being “independ-
ent of semantics.”21 Other construals, such as those that view com-
putation as the behaviour of discrete automata—and also, I will 
argue below, even if this is far from immediately evident, the recur-
sion-theoretic one that describes such behaviour as the calculation 
of effective functions—fail to deal with computation’s semantical 
aspect at all, in spite of sometimes using semantical vocabulary, 
and so fail the first, empirical criterion. In the end, one is inexora-
bly driven to a second major conclusion: 

C2. In spite of the advance press, especially from cognitivist quar-
ters, computer science, far from supplying the answers to 
fundamental intentional mysteries, must, like cognitive sci-
ence, await the development of a satisfying theory of seman-
tics and intentionality.22 

                                                             
21Because formal symbol manipulation is usually defined as “manipulation 
of symbols independent of their interpretation”, some people believe that 
the formal symbol manipulation construal of computation does not rest 
on a theory of semantics. But that is simply an elementary, though appar-
ently common, conceptual mistake. As discussed further in section 5, the 
“independence of semantics” postulated as essential to the formal symbol 
construal is independence at the level of the phenomenon; it is a claim 
about how symbol manipulation works. Or so at least I believe, based on 
many years of investigating what practitioners are actually committed to 
(whether it is true—i.e., holds of computation-in-the-wild—is a separate 
issue). The intuition is simple enough: that semantic properties, such as 
referring to the Sphinx, or being true, are not of the right sort to do effec-
tive work—so they cannot be the sort of property in virtue of the manifes-
tation of which computers run. At issue in the present discussion, in con-
trast, is a more logical form of independence, at the level of the theory (or, 
perhaps, to put it more ontologically and less epistemically, independence 
at the level of the types). Here the formal symbol manipulation construal is 
as dependent on semantics as it is possible to be: it is defined in terms of it. 
And (as the parent of any teenager knows) defining yourself in opposition 
to something is not ultimately a successful way of achieving independence. 
Symbols must have a semantics, in other words (have an actual interpreta-
tion, or be interpretable, or whatever), in order for there to be something 
substantive for their formal manipulation to proceed independently of. 
Without a semantic character to be kept crucially in the wings, the formal 
symbol manipulation construal would collapse in vacuity—would degener-
ate into something like “the manipulation of structure” or, as I put it in 
AOS, “stuff manipulation”—i.e., materialism. 

22As suggested in the preceding footnote, philosophers are less likely than 
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 5 Diagnosis II: Specific 
So none of the seven construals provides an account of semantics. 
Since I take computation to be semantic (not just by assumption, 
but as an unavoidable lesson from empirical investigation), that 
means they fail as theories of computation, as well (i.e., C2 implies 
C1). And that is just the beginning of the problems. All seven also 
fail for detailed structural reasons—different reasons per con-
strual, but reasons that add up, overall, to a remarkably coherent 
overall picture. 

In this section I summarise just a few of the problems, to convey 
a flavor of what is going on. In each case, to put this in context, 
these results emerge from a general effort, in the main investiga-
tion, to explicate, for each construal: 

1. What the construal says or comes to—what claim it makes 
about what it is to be a computer; 

2. Where it derives from, historically; 
3. Why it has been held; 
4. What’s right about it—what insights it gets at; 
5. What is wrong with it, conceptually, empirically, and 

explanatorily; 
6. Why it must ultimately be replaced; and 
7. What about it should nevertheless be retained in a “succes-

sor,” more adequate account. 

 5a Formal Symbol Manipulation 
The FSM construal has a distinctly antisemantical flavor, owing to 
its claim that computation is the “manipulation of symbols inde-
pendent of their semantics.” On analysis, it turns out to be moti-
vated by two entirely different, ultimately incompatible, independ-

                                                                                                                                                  
computer scientists to expect a theory of computation to be, or to supply, 
a theory of intentionality. That is, they would not expect the metatheoretic 
structure to be as expected by most computer scientists and artificial intel-
ligence researchers—namely, to have a theory of intentionality rest on a 
theory of computation. But that does not mean they would necessarily 
agree with the opposite, which I am arguing here: that a theory of compu-
tation will have to rest on a theory of intentionality. Many philosophers 
seem to think that a theory of computation can be independently of a the-
ory of intentionality. Clearly, I do not believe this is correct. 
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ence intuitions. The first motivation is at the level of the theory, 
and is reminiscent of a reductionist desire for a “semantics-free” 
account. It takes the FSM thesis to be a claim that computation can 
be described or analysed in a semantics-free way. If that were true, 
so the argument goes, that would go some distance towards natu-
ralizing intentionality.23 

There is a second motivating intuition, different in character, 
that holds at the level of the phenomenon. Here the idea is simply 
the familiar observation that intentional phenomena, such as rea-
soning, hoping, or dreaming, carry on in relative independence of 
their subject matters or referents. Reference and truth, it is recog-
nised, are just not the sorts of properties that can play a causal role 
in engendering behaviour—essentially because they involve some 
sort of relational coordination with things that are too far away 
(in some relevant respect) to make a difference. This relational 
characteristic of intentionality—something I call semantic discon-
nection—is such a deep aspect of intentional phenomena that it is 
hard to imagine its being false. Without it, falsity would cease to 
exist, but so too would hypotheticals; fantasy lives would be meta-
physically banned; you would not be able to think about conti-
nental drift without bringing the tectonic plates along with you. 

For discussion, I label the two readings of the formal symbol 
manipulation construal conceptual and ontological, respectively.24 
The ontological reading is natural, familiar, and based on a deep 
insight. But it is too narrow. Many counterexamples can be cited 
against it, though space does not permit rehearsing them here.25 
Instead, to get to the heart of the matter, it helps to highlight a dis-
tinction between two kinds of “boundary” thought to be relevant or 
essential—indeed, often assumed a priori—in the analysis of 
computers and other intentional systems: 

1. Physical: A physical boundary between the system and its 
surrounding environment—between “inside” and “out-

                                                             
23As Haugeland says “... if you take care of the syntax, the semantics will 
take care of itself” (1981a, 23); see also Haugeland (1985). 

24It can be tempting to think of the two readings as corresponding to inten-
sional and extensional readings of the phrase “independent of semantics”—
but that isn’t strictly correct. See AOS. 

25See AOS Volume II. 
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side”; and 

2. Semantic: A semantic “boundary” between symbols and 
their referents. 

In terms of these two distinctions, the ontological reading of the 
FSM construal can be understood as presuming the following two 
theses: 

1. Alignment: That the physical and semantic boundaries 
line up, with all the symbols inside, all the referents out-
side; and 

2. Isolation: That this allegedly aligned boundary is a bar-
rier or gulf across which various forms of dependence 
(causal, logical, explanatory) do not reach. 

The fundamental idea underlying the FSM thesis, that is, is that a 
barrier of this double allegedly-aligned sort can be drawn around 
a computer, separating a pristine inner world of symbols—a pri-
vate kingdom of ratiocination or thought, as it were—understood 
both to work (ontologically) and to be analyzable (theoretically) 
in isolation, without distracting influence from the messy, unpre-
dictable exterior. 

It turns out, in a way that is ultimately not surprising, that the 
traditional examples motivating the FSM construal, such as theo-
rem proving in formal logic, meet this complex pair of conditions. 
First, they involve internal symbols designating external situa-
tions, thereby satisfying ALIGNMENT (internal) databases repre-
senting (external) employee salaries, (internal) differential equa-
tions modeling the (external) perihelion of Mercury, (internal) 
first-order axioms designating (external) Platonic numbers or 
purely abstract sets, and so on. Second, especially in the paradig-
matic examples of formal axiomatizations of arithmetic and proof 
systems of first-order logic (and, even more especially, when those 
systems are understood in classical, especially model-theoretic, 
guise), the system is assumed to exhibit the requisite lack of inter-
action between the (internal) syntactic proof system and the (ex-
ternal, perhaps model-theoretic) interpretation, satisfying 
ISOLATION. In conjunction, the two assumptions allow the famil-
iar two-part picture of a formal system to be held: a locally con-
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tained syntactic system, on the one hand, consisting of symbols or 
formulae in close causal intimacy with a proof-theoretic inference 
regimen; and a remote realm of numbers or sets or “ur-elements,” 
in which the symbols or formulae are interpreted, on the other. It 
is because the formality condition relies on both theses together 
that the classical picture takes computation to consist exclusively 
of symbol-symbol transformations, carried on entirely within the 
confines of a machine. 

The first—and easier—challenge to the antisemantical thesis 
comes when one retains the first ALIGNMENT assumption, of coin-
cident boundaries, but relaxes the second ISOLATION claim, of no 
interaction. This is the classical realm of input/ output, home of 
the familiar notion of a transducer. And it is here that one en-
counters the most familiar challenges to the FSM construal, such as 
the “robotic” and “system” replies to Searle’s (1980) Chinese room 
argument, and Harnad’s (1990) “Total Turing Test” as a meas-
ure of intelligence. Thus imagine a traditional perception sys-
tem—for example, one that on encounter with a mountain lion 
constructs a symbolic representation of the form MOUNTAIN-LION-
043. There is interaction (and dependence) from external world to 
internal representation. By the same token, an actuator system, 
such as one that would allow a robot to respond to a symbol of the 
form CROSS-THE-STREET by moving from one side of the road to 
the other, violates the independence assumption in the other direc-
tion, from internal representation to external world. 

Note, in spite of this interaction, and the consequent violation 
of ISOLATION, that ALIGNMENT is preserved in both cases: the 
transducer is imagined to mediate between an internal symbol 
and an external referent. Nevertheless, the violation of ISOLATION 

is already enough to defeat the formality condition. This is why 
transducers and computation are widely recognised to be uneasy 
bedfellows, at least when formality is at issue. It is also why, if one 
rests the critique at this point, defenders of the antisemantical con-
strual are tempted to wonder, given that the operations of trans-
ducers violate formality, whether they should perhaps be counted 
as not being computational.26 Given the increasing role of environ-

                                                             
26Thus Devitt (1991) restricts the computational thesis to what he calls 
“thought-thought” (t-t) transactions; for him output (t–o) and input (i–t) 
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mental interaction within computational practice, it is not at all 
clear that this would be possible, without violating the condition 
of empirical adequacy embraced at the outset. For our purposes it 
doesn’t ultimately matter, however, because the critique is only 
halfway done. 

More devastating to the FSM construal are examples that chal-
lenge the ALIGNMENT thesis. It turns out, on analysis, that far 
from lining up on top of each other, real-world computer systems’ 
physical and semantic boundaries cross-cut, in rich and productive 
interplay. It is not just that computers are involved in an engaged, 
participatory way with external subject matters, in other words, as 
suggested by some recent “situated” theorists. They are participa-
torily engaged in the world as a whole—in a world that indis-
criminately includes themselves, their own internal states and 
processes. This integrated participatory involvement, blind to any 
a priori subject-world distinction, and concomitantly intention-
ally directed towards both internally and externally exemplified 
states of affairs, is not only architecturally essential, but is also 
critical, when the time comes, in establishing and grounding a 
system’s intentional capacities. 

From a purely structural point of view, four types of case are re-
quired to demonstrate this non-alignment of boundaries: (i) 
where a symbol and referent are both internal; (ii) where a symbol 
is internal and its referent external; (iii) where symbol and refer-
ent are both external; and (iv) where symbol is external and refer-
ent internal. The first is exemplified in cases of quotation, meta-
structural designation, window systems, e-mail, compilers, load-
ers, network routers, and at least arguably all programs (as op-
posed, say, to databases). The second, of internal symbols with ex-
ternal referents, can be considered as something of a theoretical 
(though not necessarily empirical) default, as for example when 
one reflects on the sun’s setting over Georgian Bay (to use a hu-
man example), or when a computer database represents the usage 
pattern of a set of university classrooms. The third and fourth are 
neither more nor less than a description of ordinary written text, 
public writing, etc.—to say nothing of pictures, sketches, conversa-
tions, and the whole panoply of other forms of external representa-

                                                                                                                                                  
transactions count as non-computational. 
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tion. Relative to any particular system, they are distinguished by 
whether the subject matters of those external representations are 
similarly external, or are internal. The familiar red skull-and-
cross-bones signifying radioactivity is external to both man and 
machine, and also denotes something external to man and ma-
chine, and thus belongs to the third category. To a computer or 
person involved, on the other hand, an account of how they work 
(psychoanalysis of person or machine, as it were, to say nothing of 
logic diagrams, instruction manuals, etc.) is an example of the 
fourth. 

By itself, violating ALIGNMENT is not enough to defeat formal-
ity. What it does accomplish, however, is to radically undermine 
ISOLATION’s plausibility. In particular, the antisemantical thesis 
constitutive of the FSM construal is challenged not only because 
these examples show that the physical and semantic boundaries 
cross-cut, thereby undermining the ALIGNMENT assumption, but 
because they illustrate the presence, indeed the prevalence, of effec-
tive traffic across both boundaries—between and among all the 
various categories in question—thereby negating ISOLATION. 

And this negation of ISOLATION, in turn, shows up, for what it 
is, the common suggestion that transducers, because of violating 
the antisemantical thesis, should be ruled “out of court”— i.e., 
should be taken as non-computational, à la Devitt (1991).27 It 
should be clear that this maneuver is ill-advised; even a bit of a 
cop-out. For consider what a proponent of such a move must face 
up to, when confronted with boundary non-alignment. The notion 
of a transducer must be split in two. In order to retain an antise-
mantical (FSM) construal of computing, someone interested in 
transducers would have to distinguish: 

1. Physical transducers, for operations or modules that 
cross or mediate between the inside and outside of a sys-
tem; and 

2. Semantic transducers, for operations or modules that 
mediate or “cross” between symbols and their referents. 

And it is this bifurcation, finally, that irrevocably defeats the an-
tisemantical formalists’ claim. For the only remotely plausible no-

                                                             
27See the preceding footnote. 
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tion of transducer, in practice, is the physical one. That is what we 
think of when we imagine vision, touch, smell, articulation, 
wheels, muscles, and the like: systems that mediate between the in-
ternals of a system and the “outside” world. Transducers, that is, 
at least in informal imagination of practitioners, are for connect-
ing systems to their (physical) environments.28 What poses a 
challenge to the formal (antisemantical) symbol manipulation 
construal of computation, on the other hand, are semantic trans-
ducers: those aspects of a system that involve trading between oc-
current states of affairs, on the one hand, and representations of 
them, on the other. Antisemantics is challenged as much by dis-
quotation as by driving around. 

As a result, the only way to retain the ontological version of the 
FSM construal is to disallow (i.e., count as non-computational) the 
operations of semantic transducers. But that is absurd! It makes it 
clear, ultimately, that distinguishing that subset of computation 
which satisfies the ontological version of the antisemantical claim 
is not only unmotivated, solving the problem by fiat (making it 
uninteresting), but is a spectacularly infeasible way to draw and 
quarter any actual, real-life system. For no one who has ever built 
a computational system has ever found any reason to bracket ref-
erence-crossing operations, or to treat them as a distinct type. Not 
only that; think of how many different kinds of examples of se-
mantic transducer one can imagine: counting, array indexing, e-
mail, disquotation, error-correction circuits, linkers, loaders, sim-
ple instructions, database access routines, pointers, reflection prin-
ciples in logic, index operations into matrices, most Lisp primitives, 
and the like. Furthermore, to define a species of transducer in this 
semantical way, and then to remove them from consideration as 
not being genuinely computational, would make computation 
(minus the transducers) antisemantical tautologically. It would no 
longer be an interesting claim on the world that computation was 
antisemantical—an insight into how things are. Instead, the 
word ‘computation’ would simply be shorthand for antisemanti-

                                                             
28This statement must be understood within the context of computer sci-
ence, cognitive science, and the philosophy of mind. It is telling that the 
term ‘transducer’ is used completely differently in engineering and biology 
(its natural home), to signify mechanisms that mediate changes in medium, 
not that cross either the inside/outside or the symbol/referent boundary. 
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cal symbol manipulation. The question would be whether any-
thing interesting was in this named class—and, in particular, 
whether this conception of computation captured the essential 
regularities underlying practice. And we have already seen the 
answer to that: it is no. 

In sum, introducing a notion of a semantical transducer solves 
the problem tautologically, cuts the subject matter at an unnatural 
joint, and fails to reconstruct practice. That is quite a lot to have 
going against it. 

Furthermore, to up the ante on the whole investigation, not only 
are these cases of “semantic transduction” all perfectly well-
behaved; they even seem, intuitively, to be as “formal” as any other 
kind of operation. If that is so, then those systems either are not 
formal, after all, or else the word ‘formal’ has never meant independ-
ence of syntax and semantics in the way that the FSM construal 
claims. Either way, the ontological construal does not survive. 

Though it has been framed negatively, we can summarise this 
result in positive terms: 

C3. Rather than consisting of an internal world of symbols sepa-
rated from an external realm of referents, as imagined in the 
FSM construal, real-world computational processes are 
participatory, in the following sense: they involve complex 
paths of causal interaction between and among symbols and 
referents, both internal and external, cross-coupled in 
complex configurations. 

 5b Effective Computability 
Although different in detail, the arguments against the other ma-
jor construals have a certain similarity in style. In each case, the 
strategy in the main investigation has been to develop a staged se-
ries of counterexamples, not simply to show that the construal is 
false, but to serve as strong enough intuition pumps on which to 
base a positive alternative. In other words, the point is not critique, 
but deconstruction en route to reconstruction. Space permits a few 
words about just one other construal: effective computability—the 
idea that underwrites recursion theory, complexity theory, and, as 
I have said, the official (mathematical) “Theory of Computation.” 

Note, for starters—as mentioned earlier—that whereas the 
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first, FSM construal is predominant in artificial intelligence, cogni-
tive science, and philosophy of mind, it is the second, effective com-
putability (EC) construal, in contrast, that underlies most theoreti-
cal and practical computer science. 

Fundamentally, it is widely agreed, the theory of effective com-
putability focuses on “what can be done by a mechanism.” But two 
conceptual problems have clouded its proper appreciation. First, in 
spite of its subject matter, it is almost always characterised ab-
stractly, as if it were a branch of mathematics. Second, it is imag-
ined to be a theory defined over (for example) the numbers. Spe-
cifically, the marks on the tape of the paradigmatic Turing ma-
chine are viewed as representations— representations, in general, 
or at least in the first instance, of numbers, functions, or other 
Turing machines. 

In almost exact contrast to the received view, I argue two things. 
First, I claim that the theory of effective computability is funda-
mentally a theory about the physical nature of patches of the world. 
In underlying character, I believe, it is no more “mathematical” 
than anything else in physics— even if we use mathematical 
structures to model that physical reality. Second—and this is sure 
to be contentious—I argue that recursion theory is fundamentally 
a theory of marks. More specifically, rather than taking the marks 
on the tape to be representations of numbers, as has universally 
been assumed in the theoretical tradition, I defend the following 
claim: 

C4. The representation relation for Turing machines, alleged to 
run from marks to numbers, in fact runs the other way, from 
numbers to marks. The truth is 180° off what we have all 
been led to believe.  

In the detailed analysis various kinds of evidence are cited in de-
fense of this non-standard claim. For example: 

1. Unless one understands it this way, one can solve the halt-
ing problem;29 

2. An analysis of history, through Turing’s paper and subse-
quent work, especially including the development of the 

                                                             
29See AOS: Volume III. 
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universal Turing machine, shows how and why the repre-
sentation relation was inadvertently turned upside down 
in this way; 

3. The analysis makes sense of a number of otherwise-
inexplicable practices, including, among other examples: 
(i) the use of the word “semantics” in practicing computer 
science to signify the behaviour engendered by running a 
program,30 (ii) the rising popularity of such conceptual 
tools as Girard’s linear logic, and (iii) the close association 
between theoretical computer science and constructive 
mathematics.  

It follows from this analysis that all use of semantical vocabulary 
in the “official” Theory of Computation is metatheoretic. As a re-
sult, the so-called (mathematical) “Theory of Computation” is not a 
theory of intentional phenomena—in the sense that it is not a theory 
that deals with its subject matter as an intentional phenomena. 

In this way the layers of irony multiply. Whereas the FSM con-
strual fails to meet its own criterion, of being “defined independent 
of semantics,” this second construal does meet (at least the concep-
tual reading of) that first-construal condition. Exactly in achiev-
ing that success, however, the recursion-theoretic tradition thereby 
fails. For computation, as was said above, and as I am prepared to 
argue, is (empirically) an intentional phenomenon. So the EC con-
strual achieves naturalistic palatability at the expense of being 
about the wrong subject matter. 

We are thus led inexorably to the following very strong conclu-
sion: what goes by the name “Theory of Computation” fails not be-
cause it makes false claims about computation, but because it is not 
a theory of computation at all.31, 32 

                                                             
30See footnote 20. 
31The fact that it is not a theory of computing does not entail that it does 
not apply to computers, of course. All it means is that, in that application, it 
is not a theory of them as computers. 

32That the so-called theory of computation fails as a theory of computation 
because it does not deal with computation’s intentionality is a result that 
should be agreed even by someone (e.g., Searle) who believes that compu-
tation’s intentionality is inherently derivative. I myself do not believe that 
computation’s intentionality is inherently derivative, as it happens, but even 
those who think it is must admit that it is still an intentional phenomenon 
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In sum, the longer analysis ultimately leads to a recommenda-
tion that we redraw a substantial portion of our intellectual map. 
What has been (indeed, by most people still is) called a “Theory of 
Computation” is in fact a general theory of the physical world—
specifically, a theory of how hard it is, and what is required, for 
patches of the world in one physical configuration to change into 
another physical configuration. It applies to all physical entities, 
not just to computers. It is no more mathematical than the rest of 
physics, in using (abstract) mathematical structures to model 
(concrete) physical phenomena. Ultimately, therefore, it should be 
joined with physics—because in a sense it is physics. 

We can put this result more positively. Though falsely (and 
misleadingly) labeled, the mathematical Theory of Computation 
has been a spectacular achievement, of which the twentieth-
century should be proud. Indeed, this is important enough that 
we can label it as the fifth major result: 

C5. Though not yet so recognised, the mathematical theory 
based on recursion theory, Turing machines, complexity 
analyses, and the like—widely known as the “Theory of 
Computation”—is neither more nor less than a mathematical 
theory of causality. 

 6 Method 
Similarly strong conclusions can be arrived at by pursuing each of 
the other construals. Indeed, the conclusion from the analysis of 
the digital state machine construal (DSM)—that computation-in-
the-wild is not digital—is, if anything, even more consequential 
than the results derived from either the FSM or the EC critiques. 
Rather than go into more construals here, however, I instead want 
to say a word about method—specifically, about formality. For a 
potent theme underlies all seven critiques: that part of what has 
blinded us to the true nature of computation has to do with the of-
ten pretheoretic assumption that computation and/or computers are 
formal. 

In one way or another, no matter what construal they pledge al-

                                                                                                                                                  
of some sort. For derivative does not mean fake or false. If “derivatively in-
tentional” is not taken to be a substantive constraint, then we are owed 
(e.g., by Searle) an account of what does characterise computation. 
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legiance to, just about everyone thinks that computers are for-
mal—that they manipulate symbols formally, that programs 
(formally) specify formal procedures, that data structures are a 
kind of formalism, that computational phenomena are uniquely 
suited for analysis by formal methods—and so on. In fact the 
computer is often viewed as the crowning achievement of an entire 
“formal tradition”—an intellectual orientation, reaching back 
through Galileo to Plato, that was epitomised in the twentieth 
century in the logic and metamathematics of Frege, Russell, 
Whitehead, Carnap, and Turing, among others. 

This history would suggest that formality is an essential aspect 
of computation. But since the outset, I have not believed that this is 
necessarily right. For one thing, it has never been clear what the 
allegiance to formality is an allegiance to. It is not as if “formal” is 
a technical or theory-internal predicate, after all. People may be-
lieve that developing an idea means formalizing it, and that pro-
gramming languages are formal languages, and that theorem 
provers operate on formal axioms— but few write “FORMAL(X)” in 
their daily equations. Moreover, a raft of different meanings and 
connotations of this problematic term lies just below the surface. 
Far from hurting, this apparent ambiguity has helped to cement 
popular consensus. Freed of the need to be strictly defined (‘formal’ 
is not a formal predicate), formality has been able to serve as a 
lightning rod for a cluster of ontological assumptions, methodo-
logical commitments, and social and historical biases. 

Because it remains tacit, cuts deep, has important historical 
roots, and permeates practice, formality has been an ideal foil, over 
the years, with which to investigate computation. 

Almost a dozen different readings of “formal” can be gleaned 
from informal usage: precise, abstract, syntactic, mathematical, ex-
plicit, digital, a-contextual, non-semantic, among others.33 They are 
alike in foisting recalcitrant theoretical issues onto center stage. 

                                                             
33At one stage I asked a large number of people what they thought “formal” 
meant—not just computer scientists, but also mathematicians, physicists, 
sociologists, etc. It was clear from the replies that the term has very differ-
ent connotations in different fields. Some mathematicians and logicians, 
for example, take it to be pejorative, in contrast to the majority of theoreti-
cal computer scientists, for whom it has an almost diametrically opposed 
positive connotation. 
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Consider explicitness, for example, of the sort that might explain 
such a sentence as “for theoretical purposes we should lay out our 
tacit assumptions in a formal representation.” Not only have im-
plicitness and explicitness stubbornly resisted theoretical analysis, 
but both notions are parasitic on something else we do not under-
stand: general representation.34 Or consider “a-contextual.” 
Where is an overall theory of context in terms of which to under-
stand what it would be to say of something (a logical representa-
tion, say) that it was not contextually dependent? 

Considerations like this suggest that particular readings of 
formality can be most helpfully pursued within the context of the 
general theoretical edifices that have been constructed (more or 
less explicitly) in their terms. Five are particularly important: 

1. The antisemantical reading mentioned above: the idea that 
a symbolic structure (representation, language, program, 
symbol system, etc.) is formal just in case it is manipulated 
independent of its semantics. Paradigmatic cases include so-
called formal logic, in which it is assumed that a theo-
rem—such as MORTAL(SOCRATES)— is derived by an 
automatic inference regimen without regard to the refer-
ence, truth, or even meaning of any of its premises. 

2. A closely allied grammatical or syntactic reading, illus-
trated in such a sentence as “inference rules are defined in 
terms of the formal properties of expressions.” (Note that 
whereas the antisemantical reading is negatively character-
ised, this syntactic one has a positive sense.) 

3. A reading meaning something like determinate or well-
defined—that is, as ruling out all ambiguity and vague-
ness. This construal turns out to be related to a variant of 
the computationally familiar notion of digitality or dis-
creteness. 

                                                             
34On its own, an eggplant cannot be either formal or explicit, at least not in 
its ordinary culinary role, since in that role it is not a representation at all. 
In fact the only way to make sense of calling something non-
representational explicit is as short-hand for saying that it is explicitly rep-
resented (e.g., calling eggplant an explicit ingredient of moussaka as a way of 
saying that the recipe for moussaka mentions eggplant explicitly). 
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4. A construal of “formal” as essentially equivalent to mathe-
matical. 

5. A reading that cross-cuts the other four: formality as ap-
plied to analyses or methods, perhaps with a derivative onto-
logical implication that some subject matters (including 
computation?) are uniquely suited to such analytic tech-
niques. 

The first two (antisemantical and syntactic) are often treated as 
conceptually equivalent, but to do that is to assume that a system’s 
syntactic and semantic properties are necessarily disjoint—which is 
almost certainly false. The relationship between the third (deter-
minate) reading and digitality does not have so much to do with 
what Haugeland (1982) calls “first-order digitality”: the ordinary 
assumption that a system’s states can be partitioned into a deter-
minate set, such as that its future behaviour or essence stems solely 
from membership in one element of that set, without any ambigu-
ity or matter of degree. Rather, vagueness and indefiniteness (as 
opposed to simple continuity) are excluded by a second-order form 
of digitality—digitality at the level of concepts or types, in the 
sense of there being a binary “yes/no” fact of the matter about 
whether any given situation falls under (or is correctly classified 
in terms of) the given concept. And finally, the fourth view—that 
to be formal has something to do with being mathematical, or at 
least with being mathematically characterizable—occupies some-
thing of an ontological middle-realm between the subject-matter 
orientation of the first three and the methodological orientation of 
the fifth. 

The ultimate moral for computer and cognitive science, I argue, 
is similar to the claim made earlier about the seven construals: not 
one of these readings of ‘formal’ correctly applies to the computational 
case. It can never be absolutely proved that computation is not for-
mal, of course, given that the notion of formality is not determi-
nately tied down. What I am prepared to argue (and do argue in 
the full analysis) is the following: no standard construal of for-
mality, including any of those enumerated above, is both (i) sub-
stantive and (ii) true of extant computational practice. Some read-
ings reduce to vacuity, or to no more than physical realizability; 
others break down in internal contradiction; others survive the 
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test of being substantial, but are demonstrably false of current sys-
tems. In the end, one is forced to a sixth major conclusion: 

C6. Computation is not formal. 

It is an incredible historical irony: the computer, darling child of 
the formal tradition, has outstripped the bounds of the very tradi-
tion that gave rise to it. 

 7 The Ontological Wall 
Where does all this leave us? It begins to change the character of 
the project. It is perhaps best described in personal terms. Over 
time, investigations of the sort described above, and consideration 
of the conclusions reached through them, convinced me that none 
of the reigning theories or construals of computation, nor any of 
the reigning methodological attitudes towards computation, will 
ever lead to an analysis strong enough to meet the three criteria 
laid down at the outset. 

It wasn’t always that way. For the first twenty years of the inves-
tigation I remained: 

1. In awe of the depth, texture, scope, pluck, and impact of 
computational practice; 

2. Critical of the inadequate state of the current theoretical 
art; 

3. Convinced that a formal methodological stance stood in 
the way of getting to the heart of the computational ques-
tion; and 

4. Sure in my belief that what was needed, above all else, was a 
non-formal—i.e., situated, embodied, embedded, indexical, 
critical, reflexive, all sorts of other things (it changed, over 
the years)—theory of representation and semantics, in 
terms of which to reconstruct an adequate conception of 
computing. 

In line with this metatheoretic attitude, as the discussion this far 
will have suggested, I kept semantical and representational issues 
in primary theoretical focus. Since, as indicated in the last section, 
the official “Theory of Computation,” derived from recursion and 
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complexity theory, pays no attention to such intentional problems, 
to strike even this much of a semantical stance was to part com-
pany with the center of gravity of the received theoretical tradition. 

You might think that this would be conclusion enough. And 
yet, in spite of the importance and magnitude of these intentional 
difficulties, and in spite of the detailed conclusions suggested 
above, I have gradually come to believe something much more so-
bering: a conclusion that, although not as precisely stated as the 
foregoing, is if anything even more consequential: 

C7. The most serious problems standing in the way of develop-
ing an adequate theory of computation are as much ontologi-
cal as semantical. 

It is not that computation’s semantic problems go away; they re-
main as challenging as ever. It is just that they are joined—on cen-
ter stage, as it were— by even more demanding problems of ontol-
ogy. 

Except that to say “joined” is misleading, as if it were a matter of 
simple addition—as if now there were two problems on the table, 
whereas before there had been just one. No such luck. The two is-
sues (representation and ontology) are inextricably entangled—a 
fact of obstinate theoretical and metatheoretical consequence. 

A methodological consequence will illustrate the problem. Es-
pecially within the analytic tradition (by which I mean to include 
not just analytic philosophy, e.g., of language and mind, but most 
of modern science as well, complete with its formal/mathematical 
methods), it is traditional to analyse semantical or intentional 
systems, such as computers or people, under the following presup-
position: (i) that one can parse or register the relevant theoretical 
situation in advance into a set of objects, properties, types, rela-
tions, equivalence classes, and so on (e.g., into people, heads, sen-
tences, data structures, real-world referents, etc.)—as if this were 
theoretically innocuous—and then (ii), with that ontological 
parse in hand, go on to proclaim this or that or the other thing as 
an empirically justified result. Thus for example one might de-
scribe a mail-delivering robot by first describing an environment 
of offices, hallways, people, staircases, litter, and the like, through 
which the robot is supposed to navigate, and then, taking this 
characterization of its context as given, ask how or whether the 
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creature represents routes, say, or offices, or the location of mail 
delivery stations. 

If one adopts a reflexively critical point of view, however, as I 
have systematically been led to do (and as is mandated by the 
cognitive criterion), one is led inexorably to the following conclu-
sion: that, in that allegedly innocent pretheoretical “set-up” stage, 
one is liable, even if unwittingly, to project so many presupposi-
tions, biases, and advance “clues” about the “answer,” and in gen-
eral to so thoroughly prefigure the target situation, without either 
apparent or genuine justification, that one cannot, or at least should 
not, take any of the subsequent “analysis” terribly seriously. It is a 
general problem that I have elsewhere labelled preemptive registra-
tion.35 It is problematic not just because it rejects standard analy-
ses, but because it seems to shut all inquiry down. What else can 
one do, after all? How can one not parse the situation in advance 
(since it will hardly do to merely whistle and walk away)? And if, 
undaunted, one were to go ahead and parse it anyway, what kind 
of story could possibly serve as a justification? It seems that any 
conceivable form of defense would devolve into another instance of 
the same problem. 

In sum, the experience is less one of facing an ontological chal-
lenge than of running up against a seemingly insuperable onto-
logical wall. Perhaps not of slamming into it, at least in my own 
case; recognition dawned slowly. But neither is the encounter ex-
actly gentle. It is difficult to exaggerate the sense of frustration that 
can come, once the conceptual fog begins to clear, from seeing one’s 
theoretical progress blocked by what seems for all the world to be 
an insurmountable metaphysical obstacle. 

Like many of the prior claims I have made, such as that all ex-
tant theories of computation are inadequate to reconstruct prac-
tice, or that no adequate conception of computing is formal, this 
last claim, that theoretical progress is stymied for lack of an ade-
quate theory of ontology, is a strong statement, in need of corre-
spondingly strong defense. Providing that defense is one of the 
main goals of AOS. In my judgment, to make it perfectly plain, de-
spite the progress that has been made so far, and despite the rec-
ommended adjustments reached in the course of the seven specific 

                                                             
35Smith (in press). 
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analyses enumerated above, we are not going to get to the heart of 
computation, representation, cognition, information, semantics, or 
intentionality, until the ontological wall is scaled, penetrated, 
dismantled, or in some other way defused. 

One reaction to the wall might be depression. Fortunately, 
however, the prospects are not so bleak. For starters, there is some 
solace in company. It is perfectly evident, once one raises one’s 
head from the specifically computational situation and looks 
around, that computer scientists, cognitive scientists, and artificial 
intelligence researchers are not the only ones running up against 
severe ontological challenges. Similar conclusions are being re-
ported from many other quarters. The words are different, and the 
perspectives complementary, but the underlying phenomena are 
the same. 

Perhaps the most obvious fellow travelers are literary critics, an-
thropologists, and other social theorists, vexed by what analytic 
categories to use in understanding people or cultures that, by such 
writers’ own admission, comprehend and constitute the world us-
ing concepts alien to the theorists’ own. What makes the problem 
particularly obvious, in these cases, is the potential for conceptual 
clash between theorist’s and subject’s world view—a clash that can 
easily seem paralyzing. One’s own categories are hard to justify, 
and reek of imperialism; it is at best presumptuous, and at worst 
impossible, to try to adopt the categories of one’s subjects; and it is 
manifestly impossible to work with no concepts at all. So it is un-
clear how, or even whether, to proceed. 

But conceptual clash, at least outright conceptual clash, is not 
the only form in which the ontological problem presents itself. 
Consider the burgeoning interest in self-organizing and complex 
systems mentioned earlier, currently coalescing in a somewhat 
renegade subdiscipline at the intersection of dynamics, theoretical 
biology, and artificial life. This community debates the “emer-
gence of organization,” the units on which selection operates, the 
structure of self-organizing systems, the smoothness or roughness 
of fitness landscapes, and the like. In spite of being disciplinarily 
constituting, however, these discussions are conducted in the ab-
sence of adequate theories of what organization is, of what a “unit” 
consist in, of how “entities” arise (as opposed to how they survive), 
of how it is determined what predicates should figure in charac-
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terizing a fitness landscape as rough or smooth, and so on. The 
ontological lack is to some extent recognised in increasingly vocal 
calls for “theories of organization.”36 But the calls have not yet 
been answered. 

Ontological problems have also plagued physics for years, at 
least since foundational issues of interpretation were thrown into 
relief by the developments of relativity and quantum mechanics 
(including the perplexing wave-particle duality, and the distinc-
tion between “classical” and “quantum” world-views). They face 
connectionist psychologists, who, proud of having developed ar-
chitectures that do not rely on the manipulation of formal symbol 
structures encoding high-level concepts, and thus of having 
thereby rejected propositional content, are nevertheless at a loss as 
to say what their architectures do represent. And then of course 
there are communities that tackle ontological questions directly: 
not just philosophy, but fields as far-flung as poetry and art, 
where attempts to get in, around, and under objects have been pur-
sued for centuries. 

So there are fellow-travelers. But no one, so far as I know, has 
developed an alternative ontological/metaphysical proposal in 
sufficient detail and depth to serve as a practicable foundational 
for a revitalised scientific practice. Unlike some arguments for re-
alism or irrealism, unlike some briefs pro or con this or that phi-
losophy of science, and unlike as well the deliberations of science 
studies and other anthropological and sociological and historical 
treatises about science, the task I have in mind is not the increas-
ingly common meta-metaphysical one—of arguing for or against 
a way of proceeding, if one were ever to proceed, or arguing that 
science proceeds in this or that way. Rather, the concrete demand 
is for a detailed, worked-out account—an account that “goes the 
distance,” in terms of which accounts of particular systems can be 
formulated, and real-world construction proceed. 

For this purpose, with respect to the job of developing an alter-
native metaphysics, the computational realm has unparalleled ad-
vantage. Midway between matter and mind, computation stands 
in excellent stead as a supply of concrete cases of middling com-
plexity—what in computer science is called an appropriate “vali-

                                                             
36A theory of organization is simply metaphysics with a business plan. 
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dation suite”—against which to test the mettle of specific meta-
physical hypotheses. “Middling” in the sense of neither being so 
simple as to invite caricature, nor so complex as to defy compre-
hension. It is the development of a laboratory of this middling 
sort, half-way between the frictionless pucks and inclined planes 
of classical mechanics and the full-blooded richness of the human 
condition, that makes computing such an incredibly important 
stepping-stone in intellectual history. 

Crucially, too, computational examples are examples with 
which we are as much practically as theoretically familiar (we 
build systems better than we understand them). Indeed—and by 
no means insignificantly—there are many famous divides with 
respect to which computing sits squarely in the middle. 

 8 Summary 
Thus the ante is upped one more time. Not only must an adequate 
account of computation (any account that meets the three criteria 
with which we started) include a theory of semantics; it must also 
include a theory of ontology. Not just intentionality is at stake, in 
other words; so is metaphysics. But still we are not done. For on 
top of the foregoing strong conclusions lies an eighth one—if any-
thing even stronger: 

C8. Computation is not a subject matter 

In spite of everything I said about a comprehensive, empirical, con-
ceptually founded “theory of computing,” that is, and in spite of 
everything I myself have thought for decades, I no longer believe 
that there is a distinct ontological category of computing or com-
putation, one that will be the subject matter of a deep and explana-
tory and intellectually satisfying theory. Close and sustained 
analysis, that is, suggests that the things that Silicon Valley calls 
computers, the things that perforce are computers, do not form a 
coherent intellectually delimited class. Computers turn out in the 
end to be rather like cars: objects of inestimable social and political 
and economic and personal importance, but not in and of them-
selves, qua themselves, the focus of enduring scientific or intellec-
tual inquiry—not, as philosophers would say, a natural kind. 

Needless to say, this is another extremely strong claim—one 
over which some readers may be tempted to rise up in arms. At the 
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very least, it is easy to feel massively let down, after all this work. 
For if I am right, it is not just that we currently have no satisfying 
intellectually productive theory of computing, of the sort I initially 
set out to find. Nor is it just that, through this whole analysis, I 
have failed to provide one. It is the even stronger conclusion that 
such projects will always fail; we will never have such a theory. So 
all the previous conclusions must be revised. It is not just that a 
theory of computation will not supply a theory of semantics, for ex-
ample, as Newell has suggested; or that it will not replace a theory 
of semantics; or even that it will not depend or rest on a theory of 
semantics, as intimated at the end of section 4. It will do none of 
these things because there will be no theory of computation at all. 

Given the weight that has been rested on the notion of computa-
tion—not just by me, or by computer science, or even by cognitive 
science, but by the vast majority of the surrounding intellectual 
landscape—this (like the previous conclusion about ontology) 
might seem like a negative result. (Among other things, you might 
conclude I had spent these thirty years in vain.) But in fact there is 
no cause for grief; for the negativity of the judgment is only super-
ficial, and in fact almost wholly misleading. In fact I believe some-
thing almost wholly opposite, which we can label as a (final) con-
clusion in its own right: 

C9. The superficially negative conclusion (that computing is not 
a subject matter) makes the twentieth-century arrival of com-
putation onto the intellectual scene a vastly more interesting 
and important phenomenon than it would otherwise have been. 

On reflection, it emerges that the fact that neither computing nor 
computation will sustain the development of a theory is by far the 
most exciting and triumphal conclusion that the computer and 
cognitive sciences could possibly hope for. 

Why so? Because I am not saying that computation-in-the-
wild is intrinsically a-theoretical— and thus that there will be no 
theory of these machines, at all, when day is done. Rather, the 
claim is that such theory as there is—and I take it that there re-
mains a good chance of such a thing, as much as in any domain of 
human activity—will not be a theory of computation or computing. 
It will not be a theory of computation because computers per se, as I 
have said, do not constitute a distinct, delineated subject matter. 
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Rather, what computers are, I now believe—and what the consid-
erable and impressive body of practice associated with them 
amounts to—is neither more nor less than the full-fledged social 
construction37 and development of intentional artifacts. That means 
that the range of experience and skills and theories and results 
that have been developed within computer science—astoundingly 
complex and far-reaching, if still inadequately articulated—is 
best understood as practical, synthetic, raw material for no less 
than full theories of causation, semantics, and ontology—that is, 
for metaphysics full bore. 

Where does that leave things? Substantively, it leads inexora-
bly to the conclusion that metaphysics, ontology, epistemology, 
and intentionality are the only integral intellectual subject matters 
in the vicinity of either computer or cognitive science. Methodol-
ogically, it means that our experience with constructing computa-
tional (i.e., intentional) systems may open a window onto some-
thing to which we would not otherwise have any access: the 
chance to witness, with our own eyes, how intentional capacities 
can arise in a “merely” physical mechanism. 

It is sobering, in retrospect, to realise that our preoccupation with 
the fact that computers are computational has been the major theo-
retical block in the way of our understanding how important 
computers are. They are computational, of course; that much is 
tautological. But only when we let go of the conceit that that fact is 
theoretically important—only when we let go of the “c-word”—will 
we finally be able to see, without distraction, and thereby, perhaps, 
at least partially to understand, how a structured lump of clay can 
sit up and think. 

And so that, for a decade or so, has been my project: to take, 
from the ashes of computational critique, enough positive morals 
to serve as the inspiration, basis, and testing ground for an en-
tirely new metaphysics. A story of subjects, a story of objects, a 
story of reference, a story of history. 

For sheer ambition, physics does not hold a candle to computer 
or cognitive—or rather, as we should now call it, in order to rec-
ognise that we are dealing with something on the scale of natural 
science—epistemic or intentional science. Hawking (1988) and 
Weinberg (1994) are wrong. It is we, not the physicists, who must 
develop a theory of everything. 
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Procedural Reflection in Programming Languages
† 

2a — Abstracts, Preface, and Prologue 

 1 Abstract 
We show how a computational system can be constructed to “rea-
son,” effectively and consequentially, about its own inferential 
processes.a The analysis proceeds in two parts. First, we consider 
the general question of computational semantics, rejecting tradi-
tional approaches, and arguing that the declarative and procedural 
aspects of computational symbols (what they stand for, and what 
behaviour they engender) should be analysed independently, in 
order that they may be coherently related. Second, we investigate 
self-referential behaviour in computational processes, and show 
how to embed an effective procedural model of a computational 
calculus within that calculus (a model not unlike a meta-circular 
interpreter, but connected to the fundamental operations of the 
machine in such a way as to provide, at any point in a computa-
tion, fully articulated descriptions of the state of that computation, 
for inspection and possible modification). In terms of the theories 
that result from these investigations, we present a general architec-
ture for procedurally reflective processes, able to shift smoothly 
between dealing with a given subject domain, and dealing with 
their own reasoning processes over that domain. 

An instance of the general solution is worked out in the context 
of an applicative language. Specifically, we present three successive 

                                                             
†”Prologue”, Brian Cantwell Smith, Procedural Reflection in Programming 
Languages, doctoral dissertation submitted Jan 25, 1982 in the Laboratory 
for Computer Science, Dept. of Electrical Engineering and Computer Sci-
ence, Massachusetts Institute of Technology (MIT), Cambridge, MA. Re-
printed as Technical Report MIT-LCS-TR-272, Laboratory for Computer 
Science, MIT, Cambridge, MA, 1982. Available at:  
 http://publications.csail.mit.edu/lcs/specpub.php?id=840 

aNote: footnotes to the original versions of these Abstracts, the Preface, 
and the Prologue are numbered sequentially (1–14); footnotes added for 
this publication are identified by letter (a–m). 
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dialects of Lisp: 1-Lisp, a distillation of current practice, for com-
parison purposes; 2-Lisp, a dialect constructed in terms of our ra-
tionalised semantics, in which the concept of evaluation is rejected 
in favour of independent notions of simplification and reference, 
and in which the respective categories of notation, structure, se-
mantics, and behaviour arc strictly aligned; and 3-Lisp, an exten-
sion of 2-Lisp endowed with reflective powers. 

 2 Extended Abstract 
We show how a computational system can be constructed to “rea-
son” effectively and consequentially about its own inference proc-
esses. Our approach is to analyse self-referential behaviour in com-
putational systems, and to propose a theory of procedural reflec-
tion that enables any programming language to be extended in 
such a way as to support programs able to access and manipulate 
structural descriptions of their own operations and structures. In 
particular, one must encode an explicit theory of such a system 
within the structures of the system, and then connect that theory 
to the fundamental operations of the system in such a way as to 
support three primitive behaviours. First, at any point in the course 
of a computation, fully articulated descriptions of the state of the 
reasoning process must be available for inspection and modifica-
tion. Second, it must be possible at any point to resume an arbi-
trary computation in accord with such (possibly modified) the-
ory-relative descriptions. Third, procedures that reason with de-
scriptions of the processor state must themselves be subject to de-
scription and review, to arbitrary depth. Such reflective abilities 
allow a process to shift smoothly between dealing with a given 
subject domain, and dealing with its own reasoning processes over 
that domain. 

Crucial in the development of this theory is a comparison of the 
respective semantics of programming languages (such as Lisp and 
Algol) and declarative languages (such as logic and the l-
calculus); we argue that unifying these traditionally separate dis-
ciplines clarifies both, and suggests a simple and natural ap-
proach to the question of procedural reflection. More specifically, 
the semantical analysis of computational systems should comprise 
independent formulations of declarative import (what symbols 
stand for) and procedural consequence (what effects and results 
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are engendered by processing them), although the two semantical 
treatments may, because of side-effect interactions, have to be for-
mulated in conjunction. When this approach is applied to a func-
tional language it is shown that the traditional notion of evalua-
tion is confusing and confused, and must be rejected in favour of 
independent notions of reference and simplification. In addition, 
we defend a standard of category alignment: there should be a 
systematic correspondence between the respective categories of no-
tation, abstract structure, declarative semantics, and procedural 
consequence (a mandate satisfied by no extant procedural formal-
ism). It is shown how a clarification of these prior semantical and 
aesthetic issues enables a procedurally reflective dialect to be 
clearly defined and readily constructed. 

An instance of the general solution is worked out in the context 
of an applicative language, where the question reduces to one of 
defining an interpreted calculus able to inspect and affect its own 
interpretation. In particular, we consider three successive dialects 
of Lisp: 1-Lisp, a distillation of current practice for comparison 
purposes; 2-Lisp, a dialect categorically and semantically rational-
ised with respect to an explicit theory of declarative semantics for s-
expressions; and 3-Lisp, a derivative of 2-Lisp endowed with full 
reflective powers. 1-Lisp, like all Lisp dialects in current use, is at 
heart a first-order language, employing meta-syntactic facilities 
and dynamic variable scoping protocols to partially mimic higher-
order functionality. 2-Lisp like Scheme and the l-calculus, is 
higher-order: it supports arbitrary function designators in argu-
ment position, is lexically scoped, and treats the function position 
of an application in a standard extensional manner. Unlike 
Scheme, however, the 2-Lisp processor is based on a regimen of 
normalisation, taking each expression into a normal-form co-
designator of its referent, where the notion of normal-form is in 
part defined with respect to that referent’s semantic type, not (as in 
the case of the l-calculus) solely in terms of the further non-
applicability of a set of syntactic reduction rules. 2-Lisp normal-
form designators are environment-independent and side-effect 
free; thus the concept of a closure can be reconstructed as a normal-
form function designator. In addition, since normalisation is a 
form of simplification, and is therefore designation-preserving, 
meta-structural expressions are not de-referenced upon normali-
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sation, as they are when evaluated. Thus we say that the 2-Lisp 
processor is semantically flat, since it stays at a semantically fixed 
level (although explicit referencing and de-referencing primitives 
are also provided, to facilitate explicit level shifts). Finally, because 
of its category alignment, argument objectification (the ability to 
apply functions to a sequence of arguments designated collectively 
by a single term) can be treated in the 2-Lisp base-level language, 
without requiring resort to meta-structural machinery. 

3-Lisp is straightforwardly defined as an extension of 2-Lisp, 
with respect to an explicitly articulated procedural theory of 3-
Lisp embedded in 3-Lisp structures. This embedded theory, called 
the reflective model, though superficially resembling a meta-
circular interpreter, is causally connected to the workings of the 
underlying calculus in crucial and primitive ways. Specifically, re-
flective procedures are supported that bind as arguments (designa-
tors of) the continuation and environment structure of the proces-
sor that would have been in effect at the moment the reflective pro-
cedure was called, had the machine been running all along in virtue 
of the explicit processing of that reflective model.a Because reflection 
may recurse arbitrarily, 3-Lisp is most simply defined as an infi-
nite tower of 3-Lisp processes, each engendering the process im-
mediately below it. Under such an account, the use of reflective 
procedures amounts to running programs at arbitrary levels in 
this reflective hierarchy. Both a straightforward implementation 
and a conceptual analysis are provided to demonstrate that such a 
machine is nevertheless finite. 

The 3-Lisp reflective model unifies three programming lan-
guage concepts that have formerly been viewed as independent: 
meta-circular interpreters, explicit names for the primitive inter-
pretive procedures (EVAL and APPLY in standard Lisp dialects), and 
procedures that access the state of the implementation (typically 
provided, as part of a programming environment, for debugging 
purposes). We show how all such behaviours can be defined 
within a pure version of 3-Lisp (i.e., independent of implementa-
tion), since all aspects of the state of any 3-Lisp process are avail-
able, with sufficient reflection, as objectified entities within the 3-
Lisp structural field. 

                                                             
aEmphasis added.  
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 3 Preface 
The possibility of constructing a reflective calculus first struck me 
in June 1976, at the Xerox Palo Alto Research Center (PARC), 
where I was spending a summer working with the KRL representa-
tion language of Bobrow and Winograd.1 As an exercise to learn 
the new language, I had embarked on the project cf representing 
KRL in KRL; it seemed to me that this “double-barreled” approach, 
in which I would have both to use and to mention the language, 
would be a particularly efficient way to unravel its intricacies. 
Though that exercise was ultimately abandoned, I stayed with it 
long enough to become intrigued by the thought that one might 
build a system that was self-descriptive in an important way (cer-
tainly in a way in which my KRL project was not). More specifi-
cally, I could dimly envisage a computational system in which 
what happened took effect in virtue of declarative descriptions of 
what was to happen, and in which the internal structural condi-
tions were represented in declarative descriptions of those internal 
structural conditions. In such a system a program could with 
equal ease access all the basic operations and structures either di-
rectly or in terms of completely (and automatically) articulated 
descriptions of them. The idea seemed to me rather simple (as it 
still does); furthermore, for a variety of reasons I thought that 
such a reflective calculus could itself be rather simple—in some 
important ways simpler than a non-reflective formalism (this too I 
still believe). Designing such a formalism, however, no longer seems 
as straightforward as I thought at the time; this dissertation 
should be viewed as the first report emerging from the research 
project that ensued. 

Most of the five years since 1976 have been devoted to initial 
versions of my specification of such a language, called Mantiq, 
based on these original hunches.b As mentioned in the first para-
graph of chapter 1, there are various non-trivial goals that must be 
met by the designer of any such formalism, including at least a 
tentative solution to the knowledge representation problem. Fur-
thermore, in the course of its development, MANTIQ has come to 

                                                             
1‘KRL’ for ‘Knowledge Representation Language; see Bobrow and Wi-
nograd (1977) and Bobrow et al. (1977). 

b«Say something about the provenance of the name, and the fate of the pro-
ject.» 
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rest on some additional hypotheses above and beyond those men-
tioned above (including, for example, a sense that it will be possi-
ble within a computational setting to construct a formalism in 
which syntactic identity and intensional identity can be identi-
fied, given some appropriate, but independently specified, theory of 
intensionalityc). Probably the major portion of my attention to 
date has focused on these intensional aspects of the MANTIQ ar-
chitecture. 

It was clear from the outset that no dialect of Lisp (or of any 
other purely procedural calculus) could serve as a full reflective 
formalism; purely declarative languages like logic or the l-
calculus were dismissed for similar reasons.d In February of 1981, 
however, I decided that it would be worth focusing on Lisp, by way 
of an example, in order to work out the details of a specific subset 
of the issues with which MANTIQ would have to contend. In par-
ticular, I recognised that many of the questions of reflection could 
be profitably studied in a (limited) procedural dialect, in ways 
that would ultimately illuminate the larger programme. Further-
more, to the extent that Lisp could serve as a theoretical vehicle, it 
seemed a good project; it would be much easier to develop, and 
even more so to communicate, solutions in a formalism at least 
partially understood. 

The time from the original decision to look at procedural reflec-
tion (and its concomitant emphasis on semantics—I realised from 
investigations of MANTIQ that semantics would come to the fore in 
all aspects of the overall enterprise), to a working implementation 
of 3-Lisp, was only a few weeks. Articulating why 3-Lisp was the 
way it was, however—i.e., formulating in plain English the con-
cepts and categories on which the design was founded—required 
quite intensive work for the remainder of the year. A first draft of 
the dissertation was completed at the end of December 1981; the 
implementation remained essentially unchanged during the 
course of this writing (the only substantive alteration was the idea 

                                                             
c«Give an example of what this meant and means, why it is important, what 
it would require [[substantial relaxation algorithms]], why it has not yet 
been achieved, why it is still something worth pursuing, etc. May need to 
explain what ‘intensionality’ means.» 

d«Refer to—and perhaps include, if I still have it?—the reflective l-calculus 
that I subsequently defined [[for Barwise]]» 
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of treating recursion in terms of explicit Y-operators). Thus—and 
I suspect there is nothing unusual in this experience—
formulating an idea required approximately ten times more work 
than embodying it in a machine; perhaps more surprisingly, all of 
that effort in formulation occurred after the implementation was 
complete, [and led to no revisions in the basic design]. We some-
times hear that writing computer programs is intellectually hygi-
enic because it requires that we make our ideas completely explicit. 
I have come to disagree rather fundamentally with this view. Cer-
tainly writing a program does not force one to one make one’s 
ideas articulate, although it is a useful first step. More seriously, 
however, it is often the case that the organising principles and 
fundamental insights contributing to the coherence of a program 
are not explicitly encoded within the structures comprising that 
program. The theory of declarative semantics embodied in 3-Lisp, 
for example, was initially tacit—a fact perhaps to be expected, since 
only procedural consequence is explicitly encoded in an imple-
mentation. Curiously, this is one of the reasons that building a 
fully reflective formalism (as opposed to the limited procedurally 
reflective languages considered here) is difficult: in order to build 
a general reflective calculus, one must embed within it a fully ar-
ticulated theory of one’s understanding of it. This will take some 
time.  
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 4 Prologue 
It is a striking fact about human cognition that we can think not 
only about the world around us, but also about our ideas, our ac-
tions, our feelings, our past experience. This ability to reflect lies 
behind much of the subtlety and flexibility with which we deal 
with the world; it is an essential part of mastering new skills, of re-
acting to unexpected circumstances, of short-range and long-
range planning, of recovering from mistakes, of extrapolating from 
past experience, and so on and so forth. Reflective thinking char-
acterises mundane practical matters and delicate theoretical dis-
tinctions. We have all paused to review past circumstances, such 
as conversations with guests or strangers, to consider the appro-
priateness of our behaviour. We can remember times when we 
stopped and consciously decided to consider a set of options, say 
when confronted with a fire or other emergency. We understand 
when someone tells us to believe everything a friend tells us, unless 
we know otherwise. In the course of philosophical discussion we 
can agree to distinguish views we believe to be true from those we 
have no reason to believe are false. In all these cases the subject 
matter of our contemplation at the moment of reflection includes 
our remembered experience, our private thoughts, and our reason-
ing patterns. 

The power and universality of reflective thinking has caught 
the attention of the cognitive science community—indeed, once 
alerted to this aspect of human behaviour, theorists find evidence 
of it almost everywhere. Though no one can yet say just what it 
comes to, crucial ingredients would seem to be the ability to recall 
memories of a world experienced in the past and of one’s own par-
ticipation in that world, the ability to think about a phenomenal 
world, hypothetical or actual, that is not currently being experi-
enced (an ability presumably mediated by our knowledge and be-
lief), and a certain kind of true self-reference: the ability to con-
sider both one’s actions and the workings of one’s own mind. This 
last aspect—the self-referential aspect of reflective thought—has 
sparked particular interest for cognitive theorists, both in psychol-
ogy (under the label meta-cognition) and in artificial intelligence 
(in the design of computational systems possessing inchoate re-
flective powers, particularly as evidenced in a collection of ideas 
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loosely allied in their use of the term “meta”: meta-level rules, 
meta-descriptions, and so forth). 

In artificial intelligence, the focus on computational forms of 
self-referential reflective reasoning has become particnlarly cen-
tral. Although the task of endowing computational systems with 
subtlety and flexibility has proved difficult, we have had some suc-
cess in developing systems with a moderate grasp of certain do-
mains: electronics, bacteremia, simple mechanical systems, etc. 
One of the most recalcitrant problems, however, has been that of 
developing flexibility and modularity (in some cases even simple 
effectiveness) in the reasoning processes that use this world 
knowledge. Though it has been possible to construct programs 
that perform a specific kind of reasoning task (say, checking a cir-
cuit or parsing a subset of natural language syntax), there has 
been less success in simulating “common sense,” or in developing 
programs able to figure out what to do, and how to do it, in either 
general or novel situations. If the course of reasoning—if the 
problem solving strategies and the hypothesis formation behav-
iour—could itself be treated as a valid subject domain in its own 
right, then (at least so the idea goes) it might be possible to con-
struct systems that manifested the same modularity about their 
own thought processes that they manifest about their primary 
subject domains. A simple example might be an electronics “expert” 
able to choose an appropriate method of tackling a particular cir-
cuit, depending on a variety of questions about the relationship 
between its own capacities and the problem at hand: whether the 
task was primarily one of design or analysis or repair, what strate-
gies and skills it knew it had in such areas, how confident it was 
in the relevance of specific approaches based on, say, the complex-
ity of the circuit, or on how similar it looked compared with cir-
cuits it already knew. Expert human problem-solvers clearly dem-
onstrate such reflective abilities, and it appears more and more cer-
tain that powerful computational problem solvers will have to pos-
sess them as well. 

No one would expect potent skills to arise automatically in a re-
flective system; the mere ability to reason about the reasoning proc-
ess will not magically yield systems able to reflect in powerful and 
flexible ways. On the other hand, the demonstration of such an 
ability is clearly a pre-requisite to its effective utilisation. Further-
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more, many reasons are advanced in support of reflection, as well 
as the primary one (the hope of building a system able to decide 
how to structure the pattern of its own reasoning). It has been ar-
gued, for example, that it would be easier to construct powerful 
systems in the first place (it would seem you could almost tell them 
how to think), to interact with them when they fail, to trust them if 
they could report on how they arrive at their decisions, to give 
them “advice” about how to improve or discriminate, as well as to 
provide them with their own strategies for reacting to their history 
and experience. 

There is even, as part of the general excitement, a tentative sug-
gestion on how such a self-referential reflective process might be 
constructed. This suggestion—nowhere argued but clearly in 
evidence in several recent proposals—is a particular instance of a 
general hypothesis, adopted by most A.I. researchers, that we will 
call the Knowledge Representation Hypothesis. It is widely 
held in computational circles that any process capable of reason-
ing intelligently about the world must consist in part of a field of 
structures, of a roughly linguistic sort, which in some fashion rep-
resent whatever knowledge and beliefs the process may be said to 
possess. For example, according to this view, since I know that the 
sun sets each evening, my “mind” must contain (among other 
things) a language-like or symbolic structure that represents this 
fact, inscribed in some kind of internal code. There are various as-
sumptions that go along with this view: there is for one thing pre-
sumed to be an internal process that “runs over” or “computes with” 
these representational structures, in such a way that the intelligent 
behaviour of the whole results from the interaction of parts. In ad-
dition, this ingredient process is required to react only to the 
“form” or “shape” of these mental representations, without regard 
to what they mean or represent—this is the substance of the claim 
that computation involves formal symbol manipulation. Thus my 
thought that, for example, the sun will soon set, would be taken to 
emerge from an interaction in my mind between an ingredient 
process and the shape or “spelling” of various internal structures 
representing my knowledge that the sun does regularly set each 
evening, that it is currently tea time, and so forth. 

The knowledge representation hypothesis may be summarised 
as follows: 
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 Knowledge Representation Hypothesis: Any mechanically 
embodied intelligent process will be comprised of structural in-
gredients that (a) we as external observers naturally take to 
represent a propositional account of the knowledge that the 
overall process exhibits, and (b) independent of such external 
semantical attribution, play a formal but causal and essential 
role in engendering the behaviour that manifests that knowl-
edge. 

Thus for example if we felt disposed to say that some process knew 
that dinosaurs were warm-blooded, then we would find (accord-
ing, presumably, to the best explanation of how that process 
worked) that a certain computational ingredient in that process 
was understood as representing the (propositional) fact that dino-
saurs were warm-blooded, and furthermore, that this very ingre-
dient played a role, independent of our understanding of it as rep-
resentational, in leading the process to behave in whatever way in-
spired us to say that it knew that fact. Presumably we would be 
convinced by the manner in which the process answered certain 
questions about their likely habitat, by assumptions it made about 
other aspects of their existence, by postures it adopted on sugges-
tions as to why they may have become extinct, etc. 

A careful analysis will show that. to the extent that we can make 
sense of it, this view that knowing is representational is far less evi-
dent—and perhaps, therefore, far more interesting—than is 
commonly believed. To do it justice requires considerable care: ac-
counts in cognitive psychology and the philosophy of mind tend 
to founder on simplistic models of computation. and artificial in-
telligence treatments often lack the theoretical rigour necessary to 
bring the essence of the idea into plain view. Nonetheless, conclu-
sion or hypothesis, it permeates current theories of mind, and has 
in particular led researchers in artificial intelligence to propose a 
spate of computational languages and calculi designed to under-
write such representation. The common goal is of course not so 
much to speculate on what is actually represented in any particu-
lar situation as to uncover the general and categorical form of 
such representation. Thus no one would suggest how anyone ac-
tually represents facts about tea and sunsets: rather, they might 
posit the general form in which such beliefs would be “written” 
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(along with other beliefs, such as that Lhasa is in Tibet, and that p 
is an irrational number). Constraining all plausible suggestions, 
however, is the requirement that they must be able to demonstrate 
how a particular thought could emerge from such representa-
tions—this is a crucial meta-theoretic characteristic of artificial 
intelligence research. It is traditionally considered insufficient 
merely to propose true theories that do not enable some causally 
effective mechanical embodiment. The standard against which 
such theories must ultimately judged, in other words, is whether 
they will serve to underwrite the construction of demonstrable, be-
having artefacts. Under this general rubric knowledge representa-
tion efforts differ markedly in scope, in approach, and in detail; 
they differ on such crucial questions as whether or not the mental 
structure are modality specific (one for visual memory, another for 
verbal, for example). In spite of such differences, however, they 
manifest the shared hope that an attainable first step towards a 
full theory of mind will be the discovery of something like the 
structure of the “mechanical mentalese” in which our beliefs are 
inscribed. 

It is natural to ask whether the knowledge representation hy-
pothesis deserves our endorsement, but this is not the place to pur-
sue that difficult question. Before it can fairly be asked, we would 
have to distinguish a strong version claiming that knowing is nec-
essarily representational from a weaker version claiming merely 
that it is possible to build a representational knower. We would 
run straight into all the much-discussed but virtually intractable 
questions about what would be required to convince us that an ar-
tificially constructed process exhibited intelligent behaviour. We 
would certainly need a definition of the word ‘represent,’ about 
which we will subsequently have a good deal to say. Given the cur-
rent (minimal) state of our understanding, I myself see no reason 
to subscribe to the strong view, and remain skeptical of the weak 
version as well.b But one of the most difficult questions is merely to 
ascertain what the hypothesis is actually saying—thus my inter-
est in representation is more a concern to make it clear than it is to 
defend or deny it The entire present investigation, therefore, will 
be pursued under this hypothesis, not because we grant it our al-

                                                             
b… «talk about this» … 
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legiance, but merely because it deserves our attention. 
Given the representation hypothesis, the suggestion as to how to 

build self-reflective systems—a suggestion we will call the Reflec-
tion Hypothesis—can be summarised as follows:h 

 Reflection Hypothesis: In as much as a computational proc-
ess can be constructed to reason about an external world in vir-
tue of comprising an ingredient process (interpreter) formally 
manipulating representations of that world, so too a computa-
tional process could be made to reason about itself in virtue of 
comprising an ingredient process (interpreter) formally ma-
nipulating representations of its own operations and structures. 

Thus the task of building a computationally reflective system is 
thought to reduce to, or at any rate to include, the task of provid-
ing a system with formal representations of its own constitution 
and behaviour. Hence a system able to imagine a world where 
unicorns have wings would have to construct formal representa-
tions of that fact; a system considering the adoption of a hypothe-
sis-and-test style of investigation would have to construct formal 
structures representing such an inference regime. 

Whatever its merit, there is ample evidence that researchers arc 
taken with this view. Systems such as Weyhrauch’s FOL, Doyle’s 
TMS, McCarthy’s ADVICE-TAKER, Hayes’ GOLUM, and Davis’ 
TERESIUS arc particularly explicit exemplars of just such an ap-
proach.2 In Weyhrauch’s system, for example, sentences in first-
order logic arc constructed that axiomatize the behaviour of the 
Lisp procedures used in the course of the computation (FOL is a 
prime example of the dual-calculus approach mentioned earlier). 
In Doyle’s systems, explicit representations of the dependencies be-
tween beliefs and of the “reasons” the system accepts a conclusion 
play a causal role in the inferential process. Similar remarks hold 
for the other projects mentioned, as well as for a variety of other 
current research. In addition, it turns out on scrutiny that a great 
deal of current computational practice can be seen as dealing, in 
one way or another, with reflective abilities, particularly as exem-

                                                             
h«Note that the numbered indentation of the following paragraphs has 
been added, for clarity.» 

2Weyhrauch (1978), Doyle (1979), McCarthy (1968), Hayes (1979), and 
Davis (1980a), respectively. 
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plified by computational structures representing other computa-
tional structures. We constantly encounter examples: the wide-
spread use of macros in Lisp, the use of meta-level structures in 
representation languages, the use of explicit non-monotonic infer-
ence rules, the popularity of meta-level rules in planning systems.3 
Such a list can be extended indefinitely; in a recent symposium 
Brachman reported that the love affair with “meta-level reasoning” 
was the most important theme of knowledge representation re-
search in the last decade.4 

 4a The Relationship Between Reflection & Representation 
The manner in which this discussion has been presented so far 
would seem to imply that the interest in reflection and the adop-
tion of a representational stance are theoretically independent posi-
tions. I have argued in this way for a reason: to make clear that the 
two subjects are not the same. There is no a priori reason to believe 
that even a fully representational system should in any way be re-
flective or able to make anything approximating a reference to it-
self; similarly, there is no proof that a powerfully self-referential 
system need be constructed of representations. However—and this 
is the crux of the matter—the reason to raise both issues together 
is that they are surely, in some sense, related. If nothing else, the 
word ‘representation’ comes from ‘re’ plus ‘present’, and the ability 
to re-present a world to itself is undeniably a crucial, if not the cru-
cial, ingredient in reflective thought. If I reflect on my childhood, I 
re-present to myself my school and the rooms of my house; if I re-
flect on what I will do tomorrow, I bring into the view of my 
mind’s eye the self I imagine that tomorrow I will be. If we take 
“representation” to describe an ability rather than a structure, re-
flection surely involves representation (although—and this 
should be kept clearly in mind—the “representation” of the knowl-
edge representation hypothesis refers to ingredient structures, not 
to an activity). 

It is helpful to look at the historical association between these 
                                                             
3For a discussion of macros see the various sources on Lisp mentioned in 
note 16 of chapter 1; meta-level rules in representation were discussed in 
Brachman and Smith (1980); for a collection of papers on non-monotonic 
reasoning see Bobrow (1980); macros are discussed in Pitman (1980). 

4Brachman (1980). 
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ideas, as well to search for commonalities in content. In the early 
days of artificial intelligence, a search for the general patterns of 
intelligent reasoning led to the development of such general sys-
tems as Newell and Simon’s GPS, predicate logic theorem provers, 
and so forth.5 The descriptions of the subject domains were mini-
mal but were nonetheless primarily declarative, particularly in the 
case of the systems based on logic. However it proved difficult to 
make such general systems effective in particular cases: so much of 
the “expertise” involved in problem solving seems domain and task 
specific. In reaction against such generality, therefore, a procedural 
approach emerged in which the primary focus was on the manipu-
lation and reasoning about specific problems in simple worlds.6 
Though the procedural approach in many ways solved the prob-
lem of undirected inferential meandering, it too had problems: it 
proved difficult to endow systems with much generality or modu-
larity when they were simply constituted of procedures designed 
to manifest certain particular skills. In reaction to such brittle and 
parochial behaviour, researchers turned instead to the develop-
ment of processes designed to work over general representations of 
the objects and categories of the world in which the process was 
designed to be embedded. Thus the representation hypothesis 
emerged in the attempt to endow systems with generality, modu-
larity, flexibility, and so forth with respect to the embedding 
world, but to retain a procedural effectiveness in the control com-
ponent.7 In other words, in terms of our main discussion, repre-
sentation as a method emerged as a solution to the problem of pro-
viding general and flexible ways of reflecting (not self-
referentially) about the world. 

Systems based on the representational approach—and it is fair 
to say that most of the current “expert systems” are in this tradi-
tion—have been relatively successful in certain respects, but a ma-
jor lingering problem has been a narrowness and inflexibility re-
garding the style of reasoning these systems employ in using these 

                                                             
5Newell and Simon (1963); Newell and Simon (1956). 
6The proceduralist view was represented particularly by a spate of disserta-
tions emerging from MIT at the beginning of the 1970s; see for example 
Winograd (1972), Hewitt (1972), Sussman et al. (1971), etc. 

7See Minsky (1975), Winograd (1975), and all of the systems reported in 
Brachman and Smith (1980). 
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representational structures. This inflexibility in reasoning is strik-
ingly parallel to the inflexibility in knowledge that led to the first 
round of representational systems; researchers have therefore sug-
gested that we need reflective systems able to deal with their own 
constitutions as well as with the worlds they inhabit. In other 
words, since the style of the problem is so parallel to that just 
sketched, it has seemed that another application of the same medi-
cine might be appropriate. If we could inscribe general knowledge 
about how to reason in a variety of circumstances in the “mental-
ese” of these systems, it might be possible to design a relatively sim-
pler inferential regime over this “meta-knowledge about reason-
ing,” thereby engendering a flexibility and modularity regarding 
reasoning, just as the first representational work engendered a 
flexibility and modularity about the process’s embedding world. 

There are problems, however, in too quick an association be-
tween the two ideas, not the least of which is the question of to 
whom these various forms of re-presentation are being directed. In 
the normal case—that is to say, in the typical computational proc-
ess built under the aegis of the knowledge representation hypothe-
sis—a process is constituted from symbols that we as external 
theorists take to be representational structures; they are visible only 
to the ingredient interpretive process [that is just part] of the whole, 
and they are visible to that constituent process only formally (this is 
the basic claim of computation). Thus the interpreter can see them, 
though it is blind to the fact of their being representations. (In fact 
it is almost a great joke that the blindly formal ingredient process 
should be called an interpreter: when the Lisp interpreter evalu-
ates the expression ‘(+ 2 3)’ and returns the result ‘6’, the last thing 
it knows is that the numeral ‘2’ denotes the number two.c) 

Whatever is the case with the ingredient process, there is no 
reason to suppose that the representational structures are visible to 
the whole constituted process at all, formally or informally. That 
process is made out of them; there is no more a priori reason to 
suppose that they are accessible to its inspection than to suppose 
that a camera could take a picture of its own shutter—no more 
reason to suppose it is even a coherent possibility than to say that 
France is near Marseilles. Current practice should overwhelm-

                                                             
c«Talk about the 100 Billion Lines coming later … »  
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ingly convince us of this point: what is as tacit—what is as thor-
oughly lacking in self-knowledge—as the typical modern com-
puter system?d 

The point of the argument here is not to prove that one cannot 
make such structures accessible—that one cannot make a repre-
sentational reflective system—but to make clear that two ideas are 
involved. Furthermore, they are different in kind: one (representa-
tion) is a possibly powerful method for the construction of systems; 
the other (reflection) is a kind of behaviour we are asking our sys-
tems to exhibit. It remains a question whether the representational 
method will prove useful in the pursuit of the goal of reflective be-
haviour. 

[Answering that question], in a nutshell, is our overall project. 

 4b The Theoretical Backdrop 
It takes only a moment’s consideration of such questions as the re-
lationship between representation and reflection to recognise that 
the current state of our understanding of such subjects is terribly 
inadequate. In spite of the general excitement about reflection, self-
reference, and computational representation, no one has presented 
an underlying theory of any of these issues. The reason is simple: 
we are so lacking in adequate theories of the surrounding territory 
that, without considerable preliminary work, cogent definitions 
cannot even be attempted. Consider for example the case regarding 
self-referential reflection, where just a few examples will make this 
clear. 

1. From the fact that a reflective system A is implemented in 
system B, it docs not follow that system B is thereby ren-
dered reflective (for example, in this dissertation I will pre-
sent a partially-reflective dialect of Lisp that I have imple-
mented on a Digital Systems Corporation PDP-10,e but the 
PDP-10 is not itself reflective). Hence even a definition of re-
flection will have to be backed by theoretica1 apparatus ca-
pable of distinguishing between one abstract machine and 
another in which the first is implemented—something we 

                                                             
d«Talk about response to Charles Taylor…» 
e«Explain character and historical role» 
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are not yet able to do.f 

2. The notion seems to require of a computational process, 
and (if we subscribe to the representational hypothesis) of 
its interpreter, that in reflecting it “back off” one level of ref-
erence, and we lack theories both of interpreters in general, 
and of computational reference in particular.g 

3. Theories of computational interpretation will be required 
to clarify the confusion mentioned above regarding the re-
lationship between reflection and representation: for a sys-
tem to reflect it must re-present for itself its mental states; it 
is not sufficient for it to comprise a set of formal representa-
tions inspected by its interpreter. This is a distinction we 
encounter again and again; a failure to make it is the most 
common error in discussions of the plausibility of artificial 
intelligence from those outside the computational commu-
nity, derailing the arguments of such thinkers as Searle 
and Fodor.8 

4. Theories of reference will be required in order to make 
sense of the question of what a computational process is 
“thinking” about at all, whether reflective or not (for exam-
ple. it may be easy to claim that when a program is manipu-
lating data structures representing women’s votes that the 
process as a whole is “thinking about suffrage,” but what is 
the process thinking about when the interpreter is expand-
ing a macro definition?). 

5. Finally, if the search for reflection is taken up too enthusi-
astically, one is in danger of interpreting everything as evi-
dence of reflective thinking, since what may not be reflective 
explicitly can usually be treated as implicitly reflective (espe-
cially given a little imagination on the part of the theorist). 
However we lack general guidelines on how to distinguish 
explicit from implicit aspects of computational structures. 

                                                             
f«Talk about subsequent theoretical work this points towards …» 
g«Talk about 2-Lisp semantics, and how uninterpretable that attempt was 
…» 

8Searle (1980), Fodor (1978 and 1980). «Also point forwards to 100 Bil-
lion» 
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Nor is our grasp of the representational question any clearer; a se-
rious difficulty, especially since the representational endeavour 
has received much more attention than has reflection. Evidence of 
this lack can be seen in the fact that, in spite of an approximate 
consensus regarding the general form of the task, and substantial 
effort on its behalf, no representation scheme yet proposed has won 
substantial acceptance in the field. Again this is due at least in 
part to the simple absence of adequate theoretical foundations in 
terms of which to formulate either enterprise or solution. We do 
not have theories of either representation or computation in terms 
of which to define the terms of art currently employed in their pur-
suit (representation, implementation, interpretation, control struc-
ture. data structure, inheritance, and so forth), and are conse-
quently without any well-specified account of what it would be to 
succeed, let alone of what to investigate, or of how to proceed.i 
Numerous related theories have been developed (model theories 
for logic, theories of semantics for programming languages, and so 
forth), but they do not address the issues of knowledge representa-
tion directly, and it is surprisingly difficult to weave their various 
insights into a single coherent whole. 

The representational consensus alluded to above, in other 
words, is widespread but vague; disagreements emerge on every 
conceivable technical point, as was demonstrated in a recent sur-
vey of the field.9 To begin with, the central notion of “representa-
tion” remains notoriously unspecified: in spite of the intuitions 
mentioned above, there is remarkably little agreement on whether 
a representation must “re-present” in any constrained way (like an 
image or copy), or whether the word is synonymous with such 
general terms as “sign” or “symbol”. A further confusion is shown 
by an inconsistency in usage as to what representation is a rela-
tionship between. The sub-discipline is known as the representa-
tion of knowledge, but in the survey just mentioned by far the ma-
jority of the respondents (to the surprise of this author) claimed to 
use the word, albeit in a wide variety of ways, as between formal 
symbols and the world about which the process is designed to reason. 
Thus a KLONE structure might be said to represent Don Quixote 

                                                             
iAgain, point forward to AOS. 
9Brachman and Smith (1980). 
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tilting at a windmill; it would not be taken as representing the fact 
or proposition of this activity. In other words the majority opinion 
is not that we are representing knowledge at all, but rather, as we put 
it above, that knowing is representational.10 

In addition, we have only a dim understanding of the relation-
ship that holds between the purported representational structures 
and the ingredient process that interprets them. This relates to the 
crucial distinction between that interpreting process and the 
whole process of which it is an ingredient (whereas it is I who 
thinks of sunsets, it is at best a constituent of my mind that inspects 
a mental representationj). Furthermore, there are terminological 
confusions: the word ‘semantics’ is applied to a variety of concerns, 
ranging from how natural language is translated into the repre-
sentational structures, to what those structures represent, to how 
they impinge on the rational policies of the “mind” of which they 
are a part, to what functions are computed by the interpreting 
process, etc.k The term ‘interpretation’ (to take another example) 
has two relatively well-specified but quite independent meanings, 
one of computational origin, the other more philosophical; how 
the two relate remains so far unexplicated, although, as was just 
mentioned, they are strikingly distinct. 

Unfortunately, such general terminological problems are just 
the tip of an iceberg. When we consider our specific representa-
tional proposals, we are faced with a plethora of apparently in-
comparable technical words and phrases. Node, frame, unit, con-
cept, schema, script, pattern, class, and plan, for example, are all 
popular terms with similar connotations and ill-defined mean-
ing.11 The theoretical situation (this may not be so harmful in 
terms of more practical goals) is further hindered by the tendency 
for representational research to be reported in a rather demonstra-
tive fashion: researchers typically exhibit particular formal sys-
tems that (often quite impressively) embody their insights, but that 

                                                             
10See the introduction to Brachman and Smith (1980). 
j«Point forward to internal-representation-registrational item (whatever I 
end up calling it)» 

k«Point forward to 100 Billion» 
11References on node, frame, unit, concept, schema, script, pattern, class, and 
plan can be found in the various references provided in Brachman and 
Smith (1980). 
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are defined using formal terms peculiar to the system at hand. We 
are left on our own to induce the relevant generalities and to locate 
them in our evolving conception of the representation enterprise as 
a whole. Furthermore, such practice makes comparison and dis-
cussion of technical details always problematic and often impossi-
ble, defeating attempts to build on previous work. 

This lack of grounding and focus has not passed unnoticed: in 
various quarters one hears the suggestion that, unless severely 
constrained, the entire representation enterprise may be ill-
conceived—that we should turn instead to considerations of par-
ticular epistemological issues (such as how we reason about, say, 
liquids or actions), and should use as our technical base the tra-
ditional formal systems (logic, Lisp, and so forth) that representa-
tion schemes were originally designed to replace.12 In defense of 
this view two kinds of argument are often advanced. The first is 
that questions about the central cognitive faculty are at the very 
least premature, and more seriously may for principled reasons 
never succumb to the kind of rigorous scientific analysis that 
characterizes recent studies of the peripheral aspects of mind: vi-
sion, audition, grammar, manipulation, and so forth.13 The other 
argument is that logic as developed by the logicians is in itself suf-
ficient; that all we need is a set of ideas about what axioms and in-
ference protocols are best to adopt.14 But such doubts cannot be 
said to have deterred the whole of the community: the survey just 
mentioned lists more than thirty new representation systems un-
der active development. 

The strength of this persistence is worth noting, especially in 
connection with the theoretical difficulties just sketched. There 
can be no doubt that there are scores of difficult problems: we have 
just barely touched on some of the most striking. But it would be a 
mistake to conclude in discouragement that the enterprise is 
doomed, or to retreat to the meta-theoretic stability of adjacent 
fields (like proof theory, model theory, programming language 

                                                             
12See in particular Hayes (1978). 
13The distinction between central and peripheral aspects of mind is articu-
lated in Nilsson (1981); on the impossibility of central AI (Nilsson himself 
feels that the central faculty will quite definitely succumb to AI’s tech-
niques) see Dreyfus (1972) and Fodor (1980 and forthcoming). 

14Nilsson (1981). 
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semantics, and so forth). The moral is at once more difficult and 
yet more hopeful. What is demanded is that we stay true to these 
undeniably powerful ideas, and attempt to develop adequate theo-
retical structures on this home ground. It is true that any satisfac-
tory theory of computational reflection must ultimately rest, more 
or less explicitly, on theories of computation, of intensionality, of 
objectification, of semantics and reference, of implicitness, of for-
mality, of computation, of interpretation, of representation, and so 
forth. On the other hand as a community we have a great deal of 
practice that often embodies intuitions that we are unable to for-
mulate coherently. The wealth of programs and systems we have 
built often betray—sometimes in surprising ways—patterns and 
insights that eluded our conscious thoughts in the course of their 
development. What is mandated is a rational reconstruction of 
those intuitions and of that practice. 

In the case of designing reflective systems, such a reconstruction 
is curiously urgent. In fact this long introductory story ends with 
an odd twist—one that “ups the ante” in the search for a carefully 
formulated theory, and suggests that practical progress will be im-
peded until we take up the theoretical task. In general, it is of 
course possible (some would even advocate this approach) to build 
an instance of a class of artefact before formulating a theory of it. 
The era of sail boats, it has often been pointed out, was already 
drawing to a close just as the theory of airfoils and lift was being 
formulated—the [very] theory that, at least at the present time, 
best explains how those sailboats worked. However there are a 
number of reasons why such an approach may be ruled out in the 
present case. For one thing, in constructing a reflective calculus 
one must support arbitrary levels of meta-knowledge and self-
modelling, and it is self-evident that confusion and complexity 
will multiply unchecked when one adds such facilities to an only 
partially understood formalism. It is simply likely to be unman-
ageably complicated to attempt to build a self-referential system 
unaided by the clarifying structure of a prior theory. The com-
plexities surrounding the use of APPLY in Lisp (and the caution 
with which it has consequently come to be treated) bear witness to 
this fact. However there is a more serious problem. If one sub-
scribes to the knowledge representation hypothesis, it becomes an 
integral part of developing self-descriptive systems to provide, en-
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coded within the representational medium, an account of 
(roughly) the syntax, semantics, and reasoning behaviour of that 
formalism. In other words, if we are to build a process that “knows” 
about itself: and if we subscribe to the view that knowing is repre-
sentational, then we are committed to providing that system with a 
representation of the self-knowledge with which we aim to endow 
it. That is, we must have an adequate theories of computational 
representation and reflection explicitly formulated, since an encod-
ing of that theory is mandated to play a causal role as an actual in-
gredient in the reflective device. 

Knowledge of any sort—and self-knowledge is no exception—
is always theory relative. The representation hypothesis implies 
that our theories of reasoning and reflection must be explicit. We 
have argued that this is a substantial, if widely accepted, hypothe-
sis. One reason to find it plausible comes from viewing the entire 
enterprise as an attempt to communicate our thought patterns and 
cognitive styles—including our reflective abilities—to these emer-
gent machines. It may at some point be possible for understanding 
to be tacitly communicated between humans and system they have 
constructed. In the meantime, however, while we humans might 
make do with a rich but unarticulated understanding of compu-
tation, representation, and reflection, we must not forget that com-
puters do not [yetl] share with us our tacit understanding of what 
they are. 

                                                             
l«The word ‘yet’, present in a draft written prior to submission, was for 
unknown reasons deleted in the very last (submitted) version.» 
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Procedural Reflection in Programming Languages 
2b — Chapter One · Introduction 

The successful development of a general reflective calculus based 
on the knowledge representation hypothesis will depend on the 
prior solution of three problems: 

1. The provision of a computationally tractable and episte-
mologically adequate descriptive language; 

2. The formulation of a unified theory of computation and 
representation; and 

3. The demonstration of how a computational system can 
reason effectively and consequentially about its own infer-
ence processes. 

The first of these issues is the collective goal of present knowledge 
representation research; though much studied, it has met with 
only partial success. The problems involved are enormous, cover-
ing such diverse issues as adequate theories of intensionality,x 
methods of indexing and grouping representational structures, 
and support for variations in assertional force. In spite of its cen-
trality, however, it will not be pursued here, in part because it is 
so ill-constrained.x The second, though it is occasionally acknowl-

                                                             
 x «Explain the use of this term—which I think I meant, at the time; rather 

than “intentionality.” Talk about the ‘intensional fusion” thesis on which 
Mantiq was to be based? And maybe also point to the “three spellings” 
sidebar in aos?» 

 x «Explain that this was, in a way, a pointer to Mantiq—which I had had to 
defer, in writing this dissertation—though maybe also that the project may 
yet see the light of day.» 
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edged to be important, is a much less well publicized issue, having 
received (so far as I know) almost no direct attention. As a conse-
quence, every representation system proposed to date exemplifies 
what I will call a dual-calculus approach: a procedural calculus 
(usually LISP) is conjoined with a declarative formalism (an en-
coding of predicate logic, frames, etc.) into something of a formal-
istic hybrid. Even such purportedly unified systems as PROLOG1 
can be shown to manifest this structure. I will in passing suggest 
that this dual-calculus style is unnecessary and indicative of seri-
ous shortcomings in our conception of the representational en-
deavour. However this issue too will be largely ignored. 

In this dissertation my focus instead will be on the third prob-
lem: the question of making the inferential or interpretive aspects 
of a computational process themselves accessible as a valid do-
main of reasoning. I will show how to construct a computational 
system whose active interpretation is controlled by structures 
themselves available for inspection, modification, and manipula-
tion, in ways that allow a process to shift smoothly between deal-
ing with a given subject or task domain, and dealing with its own 
reasoning processes over that domain. In computational terms, 
the question is one of how to construct a program able to reason 
about and affect its own interpretationx—i.e., of how to define a 
calculus with a reflectively accessible control structure. 

 1 General Overview 
The term “reflection” does not name a previously well-defined 
question to which I propose a particular solution (although logic’s 
reflection principles are not unrelated). Before I can present a the-
ory of what reflection comes to, and how it can be demonstrated, 
therefore, I will have to give an account of what reflection is. In 
the next section, by way of introduction, I will identify six charac-
teristics that I take to distinguish all reflective behaviour. Then, 

                                                             
 1 PROLOG has been presented in a variety of papers; see for example Clark 

and McCabe (1979), Roussel (1975), and Warren et al. (1977). The con-
ception of logic as a programming language (with which I radically dis-
agree) is presented in Kowalski (1974 and 1979). 

 x «Note that this is the computational notion of ‘interpretation’ (program 
execution), not the representational one familiar from logic and philoso-
phical semantics.» 
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since I will be primarily concerned with computational reflec-
tion, I will sketch the model of computation on which the analy-
sis will be based, and will set the general approach to reflection to 
be adopted into a computational context. In addition, once a 
working vocabulary of computational concepts has been set out, I 
will be able to define what I will mean by procedural reflec-
tion—an even smaller and more circumscribed notion than com-
putational reflection in general. All of these preliminaries are nec-
essary in order to enable to formulation of an attainable set of 
goals. 

Thus prepared, I will set forth on the analysis itself. As a tech-
nical device, over the course of the dissertation I will develop 
three successive dialects of Lisp to serve as illustrations, and to 
provide a technical ground in which to work out in detail the 
theories of reflection to be proposed. I should say at the outset, 
however, that this focus on Lisp should not mislead the reader 
into thinking that the basic reflective architecture I propose—or 
the principles endorsed in its design—are in any important sense 
LISP specific. Lisp was chosen because it is simple, powerful, and 
uniquely suited for reflection in two ways: it already embodies 
protocols whereby programs are represented in first-class accessi-
ble (data) structures, and it is a convenient formalism in which to 
express its own meta-theory—especially given that I will use a 
variant of the λ-calculus as a mathematical meta-language (this 
convenience holds especially in a statically scoped dialect of the 
sort that will ultimately be adopted). Nevertheless, as I will dis-
cuss in the concluding chapter, it would be possible to construct a 
reflective dialect of Fortran, Smalltalk, or any other procedural 
calculus, by pursuing essentially the same approach as I will 
demonstrate here for Lisp. 

The first Lisp dialect (called 1-Lisp) will be an example in-
tended to summarise current practice, primarily for comparison 
and pedagogical purposes. The second (2-Lisp) differs rather sub-
stantially from 1-Lisp, in that it is modified with reference to a 
theory of declarative denotational semantics (i.e., a theory of the 
denotational significance of s-expressions) formulated independ-
ent of the behaviour of the interpreter. The interpreter is then sub-
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sequently defined with respect to this theory of attributedx se-
mantics, so that the result of processing of an expression—i.e., 
the value of the function computed by the basic interpretation 
process—is a normal-form co-designator of the input expression. I 
will call 2-Lisp a semantically rationalised dialect, and will ar-
gue that it makes explicit much of the understanding of Lisp that 
tacitly organises most programmers’ understanding of Lisp but 
that has never been made an articulated part of Lisp theories.x Fi-
nally, a procedurally reflective Lisp called 3-Lisp will be devel-
oped, semantically and structurally based on 2-Lisp, but modified 
so that reflective procedures are supported, as a vehicle with 
which to engender the sorts of procedural reflection we will by 
then have set as our goal. 3-Lisp differs from 2-Lisp in a variety of 
ways, of which the most important is the provision, at any point 
in the course of the computation, for a program to reflect and 
thereby obtain fully articulated “descriptions,” formulated with 
respect to a primitively endorsed and encoded theory, of the state 
of the interpretation process that was in effect at the moment of 
reflection. In this particular case, this will mean that a 3-Lisp pro-
gram will be able to access, inspect, and modify standard 3-Lisp 
normal-form designators of both the environment and continua-
tion structures that were in effect a moment before. 

More specifically, 1-Lisp, like Lisp 1.6 and all Lisp dialects in 
current use, is at heart a first-order language, employing meta-
syntactic facilities and dynamic variable scoping protocols to par-
tially mimic higher-order functionality. Because of its metasyn-
tactic powers (paradigmatically exemplified by the primitive 
QUOTE), 1-Lisp contains a variety of inchoate reflective features, all 
of which we will examine in some detail: support for metacircular 
interpreters, explicit names for the primitive processor functions 
(EVAL and APPLY), the ability to mention program fragments, pro-
tocols for expanding macros, and so on and so forth. Though I 
will ultimately criticize much of 1-Lisp ’s structure (and its under-

                                                             
 x «Say: only thought then that it had to be attributed; explain why that was 

reasonable, why I didn’t end up believing it, etc.) 
 x «Say: this “mechanism honouring semantics” is like derivation in logic hon-

ouring (what logic calls) interpretation. This should be clearly stated some-
where; refer to that … » 
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lying theory), I will document its properties in part to serve as a 
contrast for the subsequent dialects, and in part because, being 
familiar, 1-Lisp can serve as a base in which to ground the analy-
sis. 

After introducing 1-Lisp, but before attempting to construct a 
reflective dialect, I will subject 1-Lisp to rather thorough semanti-
cal scrutiny. This project, and the reconstruction that results, will 
occupy well over half the dissertation. The reason is that the 
analysis will require a reconstruction not only of Lisp but of com-
putational semantics in general. I will argue in particular that it is 
crucial, in order to develop a comprehensible reflective calculus, 
to have a semantical analysis of that calculus that makes explicit 
the tacit attribution of significance that I will claim characterises 
every computational system. I take this attribution of semantical 
import to computational expressions to be prior to any account of 
what happens to those expressions: thus I will argue for an analy-
sis of computational formulae in which declarative import and 
procedural consequence are independently formulated.x I claim, 
in other words, that programming languages are better under-
stood in terms of two semantica1 treatments (one declarative, one 
procedural), rather than in terms of a single one, as is exemplified 
by current approaches (although interactions between them may 
require that these two semantical accounts be formulated in con-
junction). 

This semantical reconstruction is at heart a comparison and 
combination of the standard semantics of programming lan-
guages on the one hand, and the semantics of natural human lan-
guages and of descriptive and declarative languages such as predi-
cate logic, the λ-calculus, and mathematics, on the other. Neither 
will survive intact: the approach I will ultimately adopt is not 

                                                             
 x «This is what I said, but it is not strictly correct. What is intended is that the 

declarative import precedes (ontologically and explanatorily) the proce-
dural consequence, and then procedural consequence (what happens to 
program fragments, how they are executed) is defined to honour that de-
clarative import. Logically, the analytic structure would allow procedural 
consequence (execution) to be defined arbitrarily; in fact, the point of call-
ing it a “semantical system” stems from the dependence that processing 
bears on (declarative, not procedural) interpretation.» 
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strictly compositional in the standard sense (although it is recur-
sively specifiable), nor are the declarative and procedural facets 
entirely separate. (For example, the procedural consequence of 
executing a given expression may affect the subsequent context of 
use that determines what another expression declaratively desig-
nates.) Nor are the consequences of this approach minor. For ex-
ample, I will show that the traditional notion of evaluation, in 
terms of which all Lisps to date have been defined, is both confus-
ing and confused, and must be separated into independent no-
tions of reference and simplification. I will be able to show, in 
particular, that 1-Lisp “evaluator” de-references some expressions 
(such meta-syntactic terms as (QUOTE X), for example), and does 
not dereference others (such as the numerals and T and NIL). I 
will argue instead for what I will call a semantically rationalised 
dialect, in which the simplification and reference primitives are 
kept strictly distinct. 

The basic thesis on which this work depends is that semantical 
cleanliness (along the lines suggested above) is by far the most 
important pre-requisite to any coherent treatment of reflection. 
However, as well as advocating semantically rationalised computa-
tional calculi, in the Lisp case I will also espouse an aesthetic I call 
category alignment, by which I mean that there should be a 
strict category-category correspondence across the four major 
axes in terms of which a computation calculus is analysed: 

1. Notation, 
2. Abstract structure, 
3. Declarative semantics, and 
4. Procedural consequence 

(Category alignment is a mandate satisfied by no extant Lisp dia-
lect.) In particular, I will insist in the dialects I design and present 
here: (i) that each notational class be parsed into a distinct struc-
tural class; (ii) that each structural class be treated in a uniform 
way by the primitive processor; (iii) that each structural class 
serve as the normal-form designator of each semantic class; and 
so forth. 

Category alignment is an aesthetic with consequence. I will 
show that the 1-Lisp programmer (i.e., all existing Lisp pro-
grammers) must in certain situations resort to meta-syntactic ma-
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chinery merely because 1-Lisp fails to satisfy this mild require-
ment (in particular, 1-Lisp lists, which are themselves a derivative 
class formed from some pairs and one atom, serve semantically to 
encode both function applications and enumerations). Though it 
does not have the same status as semantical hygiene, categorical 
elegance will also prove almost indispensable, especially from a 
practical point of view, in the drive towards reflection. 

Once these theoretical positions have been formulated, I will be 
in a position to design 2-Lisp. Like Scheme and the λ-calculus, 2-
Lisp is a higher-order formalism: consequently, it is statically 
scoped, and treats the function position of an application as a 
standard extensional position. 2-Lisp is of course formulated in 
terms of the rationalised semantics being espoused here, accord-
ing to which declarative semantics must be formulated for all ex-
pressions prior to, and independent of, the specification of how 
they are treated by the primitive processor. Consequently—and 
in this way 2-Lisp is radically unlike Scheme—the 2-Lisp proces-
sor is based on a regimen of normalisation, according to which 
each expression is taken into a normal-form designator of the 
original expression’s referent, where the notion of normal-form is 
defined in part with reference to the semantic type of the symbol’s 
designation, rather than (as in the case of the λ-calculus) in terms 
of the further (non-) applicability of a set of syntactic reduction 
rules.  

2-Lisp ’s normal-form designators are environment independ-
ent and side-effect free; thus the concept of a closure can be recon-
structed as a normal-form function designator. Since normalisation 
is a form of simplification, and is therefore designation-preserving, 
meta-structural expressions (terms that designate other terms in 
the language) are not de-referenced upon normalisation, as they 
are when evaluated. I therefore call the 2-Lisp processor seman-
tically flat, since it stays at a semantically fixed level (although 
explicit referencing and de-referencing primitives—primitive 
operations to perform what philosophers or logicians would call 
semantic ascent and semantic descent—are also provided, to 
facilitate explicit shifts in level of designation). 

3-Lisp is straightforwardly defined as an extension of 2-Lisp, with 
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respect to an explicitly articulated procedural theory of 3-Lisp 
embedded in 3-Lisp structures. This embedded theory, called the 
reflective model, though superficially resembling a metacircular 
interpreter (as shown by a glance at the code, given in the sidebar 
on p ■■), is causally connected to the workings of the underlying 
calculus in critical and primitive ways. The reflective model is 
similar in structure to the procedural fragment of the meta-
theoretic characterisation of 2-Lisp that was encoded in the λ-
calculus: it is this incorporation into a system of a theory of its 
own operations that makes 3-Lisp, like any possible reflective sys-
tem, inherently theory relative. For example, whereas environ-
ments and continuations will up until this point have been theo-
retical posits, mentioned only in the meta-language, as a way of 
explaining Lisp’s behaviour, in 3-Lisp such entities move from the 
semantical domain of the meta-language into the semantical do-
main of the object language, and environment and continuation 
designators emerge as part of the primitive behaviour of 3-Lisp 
protocols.x 

More specifically, arbitrary 3-Lisp reflective procedures can 
bind as arguments (designators of) the continuation and envi-
ronment structure of the interpreter that would have been in effect 
at the moment the reflective procedure was called, had the machine 
been running all along in virtue of the explicit interpretation of 
the prior program, mediated by the reflective model. Further-
more, by constructing and/or modifying these designators, and 
resuming the process below, such a reflective procedure may arbi-
trarily control the processing of programs at the level beneath it. 
Because reflection may recurse arbitrarily, 3-Lisp is most simply 
defined as: 

 An infinite tower of 3-Lisp processes, each engendering the 
process immediately below, in virtue of running a copy of the re-

                                                             
 x Note that it is designators of environments and continuations that are part 

of the protocol. There is a sense in which environments and continuations 
are themselves part of the definition of 3-Lisp, but the truth of that fact 
should be not taken as implying that “environment structures” and “con-
tinuation structures” are a primitive part of 3-Lisp. To speak in that way 
would be to fail to appreciate the importance of the declarative dimension 
of 3-Lisp (and 2-Lisp) semantics. 
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flective model. 

Under such an account, the use of reflective procedures amounts 
to running simple procedures at arbitrary levels in this reflective 
hierarchy. Both a straightforward implementation and a concep-
tual analysis are provided to demonstrate that such a machine is 
nevertheless finite. 

3-Lisp ’s reflective levels are not unlike the levels in a typed logic 
or set theory, although of course each reflective level contains an 
omega-order untyped computational calculus essentially isomor-
phic to (the extensional portion of) 2-Lisp. Reflective levels, in 
other words, are at once stronger and more encompassing than 
are the order levels of traditional systems. The locus of agency in 
each 3-Lisp level, on the other hand, that distinguishes one com-
putational level from the next, is a notion without precedent in 
logical or mathematical traditions. 

The architecture of 3-Lisp allows us to unify three concepts of 
traditional programming languages that are typically independent 
(three concepts we will have explored separately in 1-Lisp): 

1. The ability to support metacircular interpreters; 
2. The provision of explicit names for the primitive interpre-

tive procedures (EVAL and APPLY in standard Lisp dialects); 
and 

3. The inclusion of procedures that access the state of the 
implementation (usually provided as part of a program-
ming environment, for debugging purposes). 

I will show how all such behaviours can be defined within a pure 
version of 3-Lisp (i.e., independent of implementation), since all 
aspects of the state of the 3-Lisp interpretation process are avail-
able, with sufficient reflection, as objectified entities within the 3-
Lisp structural field. 

The dissertation concludes by drawing back from the details of 
Lisp development, and showing how the techniques employed in 
this one particular case could be used in the construction of other 
reflective languages—reflective dialects of current formalisms, or 
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other new systems built from the ground up. I will show, in par-
ticular, how this approach to reflection may be integrated with 
notions of data abstraction and message passing—two (related) 
concepts commanding considerable current attention, that might 
seem on the surface incompatible with the notion of a system-
wide declarative semantics. Fortunately, I will be able to show 
that this early impression is false—that procedurally reflective 
and semantically rationalised variants on these types of languages 
could be readily constructed as well. 

Besides the basic results on reflection, there are a variety of 
other lessons to be taken from the investigation, of which the in-
tegration of declarative import and procedural consequence in a 
unified and rationalised semantics is undoubtedly the most im-
portant. The rejection of evaluation, in favour of separate simpli-
fication and de-referencing protocols, is the major, but not the 
only, consequence of this revised semantical approach. The mat-
ter of category alignment, and the constant question of the proper 
use of metastructural machinery, while of course not formal re-
sults, are nonetheless important permeating themes. Finally, the 
unification of a variety of practices that until now have be treated 
independently—macros, metacircular interpreters, EVAL and 
APPLY, quotation, implementation-dependent debugging routines, 
and so forth—should convince the reader of one of the disserta-
tions most important claims: procedural reflection is not a radi-
cally new idea; tentative steps in this direction have been taken in 
many areas of current practice. The present contribution—fully 
in the traditional spirit of rational reconstruction—is merely one 
of making explicit what we all already knew. 

I conclude this brief introduction with three footnotes. 
First, given the flavour of the discussion so far, the reader may 

be tempted to conclude that the primary emphasis of this report 
is on procedural, rather than on representational, concerns (an 
impression that will only be reinforced by a quick glance through 
later chapters). This impression is in part illusory; as I will ex-
plain at a number of points. these topics are pursued in a proce-
dural context because it is simpler than attempting to do so in a 
poorly understood representational or descriptive system. All of 
the substantive issues, however, have their immediate counter-
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parts in the declarative aspects of reflection, especially when such 
declarative structures are integrated into a computational frame-
work. This investigation has been carried on with the parallel de-
clarative issues kept firmly in mind; the attribution of a declara-
tive semantics to Lisp s-expressions will also reveal my represen-
tational bias. As I mentioned in the preface, the decision to first 
explore reflection in a procedural context should be taken as 
methodological, rather than as substantive. Furthermore, it is to-
wards a unified system that I ultimate want to aim. One of the 
morals underlying this reconstruction is that the boundaries be-
tween these two types of calculus should ultimately be disman-
tled. 

Second. as this last comment suggests, and as the unified 
treatment of semantics betrays, I consider it important to unify 
the theoretical vocabularies of the declarative tradition (logic, phi-
losophy, and to a certain extent mathematics) with the procedural 
tradition (primarily computer science). I view the semantical ap-
proach adopted here as but a first step in that direction; as sug-
gested in the first paragraph, a fully unified treatment remains an 
as-yet unattained goal. Nonetheless, I have expended some effort 
in the work reported here to develop and present a single seman-
tical and conceptual position that draws on the insights and tech-
niques of both of these disciplines. 

Third and finally, as the very first paragraph of this chapter 
suggests, the dissertation is offered as the first step in a general 
investigation into the construction of generally reflective computa-
tional calculi to be based on more fully integrated theories of rep-
resentation and computation. In spite of its reflective powers, and 
in spite of its declarative semantics, 3-Lisp cannot properly be 
called fully reflective, since 3-Lisp structures do not form a de-
scriptive language (nor would any other procedurally reflective 
programming language that might be developed in the future, 
based on techniques set forth here, have any claim to the more 
general term). This is not because the 3-Lisp structures lack ex-
pressive power (although 3-Lisp has no quantificational opera-
tors, implying that even if it were viewed as a descriptive language 
it would remain algebraic), but rather because all 3-Lisp expres-
sions are devoid of assertional force. There is, in brief, no way to 
say anything in such a formalism. One can set x to 3, in 3-Lisp or 
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any other procedural (i.e., programming) language; one can test 
whether x is 3; but one cannot say that x is 3. Nevertheless, I con-
tend that the insights won on the behalf of 3-Lisp will ultimately 
prove useful in the development of more radical, generally reflec-
tive systems. In sum, I hope to convince the reader that, although 
it will be of some interest on its own, 3-Lisp is only a corollary of 
the major theses adopted in its development. 

 2 The Concept of Reflection 
In this section I will look more carefully at the term “reflection,” 
both in general and in the computational case, and also specify 
what I would consider an acceptable theory of this phenomenon. 
The structure of the solution I will eventually adopt will be pre-
sented only in section 5, after discussing in section 3 the atten-
dant model of computation on which it is based. and in section 4 
the conception of computational semantics to be adopted. Before 
presenting any of that preparatory material, however, it helps to 
know where we are headed. 

 2a The Reflection and Representation Hypotheses 
In the prologue I sketched in broad strokes some of the roles that 
reflection plays in general mental life. In order to focus the dis-
cussion, this section consider in more detail what I will mean by 
the more restricted phrase “computational reflection.” On one read-
ing this term might refer to a successful computational model of 
general reflective thinking. For example, if you were able to for-
mulate what human reflection comes to (more precisely than I 
have been able to do), and were then able to construct a computa-
tional model embodying or exhibiting such behaviour, you would 
have some reason to claim that you had demonstrated computa-
tional reflection, in the sense of a computational process that exhib-
ited authentic reflective activity. ‘Computational’ in this sense 
would mean, more or less, “computer-based.” 

Though I have undertaken this work with this larger goal in 
mind, my use of the phrase is more modest, in two important 
ways. 

First, in this dissertation I take no stand on the question of 
whether computational processes are able to “think” or “reason” 
at all, in, as it were, their own right. Certainly it would seem that 
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most of what we take computational systems to do is attributed, in 
a way that is radically different from the situation regarding our 
interpretations of the actions of other people. In particular, hu-
mans are first-class bearers of what is called semantic original-
ity:x they themselves are able to mean, without some observer 
having to attribute meaning to them. Computational processes, 
on the other hand, are at least not yet semantically original; to the 
extent they can be said to mean or refer at all, they do so deriva-
tively, in virtue of some human finding that a convenient descrip-
tion (I duck the question as to whether it is a convenient truth or 
a convenient fiction).2 For example, it: as you read this, you ra-
tionally and intentionally say “l am now reading section 2,” you 
succeed in referring to this section, without the aid of attendant 
observers. You do so because we define the words that way; refer-
ence and meaning and so on are not just paradigmatically but de-
finitionally what people do. In other words your actions are the 
definitional locus of reference; the rest is hypothesis, and falsifi-
able theory. If on the other hand I “inquire” of my home com-
puter as to the address of a friend’s farm. and it “tells me” that it is 
on the west coast of Scotland, the computer has not referred to 
Scotland in any full-blooded sense—it hasn’t a clue as to what or 
where Scotland is. Rather. it has merely typed out an address that 
is probably stored in an ASCII code somewhere inside it, and I 
supply the reference relationship between that spelled word and 
the country in the British Isles. 

The reflection hypothesis spelled out in the prologue, about how 
computational models of reflection might be constructed, embod-
ied this cautionary stance: I said there that in as much as a compu-
tational process can be constructed to reason at all, it could be made 
to reason reflectively in a certain fashion. Thus I will take the 
topic of computational reflection to be restricted to those compu-
tational processes that, for similar purposes, we find it convenient 
to describe as reasoning reflectively. I do this in order to avoid the 
question of whether the “reflectiveness” embodied in our compu-
tational models is authentically borne, or derivatively ascribed. 

                                                             
 x «Reference Dennett, Haugeland, Searle, as appropriate…» 

 2 For a discussion of the semantical properties of computational systems see 
for example Fodor (1980), Fodor (1978), and Haugeland (1978). 
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The setting aside worries about semantic originality is one reduc-
tion in scope; I also adopt another. Again, in the prologue, I 
spoke of reflection as if it encompassed contemplative considera-
tion not only of one’s self but also of one’s world (and one’s place 
therein). While I will discuss the relationship between reflection 
and self-reference in more detail below, it is important to ac-
knowledge that the focus of this investigation is almost entirely 
on the “selfish” part of reflection: on what it is to construct com-
putational systems able to deal with their own ingredient structures 
and operations as explicit subject matters. 

This second restriction might seem to arise for simple reasons, 
such as that this is an easier and better-constrained subject matter 
(I certainly do not consider myself in a position to postulate mod-
els of thinking about external worlds). But in fact the restriction 
arises for deeper reasons, again having to do with the reflection 
hypothesis. In the architectures I develop, I consider only internal 
or interior processes, able to reflect on interior structures, which is 
the only world that those internal processes conceivably can have 
any access to. Lisp processors (interpreters), in particular, have no 
access to anything except fields of s-expressions; they do not in-
teract with the world directly, but rather in virtue of running pro-
grams, engender more complex processes that interact with the 
world.x 

This “interior” sense of language processors interacts crucially 
with the reflection hypothesis, especially in conjunction with the 
representation hypothesis. Not only can we restrict to our atten-
tion to ingredient processes “reasoning about” (computing over. 
whatever) internal computational structures, we can restrict our 
attention to processes that shift their (extensional) attention to 
meta-structural terms. For consider: if it turns out that I am a 
computational system, consisting of an ingredient process P ma-
nipulating formal representations of my knowledge of the world, 
then according to the representation hypothesis, when I think, 
say, about Virginia Falls in northern Canada, my ingredient proc-
essor P is manipulating representations that are about Virginia 
Falls. Suppose. then, that I back off a step and comment to myself 

                                                             
 x These paragraphs are awkward; and too wordy. I should compact them… 
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that whenever I should be writing another sentence I have a ten-
dency instead to think about Virginia Falls. What do we suppose 
that my processor P is doing now? Presumably (“presumably”, at 
least, according to the knowledge representation hypothesis. 
which, it is important to reiterate, we are under no compulsion to 
believe) my processor P is now manipulating representations of my 
representations of Virginia Falls. In other words, because we are fo-
cused on the behaviour of interior processes, not on compositionally 
constituted processes, our exclusive focus on self-referential aspects 
of those processes is all we can do (given our two governing hy-
potheses) to uncover the structure of constituted, genuine reflective 
thought. 

The same point can be put another way. The reflection hy-
pothesis docs not state that, in the circumstance just described, P 
will reflect on the knowledge structures representing Virginia 
Falls (in some weird and wondrous way)—this would be an un-
happy proposal, since it would not offer any hope of an explana-
tion of reflection. On pain of circularity, reflective behaviour—the 
subject matter to be explained—should not occur as a phenome-
non in the explanation. Rather, the reflection hypothesis is at 
once much stronger and more tractable (although perhaps for 
that very reason less plausible): it posits, as an explanation of the 
mechanism of reflection, that the constituent interior processes 
compute over a different kind of symbol. The most important fea-
ture of the reflection hypothesis, in other words, is its tacit as-
sumption that the computation engendering reflective reasoning, 
although it may be over a different kind of structure, is nonethe-
less similar in kind to the sorts of computation that regurlarly 
proceed over normal structures. 

In sum, it is methodological allegiance to the knowledge repre-
sentation hypothesis that underwrites my self-referential stance. 

Though I will not discuss this meta-theoretic position further, 
it is crucial that it be understood, for it is only because of it that I 
have any right to call this inquiry a study of reflection, rather than 
a (presumably less interesting) study of computational self-
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reference.x 

 2b Reflection in Computational Formalisms 
Turn, then, to the question of what it would be to make a compu-
tational process reflective in the sense just described. 

At its heart, the problem derives from the fact that in tradi-
tional computational formalisms the behaviour and state of the 
interpretation process are not accessible to the reasoning proce-
dures: the interpreter forms part of the tacit background in terms 
of which the reasoning processes work. Plus, in the majority of 
programming languages, and in all representation languages, only 
the uninterpreted data structures lie within the reach of a pro-
gram. A few languages, such as Lisp and Snobol,x extend this ba-
sic provision by allowing program structures to be examined, con-
structed, and manipulated as first class entities. What has never 
before been provided is a high level language in which the process 
that interprets those programs is also visible and subject to modi-
fication and scrutiny. Therefore such matters as whether the in-
terpreter is using a depth-first control strategy, whether free vari-
ables are dynamically scoped, how long the current problem has 
been under investigation, or what caused the interpreter to start 
up the current procedure, remain by and large outside the realm 
of reference of standard representational structures. One way in 
which this limitation is partially overcome in some programming 
languages is to allow procedures access to the structures of the 
implementation (examples: MDL, InterLISP, ete.3), although such a 
solution is inelegant in the extreme, defeats portability and coher-
ence, lacks generality, and in general exhibits a variety of misfea-

                                                             
 x  Think about whether this is more subtle than the point in the Varieties 

paper, or perhaps in the annotation to the POPL paper … 

 x Snobol (“String Oriented Symbolic Language”), a string-processing lan-
guage developed in the 1960s at AT&T Bell Laboratories, allowed strings to 
be treated as programs (programs could thus be dynamically constructed 
and executed on the fly). Famous for treating patterns as a first-class data 
type, Snobol served in some ways as a precursor to such modern languages 
as Perl. 

 3 Such facilities as are provided in MDL are described in Galley and Pfister 
(1975); those in InterLISP, in Teitelman (1978). 
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tures that I will examine in due course. In more representational 
or declarative contexts no such mechanism has been demon-
strated, although a need for some sort of reflective power has ap-
peared in a variety of contexts (such as for overriding defaults, 
gracefully handling contradictions, etc.). 

A striking example comes up in problem-solving: the issue is 
one of enabling simple declarative statements to be made about 
how the deduction operation should proceed For example, it is 
sometimes suggested that a default should be implemented by a 
deductive regime that accepts inferences of the following non-
monotonic variety (i.e., if “not P” cannot be proved, then deduce 
P): 

 ¬ ⊢ ¬P (1) 
 P 

Though it is not difficult to build a problem solver that embodies 
such behaviour (at least on some computable reading of “not 
provable”). one typically does not want such a rule to be obeyed 
indiscriminately, independent of context or domain. On the con-
trary, there are usually constraints on when such inferences are 
appropriate—having to do with, say, how crucially the problem 
needs a reliable answer, or with whether other less heuristic ap-
proaches have been tried first What people writing problem-
solver systems have wanted is a way to write down specific in-
stances of something like (1) that explicitly refer both to the sub-
ject domain and to the state of the deductive apparatus, which, in 
virtue of being written down, lead that inference mechanism to be-
have in the way described. 

Particular examples are easy to imagine. Thus consider a com-
putational process designed to repair electronic circuits. One can 
imagine that it would be useful to have inference rules of the fol-
lowing sort: “Unless you have been told that the power supply is bro-
ken. you should assume that it works”, or, “You should make checking 
capacitors your first priority, since they are more likely than resistors 
to break down”. Furthermore, it would be good to ensure that 
such rules could be modularly and flexibly added and removed 
from the system, without each time requiring surgery on the in-
ner constitution of the inference engine. Though we are skirting 
close to the edge of an infinite regress, it is clear that something 
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like this kind of protocol is a natural part of normal human con-
versation. From an intuitive point of view it seems perfectly rea-
sonable to say: By the way, if you ever want to assume P, it would be 
sufficient to establish that you cannot prove its negation. The ques-
tion is whether we can make formal sense out of this intuition. 

Clearly enough, the problem is not so much one of what to say, 
but of how to say it (to some kind of theorem-prover, for exam-
ple) in a way that on the one hand does not lead to an infinite re-
gress, and that on the other genuinely affects its behaviour. All 
sorts of technical question arise. It is not obvious what language 
to use,, for example; or even to whom such a statement should be 
directed. Suppose, for example, that we were supplied with a 
monotonic natural-deduction based theorem prover for first or-
der logic. Could we supply it with (1) as an ordinary material im-
plication? Certainty not. At least in the form given above, it is not 
even a well-formed sentence. There are various ways we could en-
code it as a sentence—one way would be to use set theory, and to 
talk explicitly about the set of sentences derivable from other sen-
tences, and then to say that if the sentence ‘¬P’ is not in a certain 
set, then ‘P’ is. The problem is that while such a sentence might 
contribute to a model of the kind of inference procedure we de-
sire, in any ordinary theorem prover simply adding it to the stock 
of implication that it has to work with would not thereby cause the 
inference mechanism itself behave non-monotonically in the described 
way. Rather than constructing a non-monotonic reasoning sys-
tem, all we would have done is to “teach” a monotonic one about 
non-monotonic reasoning. While such a formulation might be of 
interest in the specification of the constraints a reasoning system 
must honour (a kind of “competence theory” for non-monotonic 
reasoning4), it would not help us, at least on the face of things, 
with the question of how a system using defaults might actually 
be deployed. Another option, of course, would be to build a non-
monotonic inference engine from scratch, using expressions like 
(1) to constrain its behaviour, along the lines of program re-
quirements and abstract program specifications. But this would 
solve the problem by avoiding it—the whole question was how to 
use such comments on the reasoning procedure coherently within 

                                                             
 4 Reiter (1978), McDermott and Doyle (1978), Bobrow (1980). 
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the structures of the problem-specific application. 
Yet another possibility—one I wish to focus on for a mo-

ment—is to design a more complex inference mechanism to react 
appropriately not only to sentences in the standard object lan-
guage, but to meta-theoretic expressions of the form (1). Al-
though no system of just this sort has been demonstrated, such a 
program is readily imaginable, and various dialects of PROLOG—
perhaps most clearly the IC-PROLOG of Imperial College5—are 
best viewed in this light The problem with such solutions, how-
ever, is their excessive rigidity and inelegance, coupled with the 
fact that they do not really solve the problem in any case. What a 
PROLOG user is given is not a unified or reflective system, but a 
pair of two largely independent formal systems: a basic declarative 
language in which facts about the world can be expressed, and a 
separate procedural language, through which the behaviour of the 
inference process may be controlled. Although the elements of 
the two languages are mixed in a PROLOG program, they are best 
understood as separate aspects. One set (the structure of clauses, 
implications, and predicates, the identity of variables, and so 
forth) constitutes the declarative language, with the standard se-
mantics of first-order logic. Another (the sequential ordering of 
the sentences and of the predicates in the premise, the “con-
sumer” and “producer” annotations on the variables. the “cut” op-
erator, and so forth) constitute the procedural language. Of course 
the flow of control is affected by the declarative aspects, but this is 
just like saying that the flow of control of an ALGOL program is af-
fected by its data structures. 

Thus the claim that to use PROLOG is to “program in logic” is in 
my view misleading: rather, what happens is that one essentially 
writes programs in a new (and, as it happens, rather limited) con-
trol language, using an encoding of first-order logic as the declara-
tive representation language (i.e., as the field of data structures). 
Of course this is a dual system with a striking fact about its pro-
cedural component: all conclusions that can be reached are guar-
anteed to be valid implications of prior structures in the represen-
tational field. As mentioned above, however, this dual-calculus 
approach seems ultimately rather baroque, and is certainly not 

                                                             
 5 Clark and McCabe (1979). 
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conducive to the kind of reflective abilities we are after. It would 
be far more elegant to be able to say, in the same language as the 
target world is described, whatever it was salient to say about how 
the inference process was to proceed. 

For example, to continue with the PROLOG example, one would 
like to say both FATHER(BENJAMIN,CHARLES) and CUT(CLAUSE-13) 
or DATA-CONSUMER(VARIABLE-4) in one and the same language, 
with both subject to the same semantical and procedural treat-
ment. The increase in elegance, expressive power, and clarity of 
semantics that would result are too obvious to belabour: just a 
moment’s thought leads to one realise that only a single semanti-
cal analysis would be necessary (rather than two); the reflective 
capabilities could recurse without limit (PROLOG and other dual-
calculus systems intrinsically consist of just a single level); a meta-
theoretic description of the system would have to describe only 
one formal language, not two; descriptions of the inference 
mechanism, would be immediately available, rather than having 
to be extracted from procedural code; and so forth. 

This ability to pass coherently between two situations—in the 
reflective case to have the structures that normally control the in-
terpretation process be fully and explicitly visible to (and manipu-
lable by) the reasoning process, and in the other to allow the rea-
soning process to sink into them, so that they may take their 
natural effect as part of the tacit background in which the reason-
ing process works—this ability is a particular form of reflection 
that I will call procedural reflection (“procedural” because I are 
not yet requiring that those structures at the same time describe 
the reasoning behaviours they engender; that is the larger task not 
yet taken on). Although ultimately limited, in the sense that a 
procedurally reflective calculus is by no means a fully reflective 
one, even this more modest notion is on its own a considerable 
subject of inquiry. 

 2c Six General Properties of Reflection 
Given the foregoing sketch of the task, it is appropriate to ask, be-
fore plunging into details, whether we can have any sense in ad-
vance of what form the solution might take. Six properties of 
reflective systems can be identified straight away—features that 
any ultimate solution should exhibit, however it ends up being 
structured and/or explained. 
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tured and/or explained. 

 2c.i Causal connection 
First, the notion is one of self-reference, of a causally-connected 
kind, stronger than the notion explored by mathematicians and 
philosophers over much of the last century. What is needed is a 
theory of the causal powers required in order for a system’s pos-
session of self-descriptive and self-modelling abilities to actually 
matter to it—a requirement of substance, since full-blooded, ac-
tual behaviour is our ultimate subject matter, not simply the 
mathematical characterisation of formal relationships. 

In dealing with computational processes, we are dealing with 
artefacts behaviourally defined, after all, unlike systems of logic, 
which are functionally defined abstractions that in no way behave 
or participate with us in the temporal dimension. Although any 
abstract machine of Turing power can provably model any 
other—including itself—there can be no sense in which such self-
modelling is even noticed by the underlying machine (even if we 
could posit an animus ex machina to do the noticing). If, on the 
other hand, our aim is to build a computational system of sub-
stantial reflective power, we will have to build something that is 
affected by its ability to “think about itself.” This holds no matter 
how accurate the self-descriptive model may be; you simply can-
not afford simply to reason about yourself as disinterestedly and 
inconsequentially as if you were someone else. 

Similar requirements of causal connection hold of human reflec-
tion. Suppose, for example, that after taking a spill into a river I 
analyse my canoeing skills and develop an account of how I would 
do better to lean downstream when exiting an eddy. Coming to 
this realisation is useful just in so far as it enables me to improve. 
If I merely smile in vacant pleasure at an image of an improved 
me, but then repeat my ignominious performance—if in other 
words my reflective contemplations have no effect on my subsequent 
behaviour—then my reflection will have been in vain. It is crucial, 
in other words, to make the move from description to reality. In 
addition, just as the result of reflecting has to affect future non-
reflective behaviour, so does prior non-reflective behaviour have 
to be accessible to reflective contemplation; one must equally be 
capable of moving from reality to description. It would have been 
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equally futile if, when I initially paused to reflect on the cause of 
my dunking, I had been unable to remember what I had been do-
ing just before I capsized. 

In sum, the relationship between reflective and non-reflective 
behaviour must be of a form such that both information and ef-
fect can pass back and forth between them. These requirements 
will impinge on the technical details of reflective calculi: we will 
have to strive to provide sufficient connection between reflective 
and non-reflective behaviour so that the right causal powers can 
be transferred across the boundary, without falling into the oppo-
site difficulty of making them so interconnected that confusion 
results. (An example is the issue of providing continuation struc-
tures to encode control flow: we will provide separate continua-
tion structures for each reflective level, to avoid unwanted interac-
tions, but we will also have to provide a way in which a designator 
of the lower level continuation can be bound within the environ-
ment of the higher one, so that a reflective program can 
straightforwardly refer to the continuation of the process below 
it). The interactions between levels can grow rather complex. 
Suppose, to take another example, that you decide at some point 
in your life that whenever some type of situation arises (say, when 
you start behaving inappropriately in some fashion), that you will 
pause to calm yourself down, and to review what has happened in 
the past when you have let your basic tendencies proceed un-
checked. The dispassionate fellow that you must now become is 
one that embodies, in their current and on-going being, a decision 
made now at some future point to reflect. Somehow, without acting 
in a self-conscious way from now until such a circumstance arises, 
you have to make it true that when the situation does arise, you 
will have left yourself in a state that will cause the appropriate re-
flection to happen then. By the same token, in the technical 
formalisms we design, we have to provide the ability to descend 
(“drop down”) from a reflected state to a non-reflected one, hav-
ing left the base level system in such a state so that, when certain 
situations occur in the future, the system will automatically re-
flect at that point, and thereby obtain access to the reasons that 
were marshalled in support of the original decision. 
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 2c.ii Self-knowledge 
Second, reflection has something, although just what remains to 
be seen, to do with self-knowledge, as well as with self-reference—
and knowledge, as has often been remarked, is inherently theory-
relative (in a way that pure self-reference is not). Just as one can-
not interpret the world except through using the concepts and 
categories of a theory, one cannot reflect on one’s self except in 
terms of the concepts and categories of a theory of self. Further-
more, as is the case in any theoretical endeavour, the phenomena 
under consideration under-determine the theory that accounts 
for them, even when all the data are to be accounted for. In the 
more common case, when only parts of the phenomenal field are 
to be treated by the theory, an even wider set of alternative theo-
ries emerge as possibilities. In other words, when you reflect on 
your own behaviour, you must inevitably do so in a somewhat arbi-
trary theory-relative way. 

One of the mandates must be set for any reflective calculus, 
therefore, is that it be provided, represented in its own internal 
language, with an (in some appropriate sense) complete theory of 
how it is formed and of how it works. 

Theoretical entities may be posited by this account that facili-
tate an explanation of behaviour, even though those entities can-
not be claimed to have a theory-independent ontological existence 
in the behaviour being explained. 3-Lisp will be provided with a 
“theory” of 3-Lisp in 3-Lisp, for example, reminiscent of the 
metacircular interpreter demonstrated in McCarthy’s original re-
port6 and in the reports of Sussman and Steele7—but causally 
connected in novel ways. In providing this primitively supported 
reflective model, I adopt a standard account, in which a number 
of notions commonly used to describe Lisp play a central role—
such as that of an environment, just mentioned, and a parallel no-
tion of a continuation. In spite of their familiarity, however, these 
have historically remained Lisp-external notions, being used only 
to describe (and model) Lisp, rather than figuring as first-class 
objects internal to the language in any direct sense. It is impossible 
in a non-reflective Lisp to define a predicate true only of environ-

                                                             
 6 McCarthy et al. (1965). 
 7 Sussman and Steele (1975); Steele and Sussman (1978a). 
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ments, since environments as such do not exist in such dialects. 
Because its reflective capacities are defined in terms of an envi-
ronment and continuation-based theory, the notion of an envi-
ronment becomes language-internal to 3-Lsip—with environment 
representing structures being passed around as first-class entities. 

There are other possible Lisp theories, some of which differ 
substantially from the one I have chosen. For example, it is possi-
ble to replace the notion of environment altogether (note that the 
λ-calculus is explained without any such device). If a reflective 
dialect were defined in terms of this alternative theoretical ac-
count (call such a language 3'-Lisp), environments would no 
longer be a language internal concept. It would be likely, however, 
that this theory would posit other kinds of object, or other no-
tions (such as α- and β-reduction), and in virtue of being reflective 
3'-Lisp those notions would become language-internal. In order 
to reflect you have to use some theory and its associated theoreti-
cal concepts and entities. 

 2c.iii Reflectivity vs. Reflexivity 
The third general point about reflection regards its name. I have 
deliberately chosen the term ‘reflective,’ as opposed to ‘reflexive,’ 
since there are various senses (other recent research reports not 
withstanding8) in which no computational process, in any sense I 
can understand, can succeed in narcissistically thinking about the 
fact that it is at that very instant thinking about itself thinking about 
itself thinking...—and so on and so on, like a transparent eye in a 
room full of mirrors.x The kind of reflecting I will consider—the 

                                                             
 8 Greiner and Lenat (1980), Genesereth and Lenat (1980). 

 x This is what I wrote at the time (1980), and so I have left it standing—but it 
is not a statement I would agree with today (2010). I still believe that there 
is a sensible intuition that motivating saying it about local reflexion—i.e., 
about the possibility of having “I am now thinking” refer to itself quietly, 
as it were, without invoking a Necker-cube like reverberation between one 
state and another (in something like the way in which non-well-founded 
set theory supports the notion of a one-element set having itself as its sole 
member). While not necessarily easy, I believe that this can be done accom-
plished—and, perhaps oddly but perhaps not, that doing so relates to vari-
ous forms of self-referential discipline trained in various Asian meditative 
traditions. More seriously, unlike some others I do not believe that either 
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kind that 3-Lisp demonstrates how to technically define, imple-
ment, and control—requires that in the act of reflecting the proc-
ess “take a step back” in order to allow the interpreted process to 
consider what it was just up to from a different vantage point, to 
bring into view symbols and structures that describe its state “just 
a moment earlier.” From the mere fact of a system’s having a 
name for itself it does not follow that the system thereby auto-
matically acquires the ability to focus on its current instantaneous 
self, for in the process of “stepping back” or reflecting, the “mind’s 
eye” moves out of its own view, being replaced by an (albeit possi-
bly complete) account of itself. (Though this description is surely 
more suggestive than incisive, it is my hope that the technical 
work to be presented will help to allow us to make it precise.) 

 2c.iv Fine-grained control 
Fourth, in virtue of reflecting a process can always obtain a finer-
grained control over its behaviour than would otherwise be possi-
ble. What was previously an inexorably atomic stepping from one 
state to the next is opened up so that each move can be analysed, 
countered, and so forth—and also be broken down into constitu-
ent parts. As we will see in detail, in this way reflective powers 
give a system a far more subtle and more catholic—if less effi-
cient—way of reacting to a world. The requirement here is the 
usual one: for what was previously implicit to be made explicit, 
albeit in a controlled and useful way, without violating the ulti-
mate truth that not everything can be made explicit in a finite 
mechanism. This ability enables a system designer to satisfy what 
might otherwise be taken to be incompatible demands: (i) the 
provision of a small and elegant kernel calculus, with crisp defini-

                                                                                                                                                  
the meaning or the truth of such statements as that “all statements are 
perspectival” need in any way be undermined by the fact that they apply, 
among other things, to themselves. 

  As explained in “Varieties of Self-Reference,” «check ■■» I use ‘reflexive’ 
to refer to states, processes, expressions, etc., that include themselves 
within their referential or semantic extension; ‘reflective,’ as here, to refer 
to processes of “stepping back” and assaying, from a distinct vantage 
point, another part or aspect or period of oneself. There is no doubt that, 
according to this distinction, 3-Lisp was correctly described as a model of 
computational reflection, not or computational reflexion. 
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tion and strict behaviour; and at the same time (ii) the ability for 
the user (by using reflection) to be able to modify or adjust the 
behaviour of this kernel in peculiar or extenuating circumstances. 
One of reflection’s great powers is that it allows such simplicity 
and flexibility to be achieved simultaneously. 

 2c.v Vantage point 
This leads to the fifth general comment, which is that the ability 
to reflect never provides a complete separation, or an utterly ob-
jective vantage point from which to view either oneself or the 
world. No matter now reflective any given system or person may 
be, it remains a truism that there is ultimately no escape from be-
ing the person in question. Though as the dissertation proceeds I 
will increasingly downplay any connection between the formal 
work presented here and human abilities, it is still perhaps helpful 
to say that the kind of reflection to be presented here is closer to 
what is known as detachment or awareness than it is to a strict 
kind of self-objectivity (this is why I have been and will remain 
systematically imprecise about whether reflection is fundamentally 
a way to think about oneself or a way to think about the world). 

The environment example just mentioned provides an illustra-
tion in a computational setting. As we will see in detail, the envi-
ronment in which are bound the symbols that a program is using 
is, at any level, merely part of the embedding background in 
which the program is running. The program operates within that 
background, dependent on it but—in the normal (unreflective) 
course of events—unable to access it explicitly. The operation of 
reflecting makes explicit what was just implicit: it renders visible 
what was tacit, what was in the background. In doing so, how-
ever, a new background fills in to support the reflective delibera-
tions. Again, the same is true of human reflection: you and I can 
interrupt our conversation in order to sort out the definition of a 
contentious term. but—as has often been remarked—we do so 
using other terms. Since language is our inherent medium of 
communication, we cannot step out of it to view it from a com-
pletely independent vantage point. Similarly, while the systems I 
will show how to build can at any point back up and mention 
what was previously used, in doing so more structured back-
ground will come into implicit use. 
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This lesson, of course, has been a major one in philosophy at 
least since Peirce; certainly Quine’s famous comment about Ncu-
rath’s boat holds as true for the systems we design as it does for us 
designers.9 

 2c.vi Reflectivity vs. Reflexivity 
Sixth and finally, the ability to reflect is something that must be 
built into the heart or kernel of a calculus. There are theoretically 
demonstrable reasons why reflective powers cannot be 
“progrrammed up” as an addition to a calculus (though one can of 
course implement a reflective machine in a non-reflective one: the 
difference between these two must always be kept in mind). The 
reason for this claim is that, as discussed in the first comment, be-
ing reflective is a stronger requirement on a calculus than simply 
being able to model the calculus in the calculus, something of which 
any machine of Turing power is capable (this is the “making it 
matter” that was alluded to above). This will be demonstrated in 
detail; the crucial difference, as suggested above, comes in con-
necting the self-model to the basic interpretation functions in a 
causal way, so that (for example and very roughly) when a process 
“decides to assume something,” it can thereby in fact assume it, 
rather than simply constructing a model or self-description or 
hypothesis that claims that it is assuming it. As well as “backing 
up” in order to reflect on its thoughts or operations, in other 
words, a reflective process must be able to “drop back down 
again” to consider the world directly, in accord with the conse-
quences of those reflections. Both parts of this involve a causal 
connection between the explicit programs and the basic workings 
of the abstract machine, and such connections cannot be “pro-
grammed into” a calculus that does not support them primitively. 

 2d Reflection and Self-Reference 
At the beginning of this section I said that my investigation of re-
flection in general would primarily concern itself, because of op-
erating under the knowledge representation hypothesis, with the 
self-referential aspects of reflective behaviour. There has been in 
the last century no lack of investigation into self-referential ex-

                                                             
 9 Quine (1953a), p. 79 in the 1963 edition. 
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pressions in formal systems, especially since it has been exactly in 
these areas where the major results on paradox, incompleteness, 
undecidability, and so forth, have arisen. It is therefore helpful to 
compare the present enterprise with these theoretical precursors. 

Two facets of the computational situation show how very dif-
ferent our concerns here will be from these more traditional stud-
ies. First, although I do not formalise this, there is no doubt in my 
work that I consider the locus of referring to be an entire process, 
not a particular expression or structure (especially not a solitary 
expression or structure). Even though I will posit declarative se-
mantics for individual expressions, I will also make evident the 
fact that the designation of any given expression is a function not 
only of that expression itself, but also of the state of the processor 
at the point of that expression’s use. And to the extent that “use” is 
even a coherent term for symbolic activity, it is the processor that 
uses the symbol; the symbol does not use itself. To the extent 
that we want a system to be self-referential, then, we want the 
process as a whole to be able to refer, to first approximation, to its 
whole self, although in fact this usually reduces to a question of it 
referring to some of its own ingredient structure. 

Achieving this goal is not only not met by providing the system 
with self-referential structure, but even more strongly, I avoid 
such self-referential structures entirely, exactly to avoid many of 
the intractable (if not inscrutable) problems that arise in such 
cases. Because of it’s λ-calculus base, it is perfectly possible in 3-
Lisp to construct apparently self-designating expressions (at least 
up to type-equivalence: token self-reference is more difficult). But 
from a practical point of view the system of levels I will embrace 
will by and large exclude such local self-reference from our con-
sideration. Truly self-referential expressions, such as This sentence 
is six words long, are unarguably odd, and certain instances of 
them, such as the clichéd This sentence is false, are undeniably 
problematic.10 None of these truths impinge particularly on our 

                                                             
 10 Strictly speaking, of course, the sentence “This sentence is six words long” 

contains a self-reference, but is not itself self-referential. We could instead 
construct the composite term ‘This five word noun phrase’—though it is 
not as immediately evident that this leads to trouble. However the point is 
that the kind of reflection I am aiming for in 3-Lisp is of quite a different 
kind, and has no need to any such convolutions. 
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quite different concerns. 
The second comment illustrating how different 3-Lisp and 

procedural are from mathematical and logical studies of self-
reference is this: in traditional formal systems, the actual reference 
relationship between any given expression and its referent 
(whether that referent is itself or a distal object) is mediated by an 
externally attributed semantical interpretation function. The sen-
tence “This sentence is six words long” does not actually refer. in 
any causal full-blooded sense. to anything; rather, we English 
speakers take it to refer to itself. The reference relation connect-
ing that sentence in its role as sign, and that same sentence in its 
role as referent or significant, flows through us. 

As emphasized in the previous section in the discussion of 
causal connection, in constructing reflective computational sys-
tems it is crucial for the causal mediation not to be be deferred 
through an external observer. Reflection in a computational sys-
tem has to be causally connected internally, even if the semantical 
understanding of that causal connection is externally attributed. 
For example, in 3-Lisp there is a primitive relationship that holds 
between a certain kind of symbol, called a handle (a canonical 
form of meta-descriptive rigidly-designating name) and another 
symbol that, semantically, each handle designates. I.e., handles 
are the 3-Lisp structural form of quotation. Suppose that H1 is a 
handle, and that S1 is some structure that H1 refers to. Strictly 
speaking, there is an internal structural relationship between H1 
and S1, which we, as external semantical attributors, take in addi-
tion to be a reference relationship. Until we can construct compu-
tational systems that are what I have called semantically original. 
the semantical import of that relationship will always remain ex-
ternally mediated. But the causal relationship between H1 and S1 
must be internal: otherwise there would be no way for the internal 
computational processes to treat that relationship in any way that 
mattered. 

This may be clearer if put a bit more formally. Suppose that φ 
is the externally attributed semantical interpretation function, and 
that ζ is the primitive structural function that relates handles to 
those structures we call their referents. It is ζ that will allow the 
processor to produce or obtain causal access to a structure S given 
that H is its handle. Thus in the prior example, it is true both that 
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φ(H1)=S1, due to our external semantical attribution of reference 
to H, and that ζ(H1)=S1. More generally, we know that: 

 ∀H,S [[handle(H) ∧ ζ(H)=S]] ⊃ [Φ(H)=S]] (2) 

However, though in some sense it is strictly true,x this equation in 
no way reveals the structure of the relationship between φ and ζ; it 
merely states their extensional equivalence. More revealing of the 
fact that I take the relationship between handles and referents to 
be a reference relation (if I may wantonly reify relationships for a 
moment) is the following: 

 φ(ζ)=φ (3) 

Of, rather, since not all symbols are handles. as: 

 φ(ζ) ⊂ φ (4) 

The requirement that reflection matter, to summarise. is a crucial 
facet of computational reflection—one without precedent in pre-
computational formal systems. What is striking is that the mat-
tering cannot be derived from the semantics, since it would 
appear that mattering—which requires a real causal 
connection—is a precursor to semantica1 originality, not 
something that can follow semantical relationships. Put another 
way. in the inchoately semantical computational systems I are try-
ing to build, the reference relationships between internal meta-
level symbols and their internal referents (the semantical relation-
ships crucial in reflective considerations) may have to be causal in 
two distinct ways: once mediated by us, who attribute semantics to 
those symbols in the first place, and a second time internally, so 
that the appropriate causal behaviour, to which we attribute se-
mantics, can be engendered. On that day when we succeed in 
constructing semantically original mechanisms, those two pres-
ently independent causal connections may merge; until then we 
will have to content ourselves with causally original but semanti-
cally derivative systems. The reflective dialects I will propose will 
all be of this form. 

                                                             
 x It is false. «Explain» 
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 3 A Process Reduction Model of Computation 
I next want to sketch the model of computation on which the 
analysis and design of 3-Lisp will depend. 

I take processes to be the fundamental subject matter; though 
I will not define the concept precisely, we can assume that a proc-
ess consists approximately of a connected or coherent set of 
events through time. The reification of processes as objects in 
their own right—composite and causally engen-
dered—is a distinctive, although not distin-
guishing, mark of computer science. Processes 
are inherently temporal, but not otherwise 
physical:x they do not have spatial extent, al-
though they must have temporal extent Whether 
there are more abstract dimensions in which in 
is appropriate to locate a process is a question I 
will sidestep; since this entire characterisation is 
by way of background for another discussion, I will rely more on 
examples and on the uses to which we put these objects than on 
explicit formulation. 

I will depict processes as in figure 1. The boundary of the icon 
is intended to signify the boundary or surface of the process itself, 
taken to be the interface between the process and the world in 
which it exists (I take objectifying a process to involve “carving 
them” out of a world in which it can then be said to be embed-
ded). Thus the set of events that collectively form the behaviour 
of a coherent process in a given world would consist of all events 
on the surface of this abstract object. This set of events could be 
more or less specifically described: we might simply say that the 
process had certain gross input/output behaviour (with “input” 
and “output” being defined as a certain class of surface perturba-
tion—an interesting and non-trivial problem), or we might ac-
count in tine detail for every nuance of the process’s behaviour, 
including the exact temporal relationships between one event and 

                                                             
 x At the time this was written, I was already starting to reject the claim that 

computational processes are formal, in the sense of operating independ-
ently of their semantic interpretation (in spite of what is being said in this 
passage), but had yet to question adequately another assumption: that 
computational arrangements are abstract. See «ref AOS». 

 
 

Figure 1 
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the next, and so forth. 
It is crucial to distinguish these more and less fine-grained ac-

counts of the surface of a process, on the one hand—its behav-
ioural interface or interactions with its environment—from com-
positional accounts of its interior, on the other. That a process 
has such an “interior” is again a striking assumption throughout 
computer science: the role of what in computer science are uni-
versally called interpreters, though I myself will use the term 
processors, is a striking example.x Suppose for instance that one 
were interact with a so-called “Lisp-based editor.” It is standard 
to assume that the Lisp interpreter (processor) is an ingredient 
process within the process with which you interact: moreover, it is 
understood to be the locus of anima or agency inside your editor 
process, that in turn supplies the temporal action or activity in 
the editor itself. That is, of all the interior ingredients constitut-
ing the editor, only the interpreter (processor) is understood to 
be active; all other components—specifically, the “editor pro-
gram” and any associated data structures—will be static or at 
least passive, at least at this level of abstraction. Yet the one active 
ingredient (interior) process never appears as the surface of the edi-
tor: no user interaction with the editor (via the keyboard, say) is 
itself directly an interaction with the Lisp processor. Rather, the 
Lisp processor, in conjunction with some appropriate (passive) 
Lisp program, together engender the behavioural surface with 
which the user interacts. 

Computer science has studied a variety of such architectures—
or classes of architecture; here I will briefly mention just two, but 
will then focus, throughout the rest of the dissertation, on just 
one. Every computational process, I will assume (I will take on 
the question of which processes we are disposed to call computa-
tional in a moment), has within it at least one other process, 
which, singly or collectively, supplies the animate agency of the 
overall constituted process. 

I will call this model a process reduction model of computa-
tion. since at each stage of computational reduction a given process 
is reduced in terms of constituent symbols and other processes. 

                                                             
 x «Reference the discussions in other papers—POPL? Prologue? I forget 

where this is talked about, complete with figures, etc.» 
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There may be more than one internal process (in what are known 
as parallel or concurrent processes), or there may be just a single 
one (known as serial processes). Reductions of processes that do 
not posit an interior process as the source of the agency I will 
consider to be outside the realm of computer science proper—
though of course some such reduction must at some point be ac-
counted for, if the engendered process is ever to be realized. I will 
view these alternatives forms of reduction—from process to, say, 

behaviours of physical mecha-
nism—to fall more within physics 
or electronics (or perhaps computer 
engineering) than within computer 
science per se. What is critical is 
that at some stage in a series of 
computational reductions this leap 
from the domain or processes to 
the domain of mechanisms be 

taken, as for example in the explaining how the behaviour of a set 
of logic circuits constitutes a processor (interpreter) for the mi-
crocode of a given computer. Given this one account of what may 
reasonably be called the realization of a computational process, 
an entire hierarchy of processes above it may obtain indirect reali-
sation through a series of process reductions of the above form. 
For example, if microcode processor interprets a set of instruc-
tions that are the program for a macro machine (say, a CPU), then 
a macro processor—an interpreter (processor) for the resulting 
“machine language” may be said to exist. Similarly, that macro 
machine may in turn interpret (process) a machine language pro-
gram that implements SNOBOL: thus by two stages of “process 
composition” (i.e., the inverse of process reduction) a SNOBOL 

processor is also realised. 
In order to make this talk of processors and so forth a little 

clearer, it helps to diagram two different forms of process reduc-
tion: what I will call communicative reduction and interpretive re-
duction. Taking the arrow ‘⇒’ to mean “reduces to,” figure 2 de-
picts communicative reduction, by showing that process P reduces 
to a set of five interior processes (P1…P5). What it is for processes 
to communicate I will not here say: I merely assume that those 
five ingredient processes interact in some fashion, so that taken as 

 
 

Figure 2 — Communicative Reduction 
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a composite unity their total behaviour is (i.e., can be “inter-
preted”11 as) the behaviour of the thereby constituted process. 
Responsibility for the surface of the total process P is assumed to 
be shared in some way amongst the five ingredients. Examples of 
this sort of reduction may be found at any level of the computa-

tional spectrum—from metaphors 
of disk-controllers communicating 
with bus mediators communicating 
with central processors, to the mes-
sage-passing metaphors in such 
Artificial Intelligence languages as 
ACTI and Smalltalk and so forth.12 

Communicative reductions will 
receive only passing mention in this 
dissertation; I discuss them only in 
order to admit that the model of 

reflection that I will propose is not (at least at present) suffi-
ciently general to encompass them. Instead I will focus instead on 
the more common model that I am calling interpretive reduc-
tion, pictured in figure 3.x In such cases the overall process is 
composed of what I will call a processor and a structural field. 
The former ingredient is the locus of active agency we have been 
speaking of; as already mentioned, it is what is typically called an 
‘interpreter;’ from here on I will avoid that term (or when using it, 
do so within quotation marks), because of its confusion with no-
tions of interpretation from the declarative tradition (I will have 
much more to say about this confusion in chapter 3).x The latter 
ingredient is intended to include both the program or the pro-
gram’s data structures (or both); it is often taken to consist of a 
set of symbols, although that term is so semantically loaded that 
for the time being I will avoid it as well. 

                                                             
 11 Using the English, rather than computer science, meaning of the term 

‘interpret.’ 
 12 For references on the message-passing metaphor, see Hewitt et a1. (1974) 

and Hewitt (1977); for ACT1 see Lieberman (1987); for Smalltalk see 
Goldberg (1981), Ingalls (1978). 

 x Why I did not use the phrases ‘serial’ and ‘parallel’ reduction I no longer 
remember; they would seem to be more appropriate terms. 

 x «Point also to other papers and commentaries as appropriate» 

 
 

Figure 3 — Interpretive Reduction 
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This second kind of reduction includes all of computer sci-
ence’s standard interpreted languages, of which Lisp is as good an 
instance as any. The Lisp structural field consists of what are 
known as s-expressions: a combination of pairs (binary graph 
elements of a certain form), atoms, numerals, and so forth. 

One benefit of the interpretive 
model of process reduction is that 
it can be used to understand both 
language design and the construc-
tion of particular programs.x For 
example, we can characterise For-
tran in its terms, by positing a For-
tran “processor” that computes over 
(examines, manipulates, constructs, 
reacts to, and so forth) elements of 
the Fortran structural field, which 

includes primarily an ordered sequence of Fortran instructions, 
FORMAT statements, etc. Suppose you were to set out to develop a 
Fortran “program” (really: process) to manage your financial af-
fairs—which for discussion I will call Chequers. To do this, you 
would specify a set of Fortran data structures, and design a proc-
ess to interact with them. In terms of the model, those data struc-
tures—the tables that list current balances, recent deposits, inter-
est rates, currency conversion factors, and so on—would consti-
tute the structural field of the first interpretive process reduction 
of Chequers. The “program” you design to interact with these 
data base I will simply call Pc. Thus the first Chequers interpre-
tive reduction would be pictured in the model as depicted in Fig-
ure 4. 

We are assuming, however, that Pc is specified by a Fortran 
program. Pc is not itself that program—or any program, for that 
matter; Pc is a process, and programs are static, requiring interpre-
tation by a processor in order to engender processes or behaviour. 
Rather, Pc can itself be understood in terms of a second interpre-

                                                             
 x «The relation between programs and programming languages is a topic 

that I continue to believe is of far more theoretical importance than is 
normally recognized. See «…» for a discussion of the relation between pro-
gramming language semantics and program semantics. … discuss … » 

 
 

Figure 4 — First Reduction of Chequers 
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tive reduction, of the program C that, when processed by the For-
tran processor, yields process Pc as a result. In toto, that is, the 
development of Chequers involves have a double interpretive re-

duction, depicted in Figure 5. 

A host of questions would have to 
be answered before this model 
could be made precise (before, for 
example, one could develop any-
thing like an adequate mathemati-
cal framework based on its underly-
ing intuitions). For example, the 
data structures in the foregoing 
example are themselves have to be 
implemented in Fortran as well. 

However to fill out the model just a little, we can suggest how we 
might, in these terms, define a variety of commonplace terms of 
art of computer science. 

First, I take it that the computer science term ‘interpreter’ 
(which, to repeat, I will call a “processor”) is used in the following 
way: 

 Interpreter: A process that is the interior process in an inter-
pretive reduction of another interior process. 

For example, the process Pc developed in the course or imple-
menting Chequers is not interpreter, on this definition, because 
although it is an ingredient process (it is not, in particular, 
Chequers itself, but rather interior to Chequers), it is nevertheless 
interior only singly. The process thereby constituted—viz., 
Chequers—is not itself an interior process. On the other hand, it 
is legitimate to call the process that “interprets” (i.e., processes) 
Lisp programs an interpreter, because Lisp programs are struc-
tural field arrangements that engender other interior processes 
that work over data structures so as to yield yet other processes. 

Second, I would argue that we use “compilation” as follows: 

 Compilation: The transformation or translation of a structural 
field arrangement S1 to another structural field arrangement S2, 
in such a way that the surface behaviour of the process Q1 that 

 
 

Figure 5 — Second Chequers Reduction 
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would result from the processing of S1 by some processor P1 is 
equivalent—modulo some appropriate equivalence metric—to 
the surface behaviour of the process Q2 that would result from 
the processing of S2 by some processor P2.  

For example, I spoke above about a Fortran “processor,” but of 
course such a processor is rarely if ever realised. Rather, Fortran 
programs are typically compiled—usually into some form of ma-
chine language. Consider the compiler that compiles Fortran into 
the machine language of the IBM 360. Then the compilation of a 
particular Fortran program CF into an IBM 360 machine language 
program C360 would be correct just in case the surface of the proc-
ess that would result from the processing of CF by the (hypotheti-
cal) Fortran processor would be equivalent to the process that 
will actually result by the processing of C360 by the basic IBM 360 
machine language processor. 

In sum, compilation is defined relative to two interpretive re-
ductions, and is mandated only to ensure equivalence, modulo an 
appropriate metric, of resulting process surfaces. 

Third, by ‘implementation’ I take it that we refer to two kinds of 
construction. 

 Process Implementation (i.e., programming): The con-
struction of a structural field arrangement S for some processor P 
such that the surface of the process that results from the interpre-
tation of S by P yields the desired behaviour—i.e., desired process 
Q. 

More interesting is to implement a computational language. In 
terms of the model, we can characterize (serial) computer lan-
guages as follows: 

 Computational Language: The architecture of a structural 
field and a behaviourally specified processor for it, in which are 
specified both possible arrangements or configurations of the 
field, and the behaviour that would result from the processing of 
them by the specified processor. 

In terms of this definition, we can characterize the implementa-
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tion of a language:x 

 Language Implementation: The provision of a process P that 
can be interpretively reduced to the structural field and interior 
processor of the language being implemented.  

To implement Lisp, in other words, all that is required is the pro-
vision of a process that behaviourally appears to be a constituted 
process consisting of the Lisp structural field and the interior 
Lisp processor. Thus I am completely free of any actual commit-
ment as to the reality, if any, of the implemented field.x 

Typically, one language is implemented in another by con-
structing some arrangement or set of protocols on the data struc-
tures of the implementing language to encode the structural field 
of the implemented language. and by constructing a program in 
the implementing language that, when processed by the imple-
menting language’s processor, will yield a process whose surface 
can be taken as a processor for the interpreted language, with re-
spect to that encoding of the implemented language’s structural 
field. (By a program we refer to a structural field arrangement 
within an interior processor—i.e., to the inner structural field of a 
double reduction—since programs are structures that are inter-
preted to yield processes that in turn interact with another struc-
tural field (the data structures) so as to engender a whole consti-
tuted behaviour.) 

Finally, it is straightforward to imagine how this model could 
be used in cognitive theorising. A weak computational model of 
some mental phenomenon or behaviour ψ would be a computa-
tional process that was claimed to be superficially equivalent to ψ 
(as always: modulo some equivalence metric). Note that surface 
equivalence of this sort can be arbitrarily fine-grained. Just be-
cause a given computational model predicts the most minute 
temporal nuances revealed by click-stop experiments and so forth, 
that does not imply that anything other than surface equivalence 
has been achieved In contrast, a strong computational model 
would posit not only surface but interior architectural structure. 

                                                             
 x Is the following coherent—and correct? I am not at all sure. Tai!! … 

 x … Similarly … 
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Thus for example Fodor’s recent claim of mental modularity13 is a 
coarse-grained but strong claim: he suggests that the dominant or 
overarching computational reduction of the mental is closer to a 
communicative than to an interpretive reduction. 

This has been the briefest of sketches of a substantial subject. Ul-
timately, it should be formalized into a generally applicable and 
mathematically rigorous account. In this dissertation I will merely 
use its basic conceptual structure to organise the analysis, and will 
also base the 3-Lisp architecture on it. Even for these purposes, 
however, it is important to identify three properties that all struc-
tural fields must manifest. 

1. Locality: A locality metric or measure must be defined 
over every structural field—since (in consort with physical 
constraint) the interaction of a processor with a structural 
field is always constrained to be locally continuous. 

Informally, one can think of the processor looking at 
the structural field with a pencil-beam flashlight—able to 
see and react only to what is currently illuminated (more 
formally, the behaviour of the processor must always be a 
function only of its internal state plus the current single 
structural field element under investigation). Why it is 
that the well-known joke about a COME-FROM statement 
in Fortran is funny, for example,14 can be explained only 
because this it violates this local accessibility constraint 
(it is otherwise perfectly well-defined). Note as well that 
in logic, the λ-calculus, and so forth, no such locality con-
siderations come into play. In addition, the measure 
space yielded by this locality metric need not be uniform, 
as Lisp demonstrates; from the fact that A is accessible 
from B it does not follow that B must be accessible from A. 

2. Semantics: it is important to the overall consideration of 

                                                             
 13 Fodor (forthcoming). 
 14 As reported on Wikipedia, COMEFROM was initially seen in lists of joke 

assembly language instructions (as 'CMFRM'). It was elaborated upon in 
Clark, R. Lawrence, “We don't know where to GOTO if we don't know 
where we've COME FROM”, Datamation, 1973, written in response to 
Edsger Dijkstra's “Go To Statement Considered Harmful” «ref».  
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semantics that structural field elements are taken to be sig-
nificant—i.e., to be meaningful. This is why we tend to call 
them symbols. In particular, i will count as computational 
only those processes consisting of ingredient structures 
and events to which we, as external observers, attribute 
semantical value or import. 

The reason cars are not considered to be computers, 
even if we treat their electronic fuel injection modules 
computationally, hinges on this issue of semantical attri-
bution. The main components of a car we understand in 
terms of mechanics—forces, torques, plasticity, geome-
try, heat, combustion, and so on. These are not inter-
preted notions; or to put the same point another way, ex-
plaining a car does not require positing any externally at-
tributed semantical interpretation function in order to 
make sense of a car’s inner workings. With respect to a 
computer, however—whether abacus, calculator, elec-
tronic fuel injection system, or a full-scale digital com-
puter—the best explanation is exactly in terms of the in-
terpretation of the ingredients, even though the machine 
itself is not allowed access to that interpretation (for fear 
of violating the strictures of mechanism). Thus while I 
may know that the arithmetic logical unit in my machine 
works in such and such a way, I nevertheless “under-
stand” its workings in terms of addition, logical opera-
tions. and so forth, all of which speak about the 
interpretations of its parts and workings, rather than 
speaking about them directly. In other words the proper 
use of the term “computational” is as a predicate on 
explanations, not on artefacts.x 

                                                             
 x «This paragraph, and the subsequent (third) point, are clearly an informal 

(and not especially clear) amalgam of Fodor’s “formality condition,” Den-
nett’s “intentional stance,” and a distinction between original and derived 
intentionality. Fodor’s classic formulation of the formality condition ap-
peared in 1981 (the year this dissertation was written; see Fodor 1981); 
Dennett’s Intentional Stance was not published until six years later (Den-
nett 1987), though formulations had appeared earlier (check■■). I no 
longer believe that ‘computational’ is best understood a predicate on ex-
planations, though from a position that accepts derivative intentionality it 
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3. Formality: The third constraint follows directly on the 
second: in spite of this semantical attribution, the interior 
processes of a computational process must interact with 
these structures and symbols and other processes in com-
plete ignorance and disregard of any this externally-attributed 
semantical weight. This is the substance of the claim that 
computation is formal symbol manipulation—that compu-
tation has to do with the interaction with symbols solely in 
virtue of their spelling or shape. We computer scientists 
are so used to this formality condition—this requirement 
that computation proceed syntactically—that we are liable 
to forget that it is a major claim, and are in danger of 
thinking that the simpler phrase “symbol manipulation” 
means formal symbol manipulation. Nevertheless, part of 
the semantical reconstruction to be undertaken here will 
rest on a claim that, in spite of its familiarity, we have not 
taken semantical attribution seriously enough. 

A book should be written on all these issues; I mention them here 
only because they will play an important role in the upcoming re-
construction of Lisp. There are obvious parallels and connections 
to be explored, for example, between this external attribution of 
significance to the ingredients of a computational process, and the 
issue of what would be required far a computational system to be 
semantically original in the sense discussed at the beginning of the 
previous section. This is not the place for such investigations; but 
as §4 and chapter 3 will make clear, below, this attribution of sig-
nificance to Lisp structures must be part of the full declarative 
semantics for Lisp. The present moral is merely that, although 
including such interpretation within the scope of an account of a 

                                                                                                                                                  
still does not follow that that would be so; it is a view that would deny that 
the property of being computational is intrinsic—but that is a different 
thing. 

  The main point is that, because of the fundamental thesis (that reflection 
is straightforward to understand and implement if built on a semantically 
clear base) developing this account of computational reflection and design-
ing 3-Lisp required not only understanding such philosophical views about 
the nature of computing, but effectively “building them in” to the result-
ing reflective architecture. 
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language’s semantics has not (to my knowledge) been done be-
fore, the attribution of semantic interpretation itself is neither 
something new, nor something specific to Lisp’s circumstances. 
Externally attributed (declarative) significance is a foundational 
part of computer science. 

 4 The Rationalisation of Computational Semantics 
From even the few introductory sections that have been pre-
sented so far. it is clear that semantical vocabulary will permeate 
the upcoming analysis. In discussing the Knowledge Representa-
tion and Reflection hypotheses, I talked of symbols that repre-
sented knowledge about the world, and of structures that desig-
nated other structures. In the model of computation just pre-
sented, I said that the attribution of semantic significance to the 
ingredients of a process was a distinguishing mark of computer 
science. Informally, no one could possibly understand Lisp with-
out knowing that the atom T stands for truth, and NIL for falsity. 
If we subscribe to the view that computer science is about formal 
symbol manipulation, we admit not only that the subject matter 
involves symbols, but also that any computations over them must 
occur in ignorance of their semantical weight.15 Even at the very 
highest levels, when we say that a process—human or computa-
tional—is reasoning about a given subject, or reasoning about its 
own thought processes, we implicate semantics, since the term 
‘semantics’ can (at least in part) be viewed as merely a fancy word 
for aboutness. 

It is therefore necessary for me to add to last section’s account 
of processes and process reduction a corresponding accounting of 
the semantical assumptions I will make and techniques I will use, 
and to make clear what I mean when we say that I will subject 
computational dialects to semantical scrutiny. 

 4a Pre-Theoretic Assumptions 
When we engage in semantical analysis, I do not take it to be our 
goal simply to provide a mathematically adequate specification of 

                                                             
 15 You cannot treat a non-semantical object, such as an eggplant or a water-

fall, formally (unless you first, non-standardly, set it up as a symbol). The 
mere use of the predicate ‘formal’ assumes that its object is significant, or 
has been attributed significance, even if on the side. 
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the behaviour of one or more procedural calculi that would enable 
us, for example, to prove that programs will meet some specifica-
tion of what they were designed to do. That is: by “semantics” I 
do not simply mean a mathematical formulation of the properties 
of a system, formulated from a meta-theoretic vantage point. 
(Unfortunately, in my view, in some writers the term seems to be 
acquiring this weak connotation.x) Rather, I take semantics to 
have fundamentally to do with meaning and reference and so 
forth—whatever they come to—as paradigmatically manifested 
in human thought and language (as was mentioned in §2a). I am 
therefore interested in semantics for two reasons: first, because, as 
I said at the end of the last section, all computational systems are 
marked by external semantical attribution; and second, because 
semantics is the study that will reveal what a computational sys-
tem is reasoning about, and a theory of what a computational 
process is reasoning about is a pre-requisite to a proper charac-
terisation of reflection. 

Given this agenda, I will approach the semantical study of 
computational systems with a rather precise set of guidelines. In 
particular, I will require that any subsequent semantical analyses 
answer to the following two requirements, emerging from the two 
facts about processes and structural fields laid out at the end of 
section: 

1. They should manifest the fact that we understand compu-
tational structures in virtue of attributing to them seman-
tical import; 

2. They should make evident that, in spite of such attribu-
tion, computational processes are formal, in that they must 
be defined over structures independent of their semantical 
weight. 

                                                             
 x As explained in the annotation to the “Reflection and Semantics in Lisp” 

paper presented at the Principles of Programming Languages conference in 
1984 (included in this volume—see ■■), at the time this dissertation was 
written I was in the grip of an “ingrediential” view of programs, rather 
than a “specificational” one, and so had not considered the position, much 
more commonly held in computer science, that a program was a specifica-
tion of, rather than an ingredient within, a computational process. 
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These two principles alone entail the requirement of a double 
semantics, since the attributed semantics mentioned in the first 
premise includes not only a pre-theoretic understanding of what 
happens to computational symbols, but also a pre-computational 
intuition as to what those symbols stand for. It follows that we 
will have to make clear the declarative semantics of the elements 
of (in our case) the Lisp structural field, as well as establishing 
their procedural import 

I will explore these results in more detail below, but in bare 
outlines the argument is straightforward. Most of the results are 
consequences of the following basic tenet (relativised here to Lisp, 
for perspicuity, but the same would hold for any other calculus): 

 What Lisp structures mean ;s not a function of how they are 
treated by the Lisp processor. Rather, how they are treated is a 
function of what they mean. 

For example, I take it that the Lisp expression “(+ 2 3)” evaluates 
to “6” for the undeniable reason that “(+ 2 3)” is understood as a 
complex name of the number that is the successor of four. We ar-
range things—we define Lisp in the way that we do—so that the 
numeral 6 is the value because we know in advance what (+ 2 3) 
stands for. To borrow a phrase from Barwise and Perry, this re-
construction is an attempt to “regain our semantic innocence”16—
an innocence that still permeates traditional formal systems 
(logic, the λ-calculus, and so forth), but that has been lost in the 
attempt to characterise the so-called “semantics” of computer 
programming languages. 

That “(+ 2 3)” designates the number five is self-evident, as are 
many other examples on which I will begin to erect my denota-
tional account. I have also already alluded to the equally unargu-
able fact that (at least in certain contexts) T and NIL designate 
Truth and Falsity. Similarly, it is commonplace use the term 
“CAR” as a descriptive function to designate the first element of a 
pair, as for example in the English sentence “I noticed that the 
CAR of that list is the atom L.” The important point is that, in that 
English sentence, the phrase “CAR of that list” occurs as a name or 
a designator—not as a procedure call. Nothing happens, when I say 

                                                             
 16 «Ref Situations and Attitudes, probably—check» 
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it; it is not executed. It is merely a way of pointing to something—
to the first element of the list pointed to by the ingredient phrase 

‘that list.’ Similarly, it is hard to 
imagine an argument against 
the idea that “(QUOTE X)” desig-
nates X—in contrast to the 
claim, which is also often 
heard, that does not speak at 

all about naming or designation, but only about procedural 
treatment: that QUOTE is a function that holds off the evaluator. 

In sum, the moral is not so much that formulating the declara-
tive semantics of a computational formalism is difficult, as that it 
must be recognized as an important thing to do. 

 2b Semantics in a Computational Setting 
In the most general form that I will use the term semantics,17 a 
semantical investigation aims to characterise the relationship be-
tween a syntactic domain and a semantic domain—a relation-
ship typically studied as a mathematical function mapping ele-
ments of the first domain into elements of the second. I will call 
such a function an interpretation function (it was in order to be 
able to talk about this function, which must be sharply distin-

guished from what is called an 
‘interpreter’ in computer sci-
ence, that I switched to the 
term processor). Schematically, 
that it, as shown in figure 6, the 
function φ is taken to be an 
interpretation function from S 
to D. 

In a computational setting, 
this simple situation is made 
more complex because we are 
studying a variety of interacting 

interpretation functions. In particular, figure 7 identifies the rela-
tionships between the three main semantical functions that will 

                                                             
 17 See the postscript, however, where I in part disavow this fractured notion 

of syntactic and semantic domains. 

 
 

Figure 6 — Minimal Semantics 
 
 
 
 
 

 
 

Figure 7 — Computational Semantics 
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permeate the analysis of 3-Lisp. θ is the interpretation function 
mapping notations into elements of the structural field, φ is the 
interpretation function making explicit our attributed semantics 
to structural field elements, and ψ is the function formally com-
puted by the language processor. ω will be explained below; it is 
intended to indicate a φ-semantic characterisation of the relation-
ship between S1 and S2, whereas ψ indicates the formally com-
puted relationship—a distinction similar, as I will soon argue, to 
that between the logical relationships of derivability (⊢) and en-
tailment (⊨). 

The names have been chosen for connotative convenience: ‘ψ’ 
by analogy with psychology, since it is a study of the internal rela-
tionships between and among symbols, all within the machine (‘ψ’ 
in this sense is meant to signify psychology narrowly construed, in 
the sense of Fodor, Putnam, and others18). The label ‘φ’, on the 
other hand, chosen to suggest philosophy, signifies the relationship 
between a set of symbols and the world. By analogy, suppose we 
were to accept the hypothesis that people represent or encode 
English sentences in an internal mental language called mentalese 
(suppose, in other words, that we accept the hypothesis that our 
minds are computational processes). If you say to me “A com-
poser who died in 1750” and I respond with “Johan Sebastian 
Bach”, then, in terms of the figure, the first phrase, qua sentence 
of English, would be N1; it would “notate” or “express” the men-
talese structure N1, and the person who lived in the seventeenth 
and eighteenth centuries would be the referent D1. Similarly, my 
reply would be N2, the mentalese fragment that I thereby express 
would be S2, and D2 would again be the long-dead composer. I.e., 
in this case D1 and D2 would be identical. 

N1, S1, D1, N2, S2, and D2, in other words, need not necessarily 
all be distinct; in a variety of different circumstances two or more 
of them may be one and the same entity. I will examine cases, for 
example, of self-referential designators, where S1 and D1 are the 
same object. Similarly, if, on hearing the phrase “the pseudonym 
of Samuel Clemens,” I reply “Mark Twain”, then D1 and N2 are 
identical. By far the most common situation, however, will be as 
in the Bach example, where D1 and D2 are the same entity—a cir-

                                                             
 18 Fodor (1980). 
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cumstance in which I will say that the function ψ is designation-
preserving. As we will see in the next section, the α-reduction 
and β-reduction of the λ-calculus, and the derivability relation-
ship (⊢) of logic, are both designation-preserving relationships. 
Similarly, the 2-Lisp and 3-Lisp processors I present will be des-
ignation-preserving, whereas 1-Lisp ’s and Scheme’s evaluation 
protocols, as we have already indicated, are not. 

In the terms of this figure, the argument I will present in chap-
ter 3 will run roughly as follows. First I will review both logic sys-
tems and the λ-calculus, to illustrate the general properties of the 
φ and ψ employed in those formalisms, for comparison. Next I 
will shift towards computational systems, beginning with 
PROLOG, since it has evident connections to both declarative and 
procedural traditions. Finally I will take up Lisp. I will argue that 
it is not only coherent, but in fact natural, to define a declarative φ 
for Lisp, as well as a procedural ψ. I will also sketch some of the 
mathematical characterisation of these two interpretation func-
tions. It will be clear that though similar in certain ways, they are 
nonetheless crucially distinct. In particular, I will be able to show 
that 1-Lisp ’s ψ (EVAL) obeys the following equation. I will say that 
any system that satisfies this equation has the evaluation prop-
erty, and the statement that, for example, the equation holds of 
1-Lisp the evaluation theorem. (The formulation used here is 
simplified for perspicuity, ignoring contextual relativisation; Σ is 
the set of structural field elements.) 

 ∀ S∊Σ [ if φ(S)∊Σ then ψ(S)=φ(S) (5) 
  else φ(ψ(S))=φ(S) ] 

1-Lisp ’s evaluator, in other words, de-references just those struc-
tures whose referents lie within the structural field, and is designa-
tion-preserving otherwise. Where it can, in other words, 1-Lisp ’s 
ψ (i.e, its processor) implements φ; when it cannot, ψ is φ-
preserving, although what it does do with its argument in this case 
has yet to be explained (saying that it preserves φ is too easy: the 
identity function preserves designation was well, but EVAL is not 
the identity function). 

The behaviour described in (5) is unfortunate, in part because 
the question of whether φ(S)∊Σ is not in general decidable, and 
therefore even if one knows of two expressions S1 and S2 that S2 is 
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ψ(S1), one still does not necessarily know the relationships be-
tween φ(S1) and φ(S2). More seriously, it makes the explicit use of 
meta-structural facilities extraordinarily awkward, thus defeating 
attempts to engender reflection. I will argue instead for a dialect 
described by the following alternative (again in skeletal form): 

 ∀ S∊Σ [[φ(ψ(S))=φ(S)] ∧ [NORMAL-FORM(ψ(S))]] (6) 

When I prove it for 2-Lisp, I will call this equation the normali-
sation theorem; I will say that any system satisfying it has the 
normalisation property. Diagrammatically. the circumstance it 

describes is pictured in figure 8. 
Such a ψ, in other words, is al-
ways φ-preserving. In addition, it 
relies on a notion of of normal-
formedness, which we will have 
to define. 

In the λ-calculus, ψ(S) would 
definitionally be in normal-form, 
since in that calculus normal-
formedness is defined in terms of 
the non-applicability of any fur-

ther β-reductions. As I will argue in more detail in chapter 3, this 
makes the notion less than ideally useful: in designing 2-Lisp and 
3-Lisp, therefore, I will in contrast define normal-formedness in 
terms of the following three (provably independent) properties: 

1. Normal-form designators must be context-independent, 
in the sense of having the same declarative and procedural 
import independent of their context of use; 

2. They must also be side-effect free, implying that any 
(further) procedural treatment of them will have no affect 
on the structural field or state of the processor; and 

3. They must be stable, meaning that they normalise to 
themselves in all contexts. 

It will then require a proof that all 2-Lisp and 3-Lisp results (all 
expressions ψ(S) are in normal-form. In addition, from the third 
(stability) property, plus this proof that ψ’s range includes only 
normal-form expressions, it will be possible to show that ψ is 
idempotent, as was suggested earlier (ψ=ψ°ψ—i.e., ∀S 

 
 

Figure 8 — Normalisation 
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ψ(S)=ψ(ψ(S)))—a property of 2-Lisp and 3-Lisp that will ulti-
mately be shown to have substantial practical benefits. 

There is another property of normal-form designators in 2-
Lisp and 3-Lisp, beyond the three requirements just listed, that 
follows from the category alignment mandate. In designing those 
dialects I will insist that the structural category of each normal 
form designator be determinable from the type of object designated, 
independent of the structural type of the original designator, and 
independent as well of any of the machinery involved in imple-
menting ψ (this is in distinction to the received notion of normal 
form employed in the λ-calculus, as will be examined in a mo-
ment). For example, I will be able to demonstrate that any term 
that designates a number will be taken by ψ into a numeral, since 
numerals will be defined as the normal-form designators of num-
bers. In other words. from just the designation of a structure S the 
structural category of ψ(S) will be predictable, independent of the 
form of S itself (although the token identity of ψ(S) cannot be pre-
dicted on such information alone, since normal-form designators 
are not necessarily unique or canonical). This category result, 
however, will also need to be proved: i call it the semantical type 
theorem. 

That normal form designators cannot be canonical arises, of 
course, from computability considerations: one cannot decide in 
general whether two expressions designate the same function, and 
therefore if normal-form function designators were required to be 
unique, it would follow that expressions that designated functions 
could not necessarily be normalized. Instead of pursuing that ap-
proach, however, which I would view as unhelpful, I will instead 
adopt a non-unique notion of normal-form function designator, 
which still satisfies the three requirements specified above; such a 
designator will by definition be called a closure. All well-formed 
function-designating expressions, on this scheme, will succumb to 
a standard normalisation. 

Some 2-Lisp (and 3-Lisp) examples will illustrate all of these 
points. I assume that the numbers are included in the semantical 
domain, a syntactic class of numerals are taken to be normal-
form number designators. The numerals are canonical (one per 
number), and as usual are side-effect free and context-
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independent; thus they satisfy the requirements on normal-
formedness. The semantical type theorem says that any term that 
designates a number will normalise to a numeral: thus if X desig-
nates five and Y designates six, and if + designates the addition 
function, then we know (can prove) that (+ X Y) designates eleven 
and will normalise to the numeral 11. Similarly, there are two 
boolean constants $T and $F that are normal-form designators of 
Truth and Falsity, respectively, and a canonical set of rigid struc-
ture designators called handles that are normal-form designators 
of all s-expressions (including themselves). And so on; closures 
are normal-form function designators, as mentioned above; I will 
also specify normal-form designators for sequences and other 
types of mathematical objects included in the semantical domain. 

I have diverted the discussion away from general semantics, 
onto the particulars of 2-Lisp and 3-Lisp in order to illustrate 
how the semantical reconstruction I endorse impinges on lan-
guage design. However, it is important to recognise that the be-
haviour mandated by (6) is not new: this is how all standard se-
mantical treatments of the λ-calculus proceed, and the designa-
tion-preserving aspect of it is approximately true of the inference 
procedures in logical systems as well, as we will see in detail in 
chapter 3. Neither the λ-calculus reduction protocols, in other 
words, nor any of the typical inference rules one encounters in 
mathematical or philosophical logics, de-reference the expressions 
over which they are defined. In fact it is hard to imagine defending 
equation (5). Rather, it seems reasonable to speculate that be-
cause Lisp includes its syntactic domain within the semantic do-
main—i.e., because Lisp has QUOTE as a primitive “operation”—a 
semantic inelegance was inadvertently introduced into the design 
of the language that has never been corrected. If this is right, then 
the proposed rationalisation of Lisp can be understood as an at-
tempt to regain the semantical clarity of predicate logic and the λ-
calculus, achieved in part by connecting the language of the com-
putational calculi with the language in which prior linguistic sys-
tems have been studied. 

It is this regained coherence that I am claiming is a necessary 
prerequisite to a coherent treatment of reflection. 

One final comment The consonance of (6) with standard seman-
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tical treatments of the λ-calculus, and the comments just made 
about Lisp’s inclusion of QUOTE, suggest that one way to view the 
present project is as a semantical analysis of a variant of the λ-
calculus with quotation. In the Lisp dialects I consider, I will re-
tain sufficient machinery to handle side effects, but it is of course 
always possible to remove such facilities from a calculus. Simi-
larly, we could remove the numerals and atomic function designa-
tors (i.e., the ability to name composite expressions as unities). 
What would emerge would be a semantics for a deviant λ-
calculus with some operator like QUOTE included as a primitive 
syntactic construct—a semantics for a meta-structural extension of 
the already higher-order λ-calculus. I will not pursue this line of at-
tack further in this dissertation, but, once the mathematical 
analysis of 2-Lisp is in place, such an analysis should emerge as a 
straightforward corollary. 

 4c Recursive and Compositional Formulations 
If the previous sections have briefly suggested the work that I 
would like the proposed semantics to do, they do not reveal how 
this is to be accomplished. In chapter 3, where the reconstruction 
of semantics is laid out, I will of course pursue this latter question 
in detail, but I can summarise some of its results here. 

Beginning very simply, standard approaches suffice. For exam-
ple, I begin with declarative import (φ), and initially posit the des-
ignation of each primitive object type (saying for instance that the 
numerals designate the numbers, and that the primitively recog-
nised closures designate a certain set of functions, and so forth), 
and then specify recursive rules that show how the designation of 
each composite expression emerges from the designation of its in-
gredients. Similarly, in parallel fashion I specify the procedural 
consequence (ψ) of each primitive type (saying in particular that 
the numerals and booleans are self-evaluating, that atoms evaluate 
to their bindings, and so forth),x and then once again specify re-
cursive rules showing how the value or result of a composite ex-
pression is formed from the results of processing its constituents. 

                                                             
 x «Check whether the two instances of ‘evaluate’ in that sense should be 

‘normalise’. Or am I still talking about 1-Lisp ?» 
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If we were considering only purely extensional, side-effect free, 
functional languages, the story might end there. However, of a va-
riety of complications that will demand resolution, two may be 
mentioned here. First, none of the Lisp’s that I will consider are 
purely extensional: there are intensional constructs of various 
sorts (QUOTE, for example, and even LAMBDA, which I will view as a 
standard intensional procedure, rather than as a syntactic mark). 
The hyper-intensional QUOTE operator is not in itself difficult to 
deal with, although I will also consider questions about the less 
fine-grained intensionality manifested by a statically-scoped 
LAMBDA. As in any system, the ability to deal with intensional con-
structs requires a reformulation of the semantics of all expres-
sions—i.e., requires recasting the semantics of extensional proce-
dures as well, in appropriate ways. This is a minor complexity, 
but no particular difficulty emerges. 

The second difficulty has to do with side-effects and contexts. 
All standard model-theoretic techniques allow for the general fact 
that the semantical import of a term may depend in part of on the 
context in which it is used, of course (variables are the classic sim-
ple example). However, side-effects—which are part of the total 
procedural consequence of an expression, impinge on the ap-
propriate context for declarative purposes as well as well as for pro-
cedural ones. For example, in a context in which X is bound to the 
numeral 3 and Y is bound to the numeral 4, it is straightforward to 
say that the term (+ Y Y) designates the number seven, and re-
turns the numeral Y. However consider the semantics of the more 
complex (this is standard Lisp): 

 (+ 3 (PROG (SETQ Y 14) Y)) (7) 

It would be hopeless—to say nothing of false—to have the for-
mulation of declarative import ignore procedural consequence, 
and claim that (7) designates seven, even though it patently re-
turns the numeral 17.19 On the other hand, to include the proce-
dural effect of the SETQ within the specification of φ would seem 
to violate the ground intuition arguing that the designation of this 

                                                             
 19 I say this in spite of the fact that I am under no absolute obligation to 

make the declarative and procedural stories cohere—in fact I will reject 1-
Lisp exactly because they do not cohere in any way that I can accept. 
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term, and the structure to which it evaluates, are different. 
The approach I will ultimately adopt is one in which I define 

what I call a general significance function Σ which embodies 
both declarative import (designation), local procedural conse-
quence (what an expression “evaluates to,” to use 1-Lisp jargon), 
and full procedural consequence (the complete contextual effects 
of an expression, including side-effects to the environment, modi-
fications to the structural field, and so forth). Only the total sig-
nificance of the dialects I define will be strictly compositional; the 
components of that total significance, such as the designation, 
will be recursively specified in terms of the designation of the con-
stituents, relativized to the total context of use specified by the 
encompassing general significance function. In this way I will be 
able to formulate precisely the intuition that (7) designates seven-
teen, as well as returning the corresponding numeral 17. 

Lest it seem that by handling these complexities we have lost 
any incisive power in the approach, I should note that it is not al-
ways the case that the processing of a term results in the obvious 
(i.e., normal-form) designator of its referent For example, I will 
prove that, in traditional Lisps, the expression 

 (CAR '(A B C)) (8) 

both designates and returns the atom A. Just from the contrast be-
tween these two examples ((7)and (8)) it is clear that traditional 
Lisp processing and Lisp designation do not track each other in 
any trivially systematic way. 

Although this approach will be shown successful, I will ulti-
mately abandon the strategy of characterising the full semantics 
of standard Lisp (as exemplified in my 1-Lisp dialect), since the 
confusion about the semantic import of evaluation will in the end 
make it virtually impossible to say anything coherent about des-
ignation. This, after all, is my goal: to judge 1-Lisp, not merely to 
characterise it. By the time I wrap up its semantical analysis, I will 
have shown not only that Lisp is confusing, but also (in detail) 
why it is confusing—giving us adequately preparation to design a 
dialect that corrects its errors. 

 4d The Role of a Declarative Semantics 
One brief final point about this double semantics. 
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It should be clear that it is impossible to specify a normalising 
processor without a pre-computational theory of semantics.x If 
you do not have an account of what structures mean, independent 
of and how they are treated by the processor, there is no way to 
say anything substantial about the semantical import of the func-
tion that the processor computes.x On the standard approach, for 
example, it is impossible to say that the processor is correct, or se-
mantically coherent, or semantically incoherent, or any such thing; it 
would merely be what it is. Given some account of what it does, 
one can compare this to other accounts: thus it would for example 
be possible to prove that a specification of it was correct, or that an 
implementation of it was correct, or that it had certain other inde-
pendently definable properties (such as that it always terminated, 
that it used certain resources in certain fashion, etc.). In addition, 
given such an account, one could prove properties of programs 
written in the resulting language—thus, from a mathematical 
specification of the processor of ALGOL, plus the listing of an 
ALGOL program, it might be possible to prove that that program 
met some specification (such as that it sorted its input, or what-
ever). But all of these things are compatible with the system being 
a purely mechanical system—such as a device that sorted apples 
into different bins, or for that matter was a care. However none 
of these questions are the question I am trying to answer here—
namely: what is the semantical character of the processor itself? 

In the particular case I am considering, I will be able to specify 
the semantical import of the function computed by Lisp’s evalua-
tion regimen (i.e., by EVAL—this is content of the evaluation theo-
rem), but only by first laying out both declarative and procedural 
theories of Lisp. Again, I will be able to design 2-Lisp only with 

                                                             
 x This is the equivalent, in a computational context, of saying something that 

would be obvious, logically: that one cannot specify a proof procedure (⊢) 
without first having in mind an interpretation function for it to honour. 

 x This is too strongly stated. Full independence is not required; the two could 
be co-constituted. What is true about the point made in the text is that de-
fining a processing regimen in a calculus in which there was nothing more 
to meaning than “how the symbol or structure was treated” would not just 
evacuate the system of any semantic or intentional (or computational!) in-
terest; it would deprive it of any claim to being a computational system. 
I.e., it would reduce it to nothing but pure mechanism. 
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reference to this pre-computational theory of declarative seman-
tics. It is a simple point, which I am perhaps repeating too often, 
but it is important to make clear how the semantical reconstruc-
tion I am endorsing is a prerequisite to the design of 2-Lisp and 3-
Lisp, not a post-facto method of analysing them. 

 5 Procedural Reflection 
Now that we have assembled a minimal vocabulary with which to 
talk about computational processes and matters of semantics, it is 
possible to sketch the architecture of reflection that I will present 
in the final chapter of the dissertation. 

I will start rather abstractly, with the general sense of reflection 
sketched in section 2, and then make use of both the Knowledge 
Representation Hypothesis and the Reflection Hypothesis to de-
fine a more restricted goal. Next, I will employ the characteriza-
tions of interpretively reduced computational processes and of 
computational semantics to narrow this goal even further. At 
each step in this progressive focusing process, it will become in-
creasingly clear what would be be involved in actually construct-
ing an authentically reflective computational language. By the end 
of this section I will be able to suggest the particular structure 
that, in chapter 5, will be embody in the 3-Lisp design. 

 5a A First Sketch 
Begin very simply. At the outset, I characterised reflection in 
terms of a process shifting between a pattern of reasoning about 
some subject matter, world, or task domain, to reasoning reflec-
tively about its thoughts and actions in that world. I said in the 
Knowledge Representation Hypothesis that the only current 
candidate architecture for a process that reasons at all (even de-
rivatively) is one constituted in terms of an interior process ma-
nipulating representations of the appropriate knowledge of that 
domain. We can see in terms of the process reduction model of 
computation a little more clearly what this means. For the proc-
ess we called Chequers to reason about the world of finance, I 
suggested that it be interpretively composed of an ingredient proc-
ess P manipulating a structural field S consisting of representa-
tions of cheque books, credit and debit entices, currency exchange 
rates, and so forth. Thus we were led to the image depicted in 
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figure 4 (reproduced here as figure 9). 
Next, I said (in the Reflection Hypothesis) that the only sug-

gestion we have as to how to make Chequers reflective is this: as 
well as constructing process P to deal with these various financial 
records, we could also construct process Q to deal with P and the 

structural field that P manipu-
lates. Thus Q might specify 
what to do when P failed or 
encountered an unexpected 
situation, based on what parts 
of P had worked correctly and 
what state P was in when the 
failure occurred, and so on. 
Alternatively, Q might describe 
or generate parts of P that had 
not been fully or adequately 

specified. Finally, Q might bring into existence a more complex 
interpretation process for P, or one particularized to suit specific 
circumstances. In general, whereas the world of P—the domain 
that P models, simulates, reasons about—is the world of finance, 
the world of Q is the world of the process P and the structural 
field it computes over.x 

I have spoken as if Q were a different process from P, but 
whether it is really different from P, or whether it is P in a differ-
ent guise, or P at a different time, is a question I will defer for a 
while (in part because I have said nothing about individuation cri-
teria on processes). All that matters for the moment is that there 
be some process that does what I have said that Q must do. 

What is required, in order for Q to reason about P? Because Q, 
like all the processes we are considering, is assumed to be inter-
pretively composed, what is needed is what is always needed: 
structural representations of the relevant facts about P. What would 
such representations be like? First, they must be expressions 
(statements), formulated with respect to some theory, describing 
or representing the state of process P (we can begin to see how the 
theory relative mandate on reflection from §2 is making itself evi-

                                                             
 x That last ¶ isn’t stated right; it is off one level of designation. I must fix it… 

 
 

Figure 9 — First Interpretive Reduction 
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dent). Second, in order to actually describe P, they must be caus-
ally connected to P in some appropriate way (another of the gen-
eral requirements). Thus we are considering a situation such as 
that depicted in figure 10, where the field (or field fragment) SP 
contains these causally connected structural descriptions. 

Figure 10 is of course incomplete, in that it does not suggest 
how SP should relate to P (answering this question is our current 

quest). Note however that reflection 
must be able to recurse, implying the 
additional possibility of something 
like the image depicted in figure 11. 

Where might an encodable proce-
dural theory come from? There are 
two possible sources: in the semanti-
cal reconstruction to be undertaken 
presently (before 3-Lisp is designed) I 

will have presented a full theory of the (non-reflective versions of 
the) dialects under development; this is one candidate source for 
an appropriate theory. But given that for the moment we are con-
sidering only procedural reflection, we need only the (simpler) 
procedural component of that theory.20 

The second source of a theoretical account, quite similar in 
structure but even closer to the one we will adopt, is what we will 
call the metacircular processor, which is worth a brief examina-
tion. 

                                                             
 20 In the general case, we would need to encode, both declarative and proce-

durally, the full theory of computational significance. 

 
 

Figure 10 — Reflective Chequers, Step 1 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 11 — Reflective Chequers, Step 2 
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 5b Metacircular Processors 
In any computational formalism in which programs are accessible 
as first class structural fragments, it is possible to construct what 
are commonly known as metacircular interpreters: “meta” because 
they operate on (and therefore terms within them designate) 
other formal structures, and “circular” because they do not consti-
tute a definition of the processor, for two reasons: (i) they have to 
be run by that processor in order to yield any sort of behaviour 
(since they are programs, not processors, strictly speaking); and (ii) 
the behaviour they would thereby engender can be known only if 
one knows beforehand what the processor does. Nonetheless, 
such processors are often pedagogically illuminating, and they 
wilt play a critical role in our development of the reflective model. 
In line with my general strategy of reserving the word “interpret” 
for the semantical interpretation function. I will henceforth call 
such processors metacircular processors. 

In the presentation of 1-Lisp and 2-Lisp I will construct 
metacircular processors (MCPs); the 2-Lisp version is presented in 
figure 12 (details will be explained in chapter 4; at the moment I 
mean only to illustrate the general structure of this code). The 
basic idea is that if this code were processed by the primitive 2-
Lisp processor. the process that would thereby be engendered 
would be behaviourally equivalent to that of the primitive proces-
sor itself. In other words, if we were mathematically to take proc-
esses as functions from structure onto behaviour, and if we name 
the processor presented in figure 12 MCP2L, and the primitive 2-
Lisp processor P2L, then if we taken ‘≅’ to mean behaviourally 
equivalent, then we should be able to prove the following, in some 
appropriate sense (this is the sort of proof of correctness one 
finds in for example Gordon21): 

 P2L(MCP2L) ≅ P2L (9) 

It should be recognised that the equivalence spoken of here is a 
global equivalence; by and large the primitive processor, and the 
processor resulting from the explicit running of the MCP, cannot 
be arbitrarily mixed (as already mentioned, and as a more detailed 

                                                             
 21 Gordon (1973 and 1975). 
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discussion in chapter 5 will formalize). For example, if a variable 
is bound by the underlying processor P2L it will not be able to be 
looked up by the metacircular code. Similarly, if the metacircular 
processor encounters a control structure primitive, such as a THROW 
or a QUIT, it will not cause the metacircular processor itself to exit 
prematurely, or to terminate. The point, rather, is that if an en-
tire computation is mediated by the explicit processing of the 
MCP, then the results will be the same as if that entire computa-
tion had been carried out directly. 

We can merge these results about MCPs in general with the dia-
gram in figure 9 as follows: if we replaced P in the figure with a 
process that resulted from P processing the metacircular proces-
sor MCP (for the appropriate language—in this case assumed to 

(DEFINE NORMALISE 
 (LAMBDA EXPR [EXP ENV CONT] 
  (COND [(NORMAL EXP) (CONT EXP)] 
   [(ATOM EXP) (CONT (BINDING EXP ENV))] 
   [(RAIL EXP) (NORMALISE-RAIL EXP ENV CONT)] 
   [(PAIR EXP) (REDUCE (CAR EXP) (CDR EXP) ENV CONT)]))) 

(DEFINE REDUCE 
 (LAMBDA EXPR [PROC ARGS ENV CONT] 
  (NORMALISE PROC ENV 
   (LAMBDA EXPR [PROC!] 
    (SELECTQ (PROCEDURE-TYPE PROC!) 
     [IMPR (IF (PRIMITIVE PROCI) 
         (REDUCE-IMPR PROC! ARGS ENV CONT) 
         (EXPAND-CLOSURE PROC! ARGS CONT))] 
     [EXPR (NORMALISE ARGS ENV 
        (LAMBDA EXPR [ARGS!] 
           (IF (PRIMITIVE PROC!) 
             (REDUCE-EXPR PROC! ARGS! ENV CONT) 
           (EXPAND-CLOSURE PROC! ARGS! CONT))))] 
     [MACRO (EXPAND-CLOSURE PROC! ARGS 
          (LAMBDA EXPR [RESULT] 
          (NORMALISE RESULT ENV CONT)))]))))) 

(DEFINE EXPAND-CLOSURE 
 (LAMBDA EXPR [CLOSURE ARGS CONT] 
  (NORMALISE (BODY CLOSURE) 
       (BIND (PATTERN CLOSURE) ARGS (ENV CLOSURE)) 
       CONT))) 

 
Figure 12 — A Metacircular Processor for 2-Lisp 
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be Fortran), we would still correctly 
engender the behaviour of Chequers, 
as depicted in figure 13. Furthermore, 
this replacement could also recurse, as 
shown in figure 14. Admittedly, un-
der the standard interpretation, each 
such replacement would involve a 
dramatic increase in inefficiency, but 
the important point is that the result-
ing behaviour would in some sense 
still be correct. 

 5d Procedural Reflective Models 
We are now in a position to unify the suggestion made at the end 
of section 5b, on having Q reflect upwards, with the insights em-
bodied in the MCPs described in the previous section, to define 
what I will call the procedural reflective model. The fundamen-
tal insight arises from the eminent similarity between figures 10 
and 11, on the one hand, compared with figures 13 and 14, on the 
other. These diagrams do not represent exactly the same situa-
tion, but the approach will be to converge on a unification of the 
two. 

I said earlier that in order to satisfy the requirements on the Q 
of §5b we would need to provide a causally connected structural 
encoding of a procedural theory of our dialect (Lisp in this case) 

within the accessible 
structural field. In the 
immediately preceding 
section we have seen 
something that is ap-
proximately such an 
encoding: the metacir-
cular processor. How-
ever—and here I refer 
back to the six proper-
ties of reflection set out 
in §2—in the normal 
course of events the 
MCP lacks the appropri-

 
 

Figure 13 — Chequers via the MCP 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 14 — Two layers of MCP 
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ate causal access to the state of P: whereas any possible state of Q 
could be procedurally encoded in terms of the metacircular proc-
ess (i.e., given any account of the state of P we could retroactively 
construct appropriate arguments for the various procedures in 
the metacircular processor so that if that metacircular processor 
were run with those arguments it would mimic P in the given 
state), in the normal course of events the state of P will not be so 
encoded. 

This similarity, however, does suggest the form of the solution. 

Suppose that P were never run directly, but were always run in 
virtue of the explicit mediation of the metacircular processor—as, 
for example, in figure 13 and 14. Then at any point in the course 
of the computation, if that running of one level of the MCP were 
interrupted, and the arguments being passed around were used by 
some other procedures, they would be given just the needed infor-
mation: causally connected and correct representations of the 
state of the process P prior to the point of reflection. The MCP 

would of course have to be modified in order to support such an 
interruption; the point however is that the MCP is already traffick-
ing in the requisite causally connected representations. 

There are however evident problems with this approach. First, 
if P were always run through the mediation of the metacircular 
processor MCP, P would as a result almost surely be unnecessarily 
inefficient. Second, as so far stated the proposal seems to deal 
with only one level of reflection. What if the code that was given 
these structural encodings of P’s state was itself to reflect? This 
query suggests that providing a general mechanism for reflection 
would generate an infinite regress: not only should the MCP be 
used to run the base (“level 0”) programs, but the MCP should be 
used to run the level 1 MCP. And so on. That is: all of an infinite 
number of MCPs should be run by yet further MCPs, ad infinitum. 

Setting aside the obvious vicious regress for a moment, note that 
this seems otherwise to be a reasonable suggestion. The poten-
tially infinite (i.e., indefinite) set of reflecting processes Q are al-
most indistinguishable in basic structure from the infinite tower 
of MCPs that would result. Furthermore the MCP’ would contain 
just the correct structurally encoded descriptions of processor 
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state. We would still need to modify the whole set of MCPs, so 
that an appropriate interruption or reflective act could make use 
of the tower of processes, but it is nevertheless evident that, to a 
first degree of approximation, this solution has the proper charac-
ter. 

The fundamental “trick” of 3-Lisp (i.e., of the model of proce-
dural reflection being proposed) hinges on the fact that, it turns 
out, we can effectively posit that the primitive reflective processor is 
engendered by an infinite number of recursive instances of the MCP, 
each running a version one level below. That is: 3-Lisp will be de-
fined to be isomorphic to that infinite limit. This turns out to be 
legitimate—i.e., the implied infinite regress is not after all prob-
lematic—since only a finite amount of information is encoded in 
it; at all but a finite number of the bottom levels, each MCP will 
merely be running a copy of the MCP. Because we, as the language 
designers, know exactly how the language runs, and because we 
also know what the MCP is like, we can provide this infinite num-
bers of levels, to use current jargon, purely virtually. As I will ex-
plain in detail in chapter 5, such a virtual simulation turns out to 
be perfectly well-defined. 

Once the changes are made to support appropriate interrup-
tion and resumption at any arbitrary level, it becomes no longer 
appropriate to call the processor a metacircular processor, since it 
becomes inextricably woven into the fundamental architecture of 
the language (as will be explained in detail in chapter 5). This is 
why, as suggested above, I call it a reflective processor. Nonetheless 
its genealogical roots in the abstract idea of an infinite tower of 
metacircular processor should be clear. 

To provide a little bit of concrete grounding for this suggestion, I 
will explain just briefly the “interruption adjustment” we will 
make in order to allow this architecture to be used. 

3-Lisp supports what I will call reflective procedures—
procedures that, when invoked, are run not at the level at which 
the invocation occurred, but one level higher in the reflective hi-
erarchy. They are given, as arguments, those structures that would 
have been passed around in the reflective processor, had it always been 
running explicitly. The code for the resulting 3-Lisp reflective 
processor program is given in figure 15, in part so that it may be 
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compared with the (very similar) 2-Lisp meta-circular processor 
code given earlier in figure 12. The most important difference lies 
on a single line, underlined here for emphasis. 

What is important about the underlined line is this: when a 
redex (application) is encountered whose CAR normalises to a re-
flective as opposed to standard procedure (the standard ones are 
called “simple”), the corresponding function, designated by the 

1 (define READ-NORMALISE-PRINT 
2 .. (lambda simple [level env stream] 
3 ..... (normalise (prompt&read level stream) env 
4 ........ (lambda simp1e [result]           ; C-REPLY 
5 ............ (block (prompt&reply result level stream) 
6 ................... (read-normalise-print level env stream)))))) 
7 (define NORMALISE 
8 .. (lambda simple [struc env cont] 
9 ..... (cond [(normal struc) (cont struc)] 
10 .......... [(atom struc) (cont (binding struc env))] 
11 .......... [(rail struc) (normalise-rail struc env cont)] 
12 .......... [(pair struc) (reduce (car struc) (cdr struc) env cont)])) 
13 (define REDUCE 
14 .. (lambda simple [proc args env cont] 
15 ..... (normalise proc env 
16 ........ (lambda simple [proc!]           ; C-PROC! 
17 ........... (if (reflective proc!) 
18 ............... ((de-reflect proc!) args env cont) 
19 ............... (normalise args env 
20 .................. (lambda simple [args!]        ; C-ARGS! 
21 ..................... (if (primitive proc!) 
22 ......................... (cont (proc! . args!)) 
23 ......................... (normalise (body proc!) 
24 .................................... (bind (pattern proc!) args! (environment proc!)) 
25 .................................... cont)))))))) 
26 (define NORMALISE-RAIL 
27 .. (lambda simple [rail env cont] 
28 .... (if (empty rail) 
29 ........ (cont (rcons)) 
30 ........ (normalise (1st rail) env 
31 ........... (lambda simple [first!]          ; C-FIRST! 
32 .............. (normalise-rail (rest rail) env 
33 .................. (lambda simple [rest!]        ; C-REST! 
34 ..................... (cont (prep first! rest!))))))))) 

 
Figure 15 — The 3-Lisp Reflective Processor Program 
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term (de-reflect proc!), is run at the level of the reflective proces-
sor, rather than by the processor. In other words the inclusion of 
this single underlined line unleashes the full infinite reflective hi-
erarchy. 

Coping with that hierarchy will occupy part of chapter 5, 
where I explain this all in much more depth (including why the 
resulting virtual machine is in fact finite, and how it can be im-
plemented). Just this much of an introduction, however, should 
convey, if only a glimpse of how reflection is possible, at least the 
architectural structure of a language that provides it. 

 5d Two Views of Reflection 
The reader will have noted a tension between two ways in which I 
have characterised the form of reflection we are aiming at. On the 
one hand I have sometimes written as if there were a primitive 
and noticeable reflective act, which causes the processor to shift 
levels rather markedly (this is the explanation that best coheres 
with some of our pre-theoretic intuitions about reflective human 
thinking). On the other hand, I have also just written of an infi-
nite number of levels of re1ective processors, each essentially im-
plementing the one below—a story according to which it is not 
coherent either to ask at which level Q is running, or to ask how 
many reflective levels are running. On this “infinite tower” ac-
count, there is a strong some sense in which all levels are running 
at once, in exactly the same sense that both the Lisp processor in-
side your Lisp-based editor, and your editor itself, and the ma-
chine language code that underpins the implementation of Lisp, 
are all running at once, when you use the editor. It is of course 
not as if Lisp, the editor, and the machine language are running 
simultaneously in the sense of side-by-side or independently. This is 
not a parallel computing scheme being described. On the other 
hand, in each case one, being “interior” to the other, supplies the 
anima or agency of the outer one (machine language processor 
animating the Lisp processor, which in turn animates the editor). 
It is just this sense in which the higher levels in the 3-Lisp reflec-
tive hierarchy are always running: each of them is in some sense 
within (interior to) the processor at the level below it, in such a 
way that it thereby engenders its agency. 

Call the account that views reflection as a case of a single locus 
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of agency stepping between levels the level-shifting view. And 
call the other view that of an infinite tower. I will not take a 
principled view on which is correct; on the contrary, the architec-
tural thesis behind 3-Lisp, and behind the model of reflection be-
ing proposed, can be understood as comprising two parts: (i) that 
they can be shown behaviourally equivalent, and thus (ii) that 
adopting the architecture of the tower view is an appropriate way 
to understand (and implement) the level-shifting view. For cer-
tain purposes one is simpler, for others the other. 

Though perhaps more initially intuitive, the level-shifting ac-
count turns out to be more complex than the tower view. To il-
lustrate it, consider the following account of what is involved in 
constructing a reflective dialect—in part by way of review, but 
also in order to suggest how it is that a practical reflective dialect 
could be finitely constructed. 

1. As I have repeatedly said, in order to design a reflective 
language one must provide a complete theory of the given 
calculus expressed in its own language. I call this the reflec-
tive processor—it is required on both accounts. 

2. You must arrange things so that, when the process re-
flects—i.e., when the locus of control shifts “upwards”—all 
of the structures used by the reflective processor (the for-
mal structures designating the theoretical entities posited 
by the theory) are available for inspection and manipula-
tion. In any particular case, these to-be-provided struc-
tures must correctly encode the state that the processor was 
in prior to the reflective level-shift, assuming that it had been 
running all the while (this is where the tower view provides 
structure and substance—fills in the technical details—for 
the level shifting view). 

3. You must also ensure, when the (level-shifting) process 
comes to the point of “shifting down” again, that base-level 
processing is resumed in accordance with the facts encoded in 
the structures being passed around at the immediately higher 
reflective level.  

As a minimal case, take a situation where the user process shifts 
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upwards, but does nothing; and then shifts down again. At the 
point of shifting up, the situation should merely be one where the 
processor would process the reflective processor code explicitly, as 
if it had been doing so all along. At the point of shifting down, it 
would take up running the base-level code directly (i.e., non-
reflectively), again as if it had been doing that all along, but also (of 
course it must be proved that these are equivalent) exactly in ac-
cord with the state of the structures being passed around in the 
reflective processor code at the point of down-shifting. Such a 
situation, in fact, is so simple that it could not be distinguished 
(except perhaps in terms of elapsed time) from pure non-
reflective interpretation. 

The situation would get more complex, however, as soon as 
the user is given any power. Two provisions in particular are cru-
cial. 

First, the whole purpose of a reflective dialect is to allow the 
user to have his or her own programs run along with, or in place 
of, or between the steps of, the reflective processor. One must in 
other words provide an abstract machine with the ability for the 
programmer to insert code—in convenient ways and at conven-
ient times—at any level of the reflective hierarchy. Suppose, for 
example, we were to wish to have a particular λ-expression closed 
only in the dynamic environment of its use, rather than in the 
lexical environment of its definition (i.e., suppose we were to 
want “dynamic scoping” for a given λ-expression, even though 
lexical scoping is the system default). Needless to say, the reflec-
tive processor contains code that performs the requisite opera-
tions needed to implement the default behaviour for lexical clo-
sures. Given that programmer can assume that, upon reflection, 
the reflective processor code is being explicitly processed, he or 
she can supply, for the lambda expression in question, an appro-
priate alternate piece of code in the different actions are taken so 
as to provide it with dynamic scoping behaviour.. By simply in-
serting this code into the correct level, (s)he can use variables 
bound by the reflective model in order to fit gracefully into the 
overall processing regimen. Appropriate hooks and protocols for 
such insertion, of course, must be provided, but they need be pro-
vided only once. Furthermore, the reflective processor code (i.e., 
reflective model) will contain code showing how this hook is 
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treated. 
All of these requirements are met by the underlined line 18 in 

the reflective processor program of figure 15. That line indicates 
how the user code will be inserted, what context it will run it, 
what variables will be bound to what structures containing what 
information, etc. 

Second, as well as providing for the arbitrary interpretation of 
special programs at the reflective level, the language designer must 
also enable the user to modify the explicitly available structures 
provided in the reflective model. Though this ability is easier to 
design than the former, its correct implementation is trickier. An 
example will make this clear. As already indicated, the 3-Lisp re-
flective processor deals explicitly with both environment and con-
tinuation structures. Upon reflecting, user programs can at will 
access these structures that, at the base level, are purely implicit. 
Suppose that a user writes reflective code that does two things. 
First, it modifies the environment structure being passed around 
at the first reflective level (e.g., suppose it changes the binding of a 
variable bound by some procedure that is running “somewhere up 
the stack,” in the way that might be provided by a typically de-
bugging package). Second, it changes the continuation structure 
(designating the continuation function) so as to cause some pro-
cedure that is currently running to, upon its return, bypass its 
immediate caller, and instead return its result to the procedure 
who called that procedure. Then, once it has effected these two 
changes, it “returns”—which is to say, it “drops back down” to 
other base-level code, and no longer runs at the reflective level. 

I said above that, upon this kind of semantic or reflective de-
scent, the base-level program will again be processed “directly.” 
But of course it must be processed in such a way as to honour the 
changes indicated by these modified structures—not in the way 
that it would have been processed, prior to the reflection. The 
user’s reflective modifications, in other words, must matter—
must be noticed. This is the (downwards direction of) the causal 
connection aspect that is so crucial to true reflection. 

 53 General Comments 
The details of the proposed architecture have emerged from de-
tailed considerations of process reduction, computational seman-
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tics, and meta-circular processing. It is interesting to draw back 
and to see the extent to which the global properties of the result-
ing architecture match our pre-theoretic intuitions about reflec-
tion. 

First, it is simple to see that the proposed architecture honours 
all six requirements laid out in section 2c: 

1. It is causally connected and theory-relative; 
2. It is theory-relative; 
3. It involves an incremental “stepping back,” rather than a 

full (and potentially vicious) instantaneous “reflexion”; 
4. Finer-grained control is provided over the processing of 

lower level structures; 
5. It is only partially detached (3-Lisp reflective procedures 

are still in and part of 3-Lisp; they are still animated by the 
same fundamental agency, since if one level stops process-
ing the reflective model, or some analogue of it, all the 
processors “below” it cease to exist): and 

6. The reflective powers of 3-Lisp are primitively provided. 

Thus in this sense at least it is fair to count the architecture a suc-
cess. 

Other questions—such as about the locus of self, the concern 
as to whether the potential to reflect requires that one always par-
ticipate in the world indirectly rather than directly, and so 
forth—turn out to be about as difficult to answer for 3-Lisp as 
they are to answer in the case of human reflection. In particular, 
the solution I have proposed does not answer the question I 
posed earlier, about the identity of the reflected processor: is it P 
that reflects, or is it another process Q that reflects on P? The “re-
flected process” is neither quite the same process, nor quite a dif-
ferent process; it is in some ways as different as an interior proc-
ess, except that since it shares the same structural field it is not as 
different as an implementing process. No more informative an-
swer will be forthcoming until we define individuation criteria on 
processes much more precisely—and perhaps more strikingly, 
there seems no particular reason to answer the question one way 
or another. It is tempting (if dangerous) to speculate that the rea-
son for these difficulties in the human case is exactly why they do 
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not have answers in the case of 3-Lisp: they are not, in some 
sense, “real” questions. But it is premature to draw this kind of 
parallel; our present task is merely to clarify the structure of pro-
posed solution. 

 6 Lisp as an Explanatory Vehicle 
There are any number of reasons why it is important to work 
with a specific programming language, rather than abstractly and 
in general (for pedagogical accessibility, as a repository for emer-
gent results, as an example to test proposed technical solutions, 
and so forth). Furthermore, commonsense considerations suggest 
that a familiar dialect, rather than a totally new formalism, would 
better suit our purposes. On the other hand there are no current 
languages that are categorically and semantically rationalised in 
the way that the proposed theory of reflection demands; accord-
ing to the “reflection is intelligibly implementable only on a se-
mantically clarified basis” mandate, it is not an option to endow 
any extant system with reflective capabilities without first subject-
ing it to substantial modification. It would be possible to present 
some system embodying all the necessary modifications and fea-
tures, but it would be difficult for the reader to sort out which ar-
chitectural features were due to what concern. In this disserta-
tion, therefore, I have adopted the strategy of presenting a reflec-
tive calculus in two steps: first, by modifying an existing language 
to conform to the outlined semantical mandates; and second, by 
extending the resulting rationalised language with reflective capa-
bilities. 

Once this overall plan has been agreed, the question arises as to 
what language should be used as a basis for this two-stage devel-
opment Since my present concern is with procedural rather than 
with general reflection, the relevant class of potential languages in-
cludes essentially all programming languages, but excludes exem-
plars of the declarative tradition: logic, the λ-calculus, specifica-
tion and representation languages, and so forth.x Furthermore, we 

                                                             
 x In the original dissertation, the following parenthetical comment was in-

serted at this point: “It is important to recognise that the suggestion of 
constructing a reflective variant of the λ-calculus represents a category er-
ror.” Especially given the first half of the sentence, it is hard to know what 
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need a programming language—a procedural calculus—with at 
least the following properties: 

1. Though not a formal requirement, it helps for the chosen 
language to be simple. By itself reflection is complicated 
enough that, especially as an initial illustration of the co-
herence and power of the architecture, it seems recom-
mended to introduce it into a formalism of minimal inter-
nal complexity; 

2. It must be possible to access program structures as first-
class elements of the language’s structural field; 

3. Meta-structural primitives must be provided (the ability to 
mention structural field elements, such as data structures 
and variables, as well as to use them); and 

4. The underlying architecture should facilitate the embed-
ding, within the calculus, of the procedural components of 
its own meta-theory. 

The second property could be added to a language: we could de-
vise a variant on ALGOL, for example, in which ALGOL programs 
were made an extended data type, but Lisp already possesses this 
feature. In addition, since (in the formal semantical analysis pre-
sented in following chapters) I will use an extended λ-calculus as 
the meta-language, it is natural to use a procedural calculus that is 
functionally oriented. Finally, although full-scale modern Lisps 
are as complex as any other languages, both Lisp 1.6 and Scheme 
have the requisite simplicity. 

Lisp has other recommendations as well. Because of its sup-
port of accessible program structures, it provides considerable evi-
dence of exactly the sort of inchoate reflective behaviour that it 
has been my aim to reconstruct The explicit use of EVAL and 
APPLY, for example, provides considerable fodder for subsequent 
discussion, both in terms of what they do well and how they are 
confused. In chapter 2, for example, I describe half a dozen types 

                                                                                                                                                  
exactly this meant (if anything true); and in point of fact I informally de-
fined a reflective version of the λ-calculus a couple of years later, as a vehi-
cle in terms of which to explain reflection to my colleague Jon Barwise. I 
have therefore omitted it from this version.  
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of situation in which a standard Lisp programmer would be 
tempted to use these meta-structural primitives, only two of 
which in the deepest sense have anything to do with the explicit 
manipulation of expressions; the other four, I will argue, ought to 
be treated directly in the object language—and their use of metas-
tructural machinery understood to be no more than a “work-
around” for fundamental failures in Lisp’s original design.x And 
finally, and non-trivially, Lisp is the lingua franca of the AI com-
munity; this fact alone makes it an eminent candidate. 

 6a 1-Lisp as a Distillation of Current Practice 
The decision to use Lisp as a base does not solve all of cur prob-
lems, since the name “Lisp” still refers to a wide range of lan-
guages and dialects. For purposes of this dissertation it has 
seemed simplest to define a simple kernel, not unlike Lisp 1.6, as 
a basis for further development, in part to have a fixed and well-
defined target to set up and criticise, and in part so that I can col-
lect into one dialect the features that prove most important for 
subsequent analysis. I take Lisp 1.6 as the primary source for the 
result, which I have called 1-Lisp, although some facilities I will 
ultimately want to examine as (often inchoate) examples of reflec-
tive behaviour—such as CATCH and THROW and QUIT—have been in-
cluded, along with the repertoire of behaviours manifested in 
McCarthy’s original design. Similarly, I have included macros as a 
primitive procedure type, as well as intensional and extensional 
procedures of the standard variety (“call-by-value” and “call-by-

                                                             
 x In a colloquium in the Artificial Intelligence Laboratory at SRI International, 

in the spring of 1982, I have one of the very first talks on 3-Lisp. As it hap-
pened, John McCarthy (inventor of Lisp, and designer of Lisp 1.6) attended. 
Though as a young student I was nervous about making this claim in front 
of him, I nevertheless proceeded with what I had planned to say, and 
claimed that, according to my analysis, traditional Lisp’s dynamic scoping 
protocols were a “mistake,” to which quotation and other metastructural 
manoeuvrings were a partial work-around—in particular providing a way 
of handing closures “downwards,” though there was no way to pass them 
”upwards” (in terms of the usual notion of a control stack; this has nothing 
to do with the reflective hierarchy). 

  To my surprise and considerable relief, John McCarthy very graciously 
agreed. 
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name,” in standard computer science parlance, although I avoid 
these terms, since I reject the notion of “value” entirely). 

It turns out not to be entirely simple to present 1-Lisp. given 
my theoretical biases, since so much of what I will ultimately re-
ject about it comes so quickly to the surface in explaining it. 
However I have felt that it is important to present this formalism 
without modification, because of the role I ask it to play in the 
structure of the overall argument. In particular, my desideratum 
for the dialect is not that it be clean or coherent, but rather that it 

serve as a vehicle in 
which to examine a 
body of practice 
suitable for subse-
quent reconstruc-
tion. To the extent 
that I make empiri-
cal claims about 
semantic recon-
struction, I use 1-
Lisp as evidence in 
its role as being a 

model of all extant Lisp practice. It is theoretically critical, given 
this role, that I leave this practice as intact as possible, free of my 
own theoretical biases. Even though it is a dialect of my own de-
sign, therefore, I have intentionally but uncritically forged it in 
terms of received notions of evaluation, lists, free and global vari-
ables, and so forth. 

As an example of the style of analysis to be engage in, figure 16 
gives a diagram of the 1-Lisp category structure—to be con-
trasted with the category structure of 2-Lisp and 3-Lisp, which 
has been designed to satisfy the category alignment mandate. The 
intent of the diagram is to show that in 1-Lisp (as in any compu-
tational calculus) there are a variety of ways in which structures 
or s-expressions may be categorised—represented in turn by each 
of the vertical columns. The point I am attempting to demon-
strate is the (unnecessary) complexity of interaction between 
these various categorical decompositions. 

Consider each of these various 1-Lisp categories in brief. The 
first column (notational) is categorized by the lexical categories 

 
 

Figure 16 — 1-Lisp Category Structure 
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accepted by the reader (including strings that are parsed into no-
tations for numerals, lexical atoms, and “list” and “dotted-pair” 
notations for pairs). Another categorization (structural) is in 
terms of the primitive types of s-expression (numerals, atoms, 
and pairs); this is the categorisation typically revealed by the 
primitive structure typing predicates (in 1-Lisp I call this proce-
dure TYPE, but it is traditionally encoded in an amalgam of ATOM 
and NUMBERP). A third traditional categorisation (derived structure) 
includes not only the primitive s-expression types but also the de-
rived notion of a list—a category built up from some pairs (those 
whose CARS are, recursively, lists) and the atom NIL. A fourth tax-
onomy (labeled procedural consequence) is embodied by the primi-
tive processor: thus 1-Lisp ’s evaluation processor (EVAL) sorts 
structures into various categories, each handled differently. This 
is the “dispatch” categorization that one typically finds at the top 
of metacircular definitions of EVAL and APPLY. In most Lisp 
metacircular processors six categories are discriminated: 

1. The self-evaluating atoms T and NIL; 
2. The numerals; 
3. The other atoms, used as variables or global function des-

ignators, depending on context; 
4. Lists whose first clement is the atom LAMBDA, used to en-

code applicable functions; 
5. Lists whose first clement is the atom QUOTE; and 
6. Other lists, which in evaluable positions represent function 

application. 

Finally, the fifth taxonomy (declarative import) has to do with de-
clarative semantics—i.e., discriminates categories of structure 
based on their signifying different sorts of semantic entities. Once 
again a different category structure emerges: applications and 
variables can signify semantic entities of arbitrary type except that 
they cannot designate procedures (since 1-Lisp is first-order); the 
atoms T and NIL signify Truth and Falsity; general lists, plus again 
(in different contexts) the atom NIL, signify enumerations (se-
quences): the numerals signify numbers; and so on and so forth. 

The reason why the demerits of this non-alignment of catego-
ries multiply in a reflective dialect is that reflective programs need 
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to know about all of them, in different situations and for different 
purposes—and also about the relationships between and among 
them (as, impressively, all human Lisp programmers do). And 
remember, too, that as one climbs from reflective level 1 to yet 
higher reflective levels, the combinatorics of non-alignment would 
multiply correspondingly. I need not dwell on the evident disar-
ray that would likely result. 

One other example of 1-Lisp behaviour will be illustrative. I have 
mentioned above that 1-Lisp requires the explicit use of APPLY in a 
variety of circumstances. These include the following: 

1. When an argument expression designates a function name, 
rather than a function—as for example in 

 (APPLY (CAR '(+ – *)) '(2 3)) 
2. When the arguments to a multiple-argument procedure 

are designated by a single term, rather than designated in-
dividually. Thus if X evaluates to the list (3 4), one must 
use (APPLY '+ X) rather than (+ X) or (+ . X). 

3. When a function is designated by a variable rather than by 
a global constant. Thus one must use: 

 (LET ((FUN '+)) (APPLY FUN '(1 2))) 

rather than the simpler: 

 (LET ((FUN '+)) (FUN 1 2)) 

4. When the arguments to a function are “already evaluated”, 
since APPLY, although itself extensional (it is an “EXPR”), 
does not re-evaluate the arguments even if the procedure 
being applied is an EXPR. Thus one uses: 

 (APPLY '+ (LIST X Y)) 

rather than: 

 (EVAL (CONS '+ (LIST X Y))) 

As I will show, in 2-Lisp and 3-Lisp only the first of these will re-
quire explicitly mentioning the processor function by name, be-
cause it inherently deals with the designation of expressions, rather 
than with the designation of their referents. Because of their cate-
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gory alignment, 2-Lisp and 3-Lisp treat the other three cases ade-
quately in the object language. 

 6b The Design of 2-Lisp  
Though it meets the criterion of simplicity, 1-Lisp provides more 
than ample material for further development, as the previous ex-
amples suggest. Once I have introduced it, as mentioned earlier, I 
subject it to a semantical analysis that leads us into an examina-
tion of computational, semantics in general, as described in the 
previous section. The search for semantical rationalisation, and 
the exposition of the 2-Lisp that results, occupies a substantial 
part of the dissertation, even though the resulting calculus still fail 
to meet the requirements of procedural reflection (as befitting the 
underlying thesis that reflection is relatively straightforward, once 
these semantical issues are taken care of). I discussed what se-
mantic rationalisation comes to in general in a previous section 
(§■■); here I sketch how its mandates are embodied in the design 
of 2-Lisp. 

The most striking difference between 1-Lisp and 2-Lisp is that 
the latter rejects evaluation in favour of independent notions of 
simplification and reference. Thus, 2-Lisp ’s processor is not called 
EVAL, but NORMALISE, where by normalisation I refer to a particular 
form of expression simplification that takes each structure into 
what I call a normal-form designator of that expression’s referent 
(making normalization designation-preserving). Details are pro-
vided in chapter 4, but a sense of the resulting architecture can be 
given here.x 

Simple object level computations in 2-Lisp (those that do not 
involve meta-structural structures designating other elements of 
the Lisp field) are treated in a manner that looks very similar to 1-
Lisp. The expression (+ 2 3), for example, normalises to 6, and 
the expression (= 2 3) to $F (the primitive 2-Lisp boolean con-
stant designating falsity). On the other hand an obvious superfi-

                                                             
 x Somewhere I should talk about processing “honouring” such semantics; 

which is explicit in logic; only implicit (part of practice) in CS; but made ex-
plicit again here. Cf. Mike’s Amala proposals, too; it should be highlighted 
in the overall introductory annotation (which I haven’t written yet). 
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cial difference is that in 2-Lisp meta-structural terms are not 
automatically dereferenced. Thus the quoted term 'X, which in 1-
Lisp would evaluate to X, normalises in 2-Lisp to itself. Similarly, 
whereas (CAR '(A . B)) would evaluate in 1-Lisp to A, in 2-Lisp it 
normalises to 'A. Similarly, in 1-Lisp (CONS ‘A ‘B) evaluates to the 
pair (A . B); in 2-Lisp the corresponding expression would yield 
the handle '(A . B). 

From these almost trivial examples, one might be tempted to 
embrace the following idea: that the 2-Lisp processor is just like 
the 1-Lisp processor, except that it puts a quote back on before 
returning the result. But that is ill-advised; the difference, more 
theoretically motivated, is more substantial in terms of structure, 
procedural protocols, and semantics. For starters 2-Lisp, like 
Scheme, is statically-scoped and higher-order; function-
designating expressions may be passed as regular arguments. 2-
Lisp is also structurally different from I-Lisp; there is no derived 
notion of list, but rather a primitive data structure called a rail 
that serves the function of designating a sequence of entities 
(pairs are still used to encode function applications). What in 1-
Lisp are called “quoted expressions” correspond to the primitive 
structural type handle, not to applications framed in terms of a 
(pseudo) QUOTE procedure; they are also canonical (one per struc-
ture designated). The 2-Lisp notation 'X, in particular, is not an 
abbreviation for (QUOTE X), but rather the primitive notation for 
the handle that is the unique normal-form designator of the atom 
X. There are other notational differences as well: rails are ex-
pressed with square brackets (thus the expression ‘[1 2 3]’ no-
tates a rail of three numerals that in turn designates a sequence of 
three numbers), and expressions of the form 

 (F A1 A2 … Ak) 
expand not into 

 (F . (A1 . (A2 . (… . (Ak . NIL)…)))) 

but instead into 
 (F . [A1 A2 … Ak]) 

The category structure of 2-Lisp is summarized in figure 17. 
Closures, which have historically been treated as rather curious 

entities somewhere in between functions and expressions, emerge 
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standard expressions; in fact I define the term ‘closure’ to refer to 
a normal-form function designator. Not only are closures pairs, but 
all normal-form pairs are closures, illustrating once again the 
category alignment that permeates the design. 

As stated above, all 2-Lisp normal-form designators are not 
only stable (self-normalising), but also side-effect free and context-
independent. A variety of facts emerge from this result. First, the 
primitive processor procedure (NORMALISE) can be proved to be 
idempotent in terms of both result and total effect: 

 ∀S [ (NORMALISE S) = (NORMALISE (NORMALISE S)) ] (10) 

 Consequently, as in the λ-calculus, the result of normalising a 
constituent (in an extensional context) in a composite expression 
may be substituted back into the original expression, in place of 
the non-normalized expression, yielding a partially simplified ex-
pression having the same designation and same normal-form as 
the original. So support for “partial evaluation” is in some sense 
an automatic feature of the two dialects. In addition, in code-
generating code such as macros and debuggers and so forth, there 
is no need to worry about whether an expression has already been 
processed, since second and subsequent processings will never 
cause any harm (nor, as it happens, will they take any time). 

All of the foregoing facts can in some sense be considered to be 
simplifications embedded in the design of 2-Lisp. Most of 2-Lisp ’s 
complexities emerge only when one consider forms that designate 

 
 

Figure 17 — 2-Lisp Category Structure 
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other semantically significant forms. The intricacies of such 
“level-crossing” expressions are the stock-and-trade of a reflective 
system designer, and only by setting such issues straight before we 
consider reflection proper will we face the latter task adequately 
prepared. 

Primitive procedures called NAME and REFERENT (notationally 
abbreviated ‘’ and ‘’) are provided to mediate between sign and 
significant (they must be primitive because without them the 
processor provably remains semantically flat); thus (taking ‘⇒’ to 
mean “normalises to”):  

 3 ≡ (NAME 3) ⇒ '3 
 'A ≡ (REFERENT 'A) ⇒ 'A 

The issue of the explicit use of APPLY, mentioned in the discussion 
of 1-Lisp, above, is instructive to examine in the 2-Lisp context, 
since it manifests both the structural and the semantic differences 
between 2-Lisp and its precursor dialect. In 1-Lisp, the functions 
EVAL and APPLY mesh in a well-known mutually-recursive fashion. 
Evaluation is uncritically thought to be defined over expressions, 
but it is much less clear what application is defined over. On one 

view, APPLY is a func-
tional that maps 
functions and (se-
quences of) argu-
ments onto the value 
of the function at 
that argument posi-
tion—thus making it 
a second (or higher) 
order function. On 
another view, APPLY 
takes two expressions 
as arguments, and 
has as its value a 
third expression that 

designates the value of the function designated by the first argu-
ment at the argument position designated by the second. In 2-
Lisp I will call the first of these notions application and the sec-
ond reduction (the latter in part because the word suggests an 

 
 

Figure 18 — Reduction and Function Application 
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operation over expressions, and in part by analogy with the β-
reduction of Church.22 Current Lisp systems are less than lucid 
regarding this distinction (in MacLISP , for example, the function 
argument is an expression, whereas the arguments argument is not 
an expression, nor is the value). The position I will adopt is de-
picted in figure 18 (to be explained more fully in chapter 3): 

The procedure REDUCE, together with NORMALISE will of course 
play a major role in the characterisation of 2-Lisp, and in the sub-
sequent construction of the reflective 3-Lisp. It is worth noting, 
however, that although it would be trivial to do so, there is no 
reason to define a designator of the APPLY function, since any 
term of the form: 

 (APPLY FUN ARGS) 

would be equivalent in both designation and effect (i.e., would be 
equivalent in full computational significance) to: 

 (FUN . ARGS) 

In contrast, since it is a meta-structural function, REDUCE is neither 
trivial to define (as is APPLY) nor recursively empty. 

A summary of the most salient differences between 2-Lisp and 1-
Lisp is provided in the following list: 

1. Scoping: 2-Lisp is lexically scoped, in the sense that vari-
ables free in the body of a LAMBDA form take on the bind-
ings in force in their statically enclosing context, rather 
than from the dynamically enclosing context at the time of 
function application. 

2. Functions: Functions are first-class semantical objects, 
and may be designated by standard variables and argu-
ments. As a consequence, the function position in an ap-
plication (the CAR of a pair) is both procedurally and de-
claratively “extensional,” and thus normalised in exactly the 
same way as argument positions. 

3. Simplification: Evaluation is rejected in favour of inde-
pendent notions of simplification and reference. The primi-

                                                             
 22 Church (1941). 
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tive processor is a particular kind of simplifier. rather than 
being an evaluator. In particular, it normalises expressions, 
returning for each input expression a normal-form co-
designator. 

4. Declarative Semantics: A complete theory of declarative 
semantics is postulated for all s-expressions. prior to and 
independent of the specification of how they are treated by 
the processor function—a pre-requisite to the claim that 
the processor is designation-preserving):. 

5. Closures: Closures—normal-form function designators—
are valid and inspectable s-expressions. 

6. Normal Form: Though not all normal-form expressions 
are canonical (functions, in particular, may have arbitrarily 
many distinct normal-form designators), nevertheless they 
are all stable (self-normalising), side-effect free, and both de-
claratively and procedurally context independent. 

7. Semantically Flat: The primitive processor (designated by 
NORMALISE) is semantically flat; in order to shift level of des-
ignation one of the explicit semantical primitives NAME () 
or REFERENT () must be applied. 

8. Category Alignment: 2-Lisp is category-aligned (as indi-
cated in figure 17, above): there are two distinct structural 
types, pairs and rails, that respectively encode function ap-
plications and sequence enumerations. There is in addition 
a special two-element structural class of boolean constants. 
There is no distinguished atom NIL. 

9. Binding: Variable binding is co-designative, rather than be-
ing either evaluative or designative, in the sense that a vari-
able normalises to what it is bound to, and therefore desig-
nates the referent of the expression to which it is bound. 
Although I will speak of the binding of a variable, and of 
the referent of a variable, I will not speak of a variable’s 
value, since that term conflates these two notions. 

10. Identity: Identity considerations on normal-form designa-
tors are as follows: the normal-form designators of truth-
values, numbers, and s-expressions (the booleans, numer-
als, and handles, respectively) are unique. Normal-form 
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designators of sequences (rails) and functions (pairs) are 
not. No atoms are normal-form designators of anything; 
therefore the question does not arise in their case. 

11. LAMBDA: The use of LAMBDA is purely an issue of abstrac-
tion and naming, and is completely divorced from proce-
dural type (extensional, intensional, macro, and so forth). 

As soon I we have settled on the definition of 2-Lisp, however, I 
will begin to criticise it. In particular, I will provide an analysis of 
how 2-Lisp fails to be appropriately reflective, in spite of its 
semantical cleanliness.  

A number of problems in particular emerge as troublesome. 
First, it will turn out that the clean semantical separation between 
meta-levels is not yet matched with a clean procedural separation. 
For example, too strong a separation between environments, with 
the result that intensional procedures become extremely difficult 
tn use, shows that in one respect, 2-Lisp ’s inchoate reflective 
facilities suffer from insufficient causal connection. On the other 
hand, awkward interactions between the control stacks of inter-
level programs will show how, in other respects, there is too much 
connection. In addition, although I will demonstrate a metacircu-
lar implementation of 2-Lisp in 2-Lisp, and will provide 2-Lisp 
with explicit names for its basic interpreter functions (NORMALISE 
and REDUCE), these two facilities will remain utterly uncon-
nected—an instance of a general problem to be discussed in chap-
ter 3 on reflection in general. 

 6c The Procedurally Reflective 3-Lisp  
From this last analysis will emerge the design of 3-Lisp, a proce-
durally reflective Lisp and the last of the dialects to be considered 
here. 

As presented in chapter 5, 3-Lisp differs from 2-Lisp in a vari-
ety of ways. 

1. The fundamental reflective act is identified and accorded 
tbe centrality it deserves in the underlying definition. 

2. Each reflective level is granted its own environment and 
continuation structure, with the environments and con-
tinuations of the levels below it accessible as first-class ob-
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jects (inheriting a Quinean stamp of ontological approval, 
since they can be the values of bound variables). 

3. As mentioned in the earlier discussion these environments 
and continuations are theory relative. The (procedural) 
theory is embodied in the 3-Lisp reflective model, a caus-
ally connected variant on the metacircular interpreter of 2-
Lisp discussed in section 3. 

4. Surprisingly, the integration of reflective power into the 
metacircular—now reflective—model is itself extremely 
simple (though to implement the resulting machine is not 
trivial). 

5. Reflecting its more complete nature, in a number of ways 
3-Lisp is notably simpler than 2-Lisp. 

Once all these moves have been taken it will be possible to Inerge 
the explicit reflective version of NORMALISE and REDUCE, and the 
similarly named primitive functions. In other words the 3-Lisp 
reflective model unifies what in 2-Lisp were separate: primitive 
names for the underlying processor, and explicit metacircular 
programs demonstrating the procedural structure of that proces-
sor. 

It was a consequence of defining 2-Lisp in terms of NORMALISE, 
a species of simplification, that the 2-Lisp processor is “semanti-
cally flat”: the semantical level of an input expression is always the 
same as that of the expression to which it simplifies.. An even 
stronger claim holds for function application. Except in the case 
of the explicit level-shifting functions NAME () and REFERENT (), 
the semantical level of the result is also the same as that of all of 
the arguments. This is all evidence of the effort to drive a wedge 
between simplification and de-referencing mentioned earlier. 3-
Lisp inherits this semantical characterisation; note that it remains 
true even in the case of reflective functions. 

A semantically-flat (fixed-level) processor of this form—one of 
the reasons 2-Lisp was designed this way—enables an important 
move: it becomes possible, though only in an approximate sense, 
to identify declarative meta levels with procedural reflective levels. 
This does not quite have the status of a claim, because it is virtu-
ally mandated by the Knowledge Representation Hypothesis 
(furthermore, the correspondence is somewhat asymmetric: de-



 2b · Reflection & Semantics · Introduction 
 
 

 151 

clarative levels can be crossed within a given reflective level, but 
reflective shifts always involve shifts of designation). But it is in-
structive to realise that we have been able to identify the reflective 
act (that makes available the structures encoding the processing 
state and so forth) with two shifts: (i) the shift from objects to 
their names, and (ii) the shift from tacit aspects of the back-
ground to objects. Reification, that is, emerges as the first form of 
semantic ascent. Thus what was used prior to reflection is men-
tioned upon reflecting; what was tacit prior to reflection becomes 
used upon reflection.x When this behaviour is combined with the 
ability for reflection to recurse, we are able to lift structures that 
are normally tacit into explicit view in one simple reflective step; 
we can then obtain access to designators of those structures in 
another. 

Later in the dissertation both the 3-Lisp reflective model, and a 
MacLISP implementation of it, will be provided by way of defini-
tion. In addition, some hints will be presented of the style of se-
mantical equation that would be required for a traditional deno-
tational-semantics style account of 3-Lisp —though it is impor-
tant to admit that a full semantical treatment of procedural reflec-
tion in general or of 3-Lisp in particular has yet to be worked out. 

In a more pragmatic vein, however, and in part to show how 3-
Lisp satisfies many of the desiderata that motivated the original 
definition of the concept of reflection, I will present a number of 

                                                             
 x Although I did not pay a great deal of attention to this claim at the time 

the dissertation was written, I was very struck by it when I came to realize 
it. It not only influenced the approach to real-world ontology that is 
sketched in O3, but it also infected the ideas I was mulling on, at the time, 
about fusing higher-order and intensional “objectification” levels in Man-
tiq. 

  I still believe that a substantial issue remains lurking here, with which a 
proper theory of cognition should come to grips: relations between and 
among processes of (i) reification—leading us to find the world intelligible 
in terms of objects; (ii) semantic ascent—generating quotation, meta-level 
concepts and expressions, and other forms of symbolic or cognitive “men-
tion”); and (iii) the use of higher-order structures (such as higher-order 
functions). In our formal efforts to be rigorously clear about the differences 
among these notions, we sometimes fail to recognize their similarity—and 
more seriously, what may be their common genealogy. 
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examples of programs defined in 3-Lisp: a variety of standard 
functions that make use of calls to the processor, access to the 
implementation (debuggers, “single-steppers,” and so forth), and 
non-standard “evaluation” (processing) protocols. The suggestion 
will be made that the case with which these powers can be em-
bedded in “pure” programs recommends 3-Lisp as a plausible dia-
lect in its own right. Nor is this simply a matter of using 3-Lisp as 
a theoretical vehicle in which to model or implement these vari-
ous constructs, or of showing that such models fit naturally and 
simply into the 3-Lisp dialect (as a simple continuation-passing 
scheme can for example be shown to be adopted in Scheme). The 
claim is stronger: that such functionality can be naturally embed-
ded in 3-Lisp in a manner that allows it to be congenially mixed 
(without pre-processing or pre-compilation) with simpler, more 
standard forms of practice. Without the user normally having to 
use (or even understand) explicit continuation-passing style, 
nonetheless, at any point in the course of the computation, the 
applicable continuation is easily and explicitly available (upon re-
flection) for any programs that wish to deal with such things di-
rectly. Similar remarks hold for other aspects of the control struc-
ture and environment 

One final comment about the 3-Lisp architecture will relate it 
to the two views on reflection—“level-shifting” and “infinite-
tower”—mentioned at the end of section 5. Modulo the amount 
of time it takes, processing mediated by the 3-Lisp reflective 
model is guaranteed to yield indistinguishable behaviour (at least 
from a non-reflective point. of view—there are subtleties here) 
from basic, non-reflected processing. It is this fact that allows us 
to make the abstract claim that 3-Lisp runs in virtue of an infinite 
number of levels of reflective models all running at once. by an 
(infinitely fleet) overseeing processor running at level ∞. The re-
sulting infinite abstract machine is well defined, for it is of course 
behaviourally indistinguishable from the perfectly finite 3-Lisp 
that will already have been laid out (and implemented). For some 
purposes 3-Lisp is most easily described in terms of this infinite 
tower—and in some ways, too, it is the easiest model for the 3-
Lisp programmer to have in mind, when writing programs.. Such 
a programmer can write programs to be interpreted at any reflec-
tive level, and cannot tell that all infinitude of levels are not being 
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run (the implementation surreptitiously constructs them and 
places them in view each time the user’s program steps back to 
view them), such a characterisation is usually more illuminating 
than talk of the processor “switching back and forth from one 
level to another”. In terms of mathematical analysis, treating 3-
Lisp as a purely formal object, the infinite tower characterisation 
would also be more likely to be preferred. On the other hand, 
when taken as a model of psychologically intuitive reflection—
based on a vague desire to locate the self of the machine at some 
level or other—the language of level-shifting seems more highly 
recommended. Level-shifting is also a major and constant concern 
for anyone person who designs and constructs a 3-Lisp imple-
mentation.  

 6d Reconstruction Rather Than Design 
2-Lisp and 3-Lisp can claim to be dialects of Lisp only on a gen-
erous interpretation. Both dialects are unarguably more different 
from the original Lisp 1.6 than are all other dialects that have pre-
viously been proposed, including for example Scheme, MDL, NIL, 
SEUS, MacLISP, InterLISP, and Common Lisp.23 

In spite of this difference, however, I view it as important to 
the exercise to call these languages Lisp. The aim in developing 
them has not been simply to propose some new variants in a 
grand tradition, perhaps better suited for a certain class of prob-
lem than others that have gone before. Rather—and this is one of 
the reasons that this dissertation is as long as it is—it is my claim 
that the architecture of these new dialects, in spite of its differ-
ence from that of standard Lisps, is a more accurate reconstruction 
than has heretofore been provided of the underlying coherence that or-
ganises our communal understanding of what Lisp is. I am making 
an empirical claim, in other words—a claim that should ulti-
mately be judged as right or wrong. Whether 2-Lisp or 3-Lisp are 

                                                             
 23 Scheme is reported in Sussman and Steele (1975) and in Steele and 

Sussman (1978a); MDL in Galley and Pfister (1975), NIL in White (1979), 
MacLISP in Moon (1974) and Weinreb & Moon (1981), and InterLISP in 
Teitelman (1978). Common Lisp and SEUS are both under development, 
as this is being written, and have not yet been reported in print, so far as i 
know (personal communication with Guy Steele and Richard Weyhra-
uch). 
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better than previous Lisps is of course a matter of interest on its 
own, but it is not the thesis that this dissertation has set out to 
argue. 

 6 Remarks 

 6a Comparison with Other Work 
Although I know of no previous attempts to construct eitller a 
semantically rationalised or a reflective computational calculus, 
the research presented here is of course dependent on, and related 
to, a large body of prior work. There are in particular four general 
areas of study with which this project is best compared: 

1. Investigations into the meta-cognitive and intensional as-
pects of problem solving (this includes much current re-
search in Artificial Intelligence); 

2. The design of logical and procedural languages (including 
virtually all of programming language research, as well as 
the study of logics and other declarative calculi); 

3. General studies of semantics (including both natural lan-
guage and logical theories of semantics, and semantical 
studies of programming languages); and 

4. Studies of self-reference, of the sort that have characterised 
much of metamathematics and the theory of computability 
throughout this century, particularly since Russell, and in-
cluding the formal study of the paradoxes, the Gödel in-
completeness results, and so forth. 

I will make detailed comments about connections between this 
project and such other work throughout the discussion (for ex-
ample in chapter 5 I will compare the reflective sense of “self-
reference” with the notion traditionally studied in logic and 
mathematics), but some general comments can be made here. 

Consider first the meta-cognitive aspects of problem-solving, of 
which the dependency-directed deduction protocols presented by 
Stallman and Sussman, Doyle, McAllester, and others are an il-
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lustrative example.24 This work depends on explicit encodings, in 
some form of meta-language, of information about object-level 
structures, used to guide a deduction process. Similarly, the meta-
level rules of Davis in his TEIRESIUS system,25 and the use of meta-
levels rules as an aid in planning,26 can be viewed as examples of 
inchoate reflective problem solvers. Some of these expressions are 
primarily procedural in intent,27 although declarative statements 
(for example about dependencies) are perhaps more common, 
with respect to which particular procedural protocols are defined. 

The relationship of the current project to this type of work is 
more one of support than of direct contribution. I do not present 
(or even hint at) problem solving strategies involving reflective 
manipulation, although the fact that others are working in this 
area has certainly been a motivation for my research. Rather, I at-
tempt to provide a rigorous account of the particular issues that 
have to do simply with providing facilities for reflection, independ-
ent of what such facilities are then used for. An analogy might be 
drawn to the development of the λ-calculus, recursive equations, 
and Lisp, in relationship to the use of these formalisms in 
mathematics, symbolic computation, and so forth: the former 
projects provide a language and architecture, to be used reliably 
and perhaps without much conscious thought, as the basis for a 
wide variety of applications. The present dissertation will be suc-
cessful not if it forces everyone working in meta-cognitive areas to 
think about the architecture of reflective formalisms, but almost 
the opposite: if it allows them to forget that the technical details 
of reflection were ever considered to be problematic. Church’s α-
reduction was a successful manoeuvre precisely because it means 
that one can treat the λ-calculus in the natural way; I hope that 
my treatment of reflective procedures will enable those who use 
3-Lisp or any subsequent reflective dialect to treat “backing-off’ in 
what they take to be “the natural way.” 

The “reflective problem-solver” reported by Doyle28 deserves a 

                                                             
 24 Stallman and Sussman (1977), de Kleer et al. (1977). 
 25 Davis (1980) 
 26 Stefik (1981a and 1981b). 
 27 de Kleer et al. (1977). 
 28 Doyle (1981). 
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special comment. Again, I provide an underlying architecture 
which might facilitate his project, without actually contributing 
solutions to any of his particular problems about how reflection 
should be effectively used, or when its deployment is appropriate. 
Doyle’s envisaged machine is a full-scale problem solver; it is also 
(so at least he argues) presumed to be large, to embody complex 
theories of the world, and so forth. In contrast, 3-Lisp is not a 
problem solver at all (all the user is “given” is a language—very 
much in need of programming); it embodies only a small proce-
dural theory of itself, and it is really quite small. As well as these 
differences in goals there are differences in content (I for example 
endorse a set of reflective levels, rather than any kind of true in-
stantaneous self-referential “reflexive” reasoning); it is difficult, 
however, to determine with very much detail what his proposal 
comes to, since his report is more suggestive than final. 

Given that 3-Lisp is not a problem solver of the sort Doyle 
proposes, it is natural to ask whether it would be a suitable lan-
guage in which Doyle might implement his system. There are two 
different kinds of answer to this question, depending on how he 
takes his project. 

If, on the one hand, Doyle is proposing a design of a complete 
computational architecture (i.e., a process reduced in terms of an 
ingredient processor and a structural field), and wishes to imple-
ment it in some convenient underlying language, then 3-Lisp ’s re-
flective powers will not in themselves immediately engender cor-
responding reflective powers in the virtual machine that he im-
plements. Reflection, as I have been at considerable pains to dem-
onstrate, is first and foremost a semantical phenomenon, and se-
mantical properties—designation and normalisation protocols and 
reflection and the rest—do not cross implementation boundaries 
(this is one of the great powers, but also a very serious limitation, 
of implementation).x 3-Lisp would be useful in such a project to 

                                                             
 x This is a very serious issue. Suppose that architecture or virtual machine Y is 

implemented on top of language or system X. The question has to do with 
which of various properties Pi exemplified by X (the underlying system) are 
“inherited” by—i.e., true of—system Y, in virtue of the implementation re-
lation holding between them. The answers are complex, and illuminating. 
There is no way that Y can be a “real-time” system, for example (in the 
sense of providing metric guarantees about certain kinds of behaviour, 
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the extent that it is generally a useful and powerful language, but 
it is important to recognise that its reflective powers cannot be 
used directly to provide reflective capabilities in other architec-
tures implemented on top of it. 

There is an alternative strategy open to Doyle, however, by 
which he could use 3-Lisp ’s reflective powers more directly. If, 
rather than defending a generic reflective architecture, he more 
simply intended to show how a particular kind of reflective rea-
soning was useful, he could perhaps construct such behaviour in 
3-Lisp, and thus use its reflective capabilities rather directly. 
There are consequences of this approach, however: he would have 
to accept 3-Lisp structures and semantics, including among other 
things the fact that it is purely a procedural formalism. It would 
not be possible, in other words, to encode a full descriptive lan-
guage on top of 3-Lisp, and then use 3-Lisp ’s reflective powers to 
reflect in the general sense with these descriptive structures. If 
one aims to construct a general or purely descriptive formalism, 
one would have to make that architecture reflective on its own. 

None of these conclusions stand as criticisms of 3-Lisp. They 
are entailed by fundamental facts about computation and seman-
tics—not limitations of the particular theory or dialect I propose 
(i.e., they would, and necessarily so, be equally true of any other 
proposed architecture). 

This is one reason, among many, why I view 3-Lisp not as the 
                                                                                                                                                  

such as providing support for a routine to run exactly once per second), un-
less X is also real-time. So, to adopt a convenient way of speaking, I would 
say that being real-time “cross implementation boundaries downwards” 
(that is: that from a system’s being real-time, one can conclude that the sys-
tem on or in which it is implemented is also real-time—and hence all such 
systems below it, down to the hardware). Conversely, “being a finite state 
machine” is a property that crosses implementation boundaries upwards, 
since there is no way to implement a machine with an indefinitely un-
bounded store on top of one that has no such store. Needless to say, it does 
not cross implementation boundaries downwards; you can perfectly well 
implement a finite state machine in Lisp, which is not one. 

  The present point is that semantical properties in general—and thus 
reflection in particular—do not cross implementation boundaries in either 
direction. From neither X nor Y’s being reflective, in the above example, 
can one deduce anything about whether the other is reflective. 

  For further discussion see «Ref aos». 
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contribution made in this dissertation, but rather as an example to 
exhibit its contribution: the conceptual structure of how to design 
and build a reflective architecture. Thus it is my hope that what 
would be useful from this dissertation for Doyle, or for anyone 
else in a parallel circumstance, is the detailed structure of a reflec-
tive system that I have attempted to explicate here—an architec-
ture and a concomitant set of theoretical terms to help such a per-
son analyse and structure whatever architecture they design, adopt, or 
embrace. Thus I would count the present contribution a success if 
it proved useful, for Doyle or anyone else, to make use of: 

1. The φ/ψ distinction; 
2. The relationship between semantical levels and reflective 

levels; 
3. The encoding of the reflective model within the calculus; 
4. The strategy of adopting a virtually infinite tower of proc-

essors as a finite model for level-shifting; 
5. The semantic flatness and uniformity of a normalising 

processor; 
6. The elegance of category-alignment; 

And so forth. It is in this sense that I hope that the theory and 
understanding that 3-Lisp embodies will contribute to problem-
solving research (and to programming language research), rather 
than the particular formalism I have developed and demonstrated 
by way of illustration.x 

                                                             
 x As mentioned in the commentary included at the beginning of the POPL 

paper «ref», I believe it is fair to say that these hopes were entirely in vain. 
Dan Friedman, of Indiana University, was one of the most enthusiastic pro-
ponents of reflection in the programming language community; I owe him 
a debt of gratitude for the enthusiasm and support he offered subsequent 
of the publication of the POPL paper introducing 3-Lisp (reproduced here 
as chapter ■■). However as perhaps best illustrated in his own paper with 
Mitchell Wand (Friedman & Wand, 1984), the first thing that most people 
did, in bringing reflection into their own work, was to dismiss every one of 
these six claims. 

  For some of the reasons for this dismissal see the discussion cited above. 
Fundamentally I believe that it stems from a lack of theoretical concourse 
between the representational tradition (logic, data bases, knowledge rep-
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The second type of research with which this project has strong 
ties is the general tradition of providing formalisms to be used as 
languages and vehicles for a variety of other projects—including 
the formal statement of theories, the construction of computa-
tional processes, the analysis of human language, and so forth. I 
take this tradition to be sufficiently broad (in particular, to in-
clude logic and the λ-calculus, plus virtually all programming lan-
guage research) that it is difficult to say very much that is specific, 
though a few comments can be made. 

First, I of course owe a tremendous debt to the Lisp tradition 
in general,29 and also to the recent work of Steele and Sussman.30 
Particularly important is their Scheme dialect—in many ways the 
most direct precursor of 2-Lisp.31 Second, my explicit attempt to 
unify the declarative and procedural aspects of this tradition has 
already been mentioned—a project that is (as far as I know) with-
out precedent. Note, as mentioned in the Introduction, that I do 
not consider PROLOG32 to count as having done this, since it 
provides two calculi together, rather than presenting a single cal-
culus under a unified theory. Finally, as documented throughout 
the text, inchoate reflective behaviour can be found in virtually all 
comers of computational practice; the Smalltalk language,33 to 
mention just one example, includes a meta-level debugging system 
which allows for the inspection and incremental modification of 
code in the midst of a computation. 

The third and fourth classes of previous work listed above have to 
do with general semantics and with self-reference. The first of 
these is considered explicitly in chapter 3, where I compare my 

                                                                                                                                                  
resentation languages, etc., and the programming language community). 

 29 References to specific Lisp dialects arc given in note ■■, above; more 
general accounts may be found in Allen (1978), Weisman (1967), 
Winston and Horn (1981), Charniak et al. (1980), McCarthy et al. (1965), 
and McCarthy and Talbott (forthcoming). 

 30 Steele (1976), Steele & Sussman (1976, 1978b). 
 31 In an early version of the dissertation I called Scheme “1.7-Lisp,” since it 

takes what I see as approximately half of the step from Lisp 1.6 to the se-
mantically rationalised 2-Lisp. 

 32 Clark and McCabe (1979), Roussel (1975), and Warren et al. (1977). 
 33 Goldberg (1981); Ingalls (1978). 
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approach to this subject with model theories in logic, semantics of 
the λ-calculus, and the tradition of programming language seman-
tics; no additional comment is required here. Similarly, the rela-
tionship between the notion of reflection I present and traditional 
concepts of self-reference are taken up in more detail in chapter 
5;x here I merely comment that my concerns, perhaps surpris-
ingly, are constrained almost entirely to computational formal-
isms. Unless a formal system embodies a locus of active agency—an 
internal processor (i.e., process) of some sort—the entire ques-
tion of causal relationship between an encoding of self-referential 
theory and what I consider a genuine reflective model cannot even 
be asked. 

We often informally think of a natural deduction “process” or 
some other kind of deductive apparatus making inferences over 
first-order sentences, as a heuristic in terms of which to make 
sense of the formal notion of derivability. Strictly speaking, how-
ever, in the purely declarative tradition derivability is no more 
than a formal relationship that holds between certain sentence types; 
no activity is involved. There are no notions of next or of when a 
certain deduction is made. If one were to specify an active deduc-
tive process over such first-order sentences, then it is imaginable 
that one could include sentences (relative to some axiomatisation 
of that deductive process) in such a way that the operations of the 
deductive process were appropriately controlled by those sen-
tences (this is the suggestion explored briefly in §2b). The result-
ing machine, however—not merely in its reflective incarnation, 
but even prior to that, by including an active agency—cannot 
fairly be considered simply logic, but rather a full computational 
formalism of some sort. 

Needless to say, I believe that a reflective version of such a de-
scriptive system could be built.34 My position with respect to such 
an image rests on two observations: (i) the result would be an in-
herently computational artefact, in virtue of the addition of inde-
pendent agency, and (ii) 3-Lisp, although reflective, is not yet 
such a formalism, since it is purely procedural. 

                                                             
 x See also my “Varieties of Self-Reference,” included here as Chapter ■■. 

 34 In fact it is my intent to develop just such an architecture in the future. 
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I conclude with one final comparison. The formalism closest in 
spirit to 3-Lisp is Richard Weyhrauch’s FOL system,35 although 
my project differs from his in several important technical ways. 
First, like Doyle’s system, FOL is a problem solver: it embodies a 
theorem-prover, although it is possible (through the use of FOL’s 
meta-levels) to give it guidance about the deduction process. In 
spite of those facilities, however, FOL is not a programming lan-
guage. Furthermore, FOL adopts—in fact explicitly endorses—the 
distinction between declarative and procedural languages (first 
order logic and Lisp, in particular), using the procedural calculus 
as a simulation structure rather than as a descriptive or designa-
tional language. Weyhrauch claims that the power that emerges 
from combining—but maintaining as distinct—these “language-
simulation-structure” pairs, as he calls them (“L-S pairs”), at each 
level in his meta hierarchy, is one of his primary contributions. It 
is my own claim, in contrast, that the greatest power will arise 
from dismantling the difference between procedural and declara-
tive calculi. 

There are other differences as well. I take the interpretation 
function that maps terms onto objects in the world outside the 
computational systems (φ) to be foundational. It would appear in 
Weyhrauch’s systems as if that particular semantical relationship 
is abandoned in favour of internal relationships between one for-
mal system and another. A more crucial distinction is hard to 
imagine—though there is some evidence36 that this apparent dif-
ference may have to do with our respective uses of terminology, 
rather than with deep ontological or epistemological beliefs. 

In sum, FOL and 3-Lisp are technically quite distinct, and the 
theoretical analyses on which they are based almost unrelated. At 
a more abstract level, however, they are clearly based on similar—
and perhaps parallel, if not identical—intuitions. Furthermore, I 
would argue that 3-Lisp represents merely a first step in the de-
velopment of a fully reflective calculus based on a fully integrated 
theory of computation and representation; how such an eventual 
system, once it were defined, would differ from FOL remains to be 

                                                             
 35 Weyhrauch (1978). 
 36 I am indebted to Richard Weyhrauch for personal communication on 

these points.  
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seen. It seems likely that the resulting unified calculus, rather 
than the dual-calculus nature, would be the most obvious techni-
cal distinction, although the actual structure of the descriptive 
language, semantical meta-theories, and so forth, are also likely to 
differ both in substance and in detail. 

One remaining difference is worth exploring in part because it 
reveals a deep but possibly distinctive character of my treatment 
of Lisp. It is clear from Weyhrauch’s system that he considers the 
procedural formalism to represent a kind of model of the world—
in the sense of an (abstract) artefact whose structure or behaviour 
mimics that of some other world of interest. Under this approach 
the computational behaviour can be taken in lieu of or in place of 
the real behaviour in the world being studied. Consider for exam-
ple the numeral addition that is the best approximation a com-
puter can make to actually “adding numbers” (whatever that 
might be). When we type ‘(+ 1 2)’ into a Lisp processor, and it 
returns ‘3’, we are liable to take those numerals not so much as 
designators of the respective numbers, but instead as models. 
There is no doubt that the input expression ‘(+ 1 2)’ is a linguistic 
artefact; on the view I will adopt in this dissertation there is no 
doubt that the resultant numeral ‘3’ is also a linguistic artefact. I 
do want to admit, however, that there is a not unnatural tendency 
to think of the latter as “standing in place of” the actual number, 
in a different sense from standard designation or naming. It is 
this sense of simulation rather than description that, as far as I un-
derstand it, underlies Weyhrauch’s use of Lisp. 

I fundamentally believe that this is a limited view, however—
and go to considerable trouble to maintain an approach in which 
all computational structures are taken to be semantical in some-
thing like a linguistic sense, rather than (being taken as) serving as 
models. Many issues are involved—having to do with such issues 
as truth, completeness, and so forth—that a simulation stance 
cannot deal with. At worst, moreover, adopting a simulation 
stance can lead to a view of computational models that runs in 
danger of being either radically solipsistic or even, I believe, nihil-
ist. It is exactly the connection between a computational system 
and the world that motivates my entire approach; a connection 
that I believe can be ignored only at considerable peril. I in no 
way rule out computations that in different respects mimic the 
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behaviour of the world they are about; it is clear that certain 
forms of human analysis involve just this kind of thinking (“step-
ping through” the transitions of some mechanism in one’s head, 
for example, to “be sure that one understands it”). My point is 
only that such simulation is still a kind of thinking about the world; 
it is not the world being thought about.x 

 6b The Mathematical Meta-Language 
Throughout the dissertation I will employ an informal meta-
language, built up from a rather eclectic combination of devices 
from quantificational logic, the lambda calculus, and lattice the-
ory, extended with some straightforward conventions (such as 
expressions of the form “if P then A else B” as an abbreviation for 
“[P ⊃ A] ⋀ [¬P ⊃ B]”). Notationally I will use set-theoretic devices 
(union, membership, etc.), but these should be understood as de-

                                                             
 x It was not until 1987 that Rodney Brooks first made his famous statement 

that the “representation” should be discarded in Artificial Intelligence sys-
tems—in favour of a view that, in his words, treated “the world as its own 
best model” (Brooks 1987); see also his “Intelligence Without Reason” and 
“Intelligence Without Representation” (Brooks 1991a & 1991b). 

  What I take to be significant about the widely-heralded “sea-change” to 
which Brooks’ and others work led is the fact that it betrays what I am here 
attributing to Weyhrauch: a somehow tacit but deep assumption that “rep-
resentation” meant constructing within the machine a replica of the world 
as a whole, which could be used in its place—as opposed to what cognitive 
scientists and philosophers of mind take a representational theory of mind 
to involve, which is that a person “represents” the world only in the sense 
of employing some interpreted symbols or structures with semantic content 
involving facts, entities, and states of affairs in the world. Even an internal 
structure with content along the lines of “Make sure you look out con-
stantly and check intersection to make sure that it is empty!” would count 
as a representation on the latter, but apparently not the former, view. 

  It is hardly surprising that the “full simulation” view of representation 
needed to be eschewed—though to take that as a rejection of representa-
tion altogether is both an extreme and a binaristic reaction. Brooks later 
softened his view, saying that AI systems should use representation “only 
when necessary”—which opens the door to what representation had origi-
nally meant. For more on Brooks, what the circumstances are in which “rep-
resentation is necessary,” etc., see my “Rehabilitating Representation,” in-
cluded «ref; second volume?» 
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fined over domains in the Scott-theoretic sense, rather than over 
unstructured sets. The notations should by and large be self-
explanatory; a few standard conventions worth noting are these: 

1. ‘[A → B ]’ refers to the domain of continuous functions 
from A to B; 

2. ‘F : [A → B]’ means that F is a function whose domain is A 
and whose range is B; 

3. ‘<S1, S2, … Sk>’ designates the mathematical sequence con-
sisting of the designata of “S1”, “S2”, … “Sk”; 

4. ‘S1’ refers to the i’th element of S, assuming that S is a se-
quence (thus <A, B, C>2 is B); 

5. ‘[S × R ]’ designates the (potentially infinite) set of all tuples 
whose first member is an element of S and whose second 
member is an element of R; 

6. ‘A*’ refers to the power domain of A:  
 [ A ∪ [A × A] ∪ [A × A × A] ∪ … ] 

7. Parentheses and brackets are used interchangeably to indi-
cate scope and function application in the standard way. 

8. Standard currying is employed to deal with functions of 
several arguments. Thus: 

 λA1,A2,…Ak . E means λA1.[λA2.[… . [λAk . E]…]] 
 λ<A1,A2,…Ak> . E means λA1.[λA2.[… . [λAk . E]…]] 
 F(B1,B2,…Bk) means ((…((F(B1))B2)…)Bk)  

If I wanted to be more precise, I would be stricter about the use 
of domains rather than sets, in order that function continuity be 
maintained, and so forth. It is not my intent here to make the 
mathematics rigorous, but I trust that it would be straightfor-
ward, given the accounts I set down, to take this extra step to-
wards formal adequacy. 

 6c Examples and Implementations 
A considerable number of examples are presented throughout the 
dissertation, which can be approximately divided into two 
groups: (i) formal statements about Lisp and about semantics, 
expressed in the meta-language; and (ii) illustrative programs and 
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structures expressed in Lisp itself (most of the latter are in one of 
the three Lisp dialects, though a few are in standard dialects as 
well). As the preceding discussion suggests, the meta-linguistic 
characterisations have not been checked by formal means for con-
sistency or accuracy; the proofs and derivations were generated by 
the author using paper and pencil. The program examples, on the 
other hand, were all tested on computer implementations of 1-
Lisp, 2-Lisp, and 3-Lisp developed in the MacLISP and “Lisp Ma-
chine” Lisp dialects of Lisp at MIT.37 Thus, although the examples 
in the text were typed in by the author as text—i.e., the lines of 
characters in this document are not actual photocopies of com-
puter interaction—each was nevertheless verified by these im-
plementations. However the implementation presented in the 
Appendix is a photocopy of the actual computer program listing. 
Any residual errors (it is hard to imagine every one has been 
eliminated) must have arisen either from typing errors or from 
mistakes in the implementation itself.x 

                                                             
37A complete program listing of the third of these—a MacLISP implemen-
tation of 3-Lisp —is given in the Appendix. 

 x This dissertation was written in 1981 on the Xerox Alto minicomputer—
arguably the first “personal computer"—developed at the Xerox Palo Alto 
Research Center (PARC) in the 1960s. It used Bravo, the first “WYSIWYG” 
(“what you see is what you get”) document preparation system. The 3-Lisp 
implementation was developed in MacLISP , a dialect of Lisp implemented 
under “ITS” (“Incompatible Time-Sharing System”) at the Artificial Intelli-
gence Laboratory at MIT, running on Digital Equipment Corporation PDP-6 
and PDP-10. 



166 Indiscrete Affairs · I 

  

  References (original) 
Allen, Jon, Anatomy of LISP. New York: McGraw-Hill (1978). 
Bobrow Daniel G., (ed.) Artificial Intelligence, 13:1,2 (Special Issue on 

Non-Monotonic Reasoning), (1980). 
Bobrow, Daniel G., and Winograd, Terry, “An Overview of KRL: A 

Knowledge Representation Language,” Cognitive Science 1:3–46 (1977) 
Bobrow, Daniel G., Winograd, Terry et al., “Experience with KRL-O: One 

Cycle of a Knowledge Representation Language,” Proceedings of the Fifth 
International Joint Conference on Artificial Intelligence, Cambridge, Mass 
(August 1977) pp. 213–22. 

Bobrow, Daniel G., and Wegbreit, Ben, “A Model and Stack Implementa-
tion of Multiple Environments,” Communications of the ACM 16, 
10:591–603 (Oct 1973). 

Brachman, Ronald, “Recent Advances in Representation Languages,” in-
vited presentation at the First Annual National Conference on Artificial 
Intelligence, Stanford, California, (August 1980), sponsored by the 
American Association for Artificial Intelligence. 

Brachman, Ronald and Smith, Brian Cantwell, (eds.), Special Issue on 
Knowledge Representation, SIGART Newsletter, 70 (February 1980). 

Charniak, Edward, Riesbeck, Chris, and McDermott, Drew, Artificial 
Intelligence Programming, Hillsdale, NJ: Lawrence Erlbaum (1980). 

Church, Alonzo, The Calculi of Lambda-conversion, Annals of Mathematics 
Studies 6, Princeton, NJ: Princeton University Press (1941). 

Clark, K.L., McCabe F. (1979). Programmer’s guide to IC-Prolog. CCD Re-
port 79/7, London: Imperial College, University of London. 

Davis, R. “Applications of Meta Level Knowledge to the Construction, 
Maintenance, and Use of Large Knowledge Bases,” PhD thesis, Stan-
ford University, Stanford, California; also in Davis, R., and Lenat, D., 
(eds.), Knowledge-Based Systems in Artificial Intelligence, New York: 
McGraw-Hill (1980a). 

———, “Meta-Rules: Reasoning about Control”, M.I.T. Artificial Intelli-
gence Laboratory Memo AIM-576 (1980b); also Artificial Intelligence 
15:3, December 1980, pp. 179–222. 

deKleer, Johan, Doyle, Jon, Steele, Guy L. Jr., and Sussman, Gerald J., “Ex-
plicit Control of Reasoning,” Proceedings of the ACM Symposium on Ar-
tificial Intelligence and Programming Languages, Rochester, N.Y. (1977); 
also M.I.T. Artificial Intelligence Laboratory Memo AIM-427 (1977). 

Donnellan, Kennett, “Reference and Definite Descriptions,” Philosophical 
Review 75:3 (1966), pp. 281–304.; reprinted in Rosenberg and Travis 
(eds.), Readings in the Philosophy of Language, Prentice-Hall (1971). 

Doyle, Jon, “A Truth-Maintenance System,” Artificial Intelligence 12:231–
272 (1979). 

———, A Model for Deliberation, Action, and Introspection, doctoral disser-



 2b · Reflection & Semantics · Introduction 
 
 

 167 

tation submitted to the Massachusetts Institute of Technology; also 
M.I.T. Artificial Intelligence Laboratory Memo AIM-TR-581 (1980). 

Dreyfus, Hubert, What Computers Can’t Do, New York: Harper and Row 
(1972). 

Fodor, Jerry, The Language of Thought, New York: Thomas Y. Crowell, 
Company (1975): paperback version, Cambridge: Harvard University 
Press, 1979. 

———, “Tom Swift and his Procedural Grandmother,” Cognition 6 
(1978); reprinted in Fodor, Jerry, Representations, Cambridge: Bradford, 
1981. 

———, “Methodological Solipsism Considered as a Research Strategy in 
Cognitive Psychology,” The Behavioral and Brain Sciences 3:1 (1980) pp. 
63–73; reprinted in John Haugeland (ed.), Mind Design, Cambridge: 
Bradford, 1981, and in Jerry Fodor, Representations, Cambridge: Brad-
ford 1981. 

———, The Modularity of Mind, Cambridge: Bradford (forthcoming). 
Frege, Gottlob, Die Grundlagen der Arithmetik: Eine logisch-mathematische 

Untersuchung über den Begriff der Zahl (Breslau, 1884); reprinted in The 
Foundations of Arithmetic, A logico-mathematical Inquiry into the Concept 
of Number, English translation by John L. Austin, Evanston, IL: North-
western University Press (1950). 

Galley, S. W., and Pfister, G., The MDL Language, Programming Technol-
ogy Division Document SYS.11.01. Laboratory of Computer Science, 
M.I.T. (1975). 

Genesereth, Michael and Lenat, Douglas B. “Self-Description and Modifi-
cation in a Knowledge Representation Language,” Report of the Heuris-
tic Programming Project of the Stanford University Computcr Science 
Dept., HPP-80-10 (1980). 

Goldberg, Adele et al. “Introducing the Smalltalk-80 System,” and other 
Smalltalk papers, Byte 6:8, (August 1981). 

Gordon, Michael J. C., “Models of Pure LISP,” Dept. of Machine Intelli-
gence, Experimental Programming Reports No. 30, University of Edin-
burgh (1973). 

———, Operational Reasoning and Denotational Semantics,” Stanford 
University Computer Science Dept. Deport No. STAN-CS-75-506. 
(1975a) 

———, “Toawards a Semantic Theory of Dynamic Binding,” Stanford 
University Artificial Intelligence Laboratory, Memo 265, Stanford Uni-
versity Computer Science Dept. Report No. STAN-CS-75-507 (1975b). 

———, The Denotational Description of Programming Languages: An In-
troduction, New York: Springer-Verlag (1979). 

Greiner, R., and Lenat, D. B., “A Representation Language Language”, Pro-
ceedings of the First Annual National Conference on Artificial Intelligence, 
Stanford Univ., (August 1980), pp. 165–169. 



168 Indiscrete Affairs · I 

  

Haugeland, John, “The Nature and Plausibility of Cognitivism,” The Brain 
and Behavioral Sciences 1 (1978). 

Hayes, Patrick J., “In Defense of Logic,” in Proc. Fifth International Joint 
Conference on Artificial Intelligence, Massachusetts Institute of Technol-
ogy (August 1977) pp. 559–65; available from Carnegie-Mellon Uni-
versity, Pittsburgh. PA. 

——— “The Naive Physics Manifesto”, unpublished manuscript (May 
1978). 

———, Personal conversations on the GOLUM deduction system (1979). 
Hewitt, Carl, “Description and Theoretical Analysis (using Schemata) of 

PLANNER: A Language for Proving Theorems and Manipulating Mod-
els in a Robot,” MIT Artificial Intelligence Laboratory TR-258 (1972). 

———, “Viewing Control Structures as Patterns of Passing Messages,” 
Artificial Intelligence, 8:3. (June 1977) pp. 324–64. 

Hewitt, Carl et al. “Behavioral Semantics of Non-recursive Control Struc-
tures,” Proc. Colloque sur la Programmation, B. Robinet (ed.), in Lecture 
Notes in Computer Science, 19, pp. 385–407 Berlin: Springer-Verlag 
(1974). 

Ingalls, Daniel H. “The Smalltalk-76 Programming System: Design and 
Implementation,” Conference Record of the Fifth Annual Symposium on 
Principles of Programming Languages, Tucson, Arizona (January 1978) 
pp. 9–16. 

Kleene, Stephen, Introduction to Metamathematics, Princeton: D. Van Nos-
trand (1952). 

Kowalski, Robert A., “Predicate Logic as a Programming Language,” Pro-
ceedings IFIP, Amsterdam: North Holland (1974) pp. 569–74. 

———, “Algorithm = Logic + Control”, CACM (August 1979). 
Kripke, Saul, “Outline of a Theory of Truth,” Journal of Philosophy, 

72:690–716 (1971). 
Lewis, David, “General Semantics,” in Davidson and Harman (eds.), Se-

mantics of Natural Languages, Dordrecht, Holland: D. Reidel (1972), 
pp. 169–218. 

Maturana, Humberto, and Varela, Francisco, AutojJoietic SysletnS, in Bos-
ton studies in the philosophy of science. Boston: D. Reidel, (1978); 
originally issued as B.C.L. Report 9.4, Biological Computer Laboratory, 
University of Illinois, 1975. 

McAllester David A. “A Three-Valued Truth Maintenance System,” MIT 
Artificial Intelligence Laboratory Memo AIM-473 (1978). 

McCarthy, John, “Programs With Common Sense,” in Marvin Minsky 
(ed.), Semantic Information Processing. Cambridge: MIT Press (1968), 
pp. 403–18. 

McCarthy, John et al., LISP 1.5 Programmer’s Manual, Cambridge, Mass.: 
MIT Press (1965). 

McCarthy, John and Talbott, Carolyn, LISP: Programming and Proving, 



 2b · Reflection & Semantics · Introduction 
 
 

 169 

Cambridge, Mass.: Bradford (forthcoming). 
McDermott, Drew, and Doyle, Jon, “Non-Monotonic Logic I,” M.I.T. Ar-

tificial Intelligence Laboratory Memo AIM-486 (1978). 
McDermott, Drew, and Sussman, Gerald, “The CONNIVER Reference 

Manual,” M.I.T. Artificial Intelligence Laboratory Memo AIM-259a, 
Cambridge, Mass. (1973). 

Minsky, Marvin, “Matter, Mind, and Models”, in Semantic Information 
Processing, M. Minsky (ed.), Cambridge: MIT Press (1968). 

———, “A Framework for the Representation of Knowledge”, in P. 
Winston (ed.), The Psychology of Computer Vision, New York: McGraw-
Hill (1975) pp. 211–77. 

Montague, Richard, “The Proper Treatment of Quantification in Ordinary 
English,” in J. Hintikka, J. Moravcvcsik, and P. Suppes (eds.), Ap-
proaches to Natural Language: Proceedings of the 1970 Stanford Workshop 
on Grammar and Semantics, Dordrecht: Reidel (1973) pp. 221–42; re-
printed in Thomason (1974). 

———, “Pragmatics and Intensional Logic”, Synthese 22 (1970) pp. 68–
94; reprinted in R. H. Thomason (ed.), Formal Philosophy: Selected Pa-
pers of Richard Montague, New Haven: Yale Univ. Press, 1974. 

Moon, David, “MacLISP Reference Manual”, M.I.T. Laboratory tor Com-
puter Science, Cambridge, Mass. (1974). 

Moses, J., “The Function of FUNCTION in LISP,” ACM SIGSAM Bulletin, 
pp. 13–27, (July 1970); also M.I.T. Artificial Intelligence Laboratory 
Memo AIM-199 (1970). 

Newell, Allen, and Simon, Herbert, “The Logic Theory Machine: a Com-
plex Information Processing System”, IEEE Transactions on Information 
Theory, Vol. IT-2, No.3, pp. 61-79. 

———. “GPS, a Program that Simulates Human Thought”, in B. A. Fei-
genbaum and J. Feldman (eds.). Computers and Thought, New York: 
McGraw-Hill (1963). 

Nilsson, Nils, “Artificial Intelligence: Engineering, Science, or Slogan?” 
manuscript (to be published), (April 1981). 

Pitman, Ken, “Special Forms in LISP”, Conference Record of the 1980 LISP 
Conference, Stanford University (August 1980), pp. 179–87. 

Quine. Willard von Orman, Mathematical Logic, [New York: Norton, 
1940], Cambridge: Harvard University Press, 1947; revised edition, 
Cambridge, Harvard University Press (1951). 

———, “Identity, Ostension, and Hypostasis,” in From a Logical Point of 
View, Cambridge: Harvard University Press, (1953a); reprinted in pa-
perback by Harper Torchbooks, 1963. 

———, “On What There Is,” in Quine, W. V. 0., From a Logical Point of 
View, Cambridge: Harvard University Press, (1953b); reprinted in pa-
perback by Harper Torchbooks, 1963. 

———, “Three Grades of Modal Involvement”, in The Ways of Paradox, 



170 Indiscrete Affairs · I 

  

and Other Essays, Cambridge: Harvard Univ. Press (1966). Quine, W. 
V. 0., and Ullian, J. S., The Web of Belief, New York: Random House 
(1978). 

Reiter, Ray, “On Reasoning by Default,” Proc. Second Conference on Theo-
retical Issues in Natural Language Processing, University of Illinois at 
Champaign-Urbana (1978) pp. 210–18. 

Rogers, Hartley Jr., Theory of Recursive Functions and Effective Computabil-
ity, New York: McGraw-Hill (1967). 

Roussel, P., “PROLOG: Manuel de Reference et d’Utilisation”, Groupe 
d’Intelligence Artificielle, Universite d’Aix-Marseille, Luminy (1975). 

Russell, Bertrand, “Mathematical Logic as Based on the Theory of Types,” 
American Journal of Mathematics 30:222–62 (1908); reprinted in Van 
Heijenoort, J. (ed), From Frege to Gödel: A Source Book in Mathematical 
Logic, 1879-1931, Cambridge, Mass.: Harvard (1967). 

Searle, John R., Speech Acts: An Essay in the Philosophy of Language, Cam-
bridge: Cambridge Univ. Press (1969). 

———, “Minds, Brains, and Programs,” The Behavioral and Brain Sciences 
3:3 (1980) pp. 417–57; reprinted in John Haugeland (ed.), Mind De-
sign, Cambridge: Bradford 1981, pp. 282-306. 

Stallman, Richard M., and Sussman, Gerald J., “Forward Reasoning and 
Dependency-Directed Backtracking in a System for Computer-Aided 
Circuit Analysis,” Artificial Intelligence 9:2 (1977) pp. 135–96; also in 
Artificial Intelligence: An MIT Perspective, Volume 1, Patrick H. 
Winston and Richard H. Brown (eds.), pp. 31-91, Cambridge: M.I.T. 
Press (1979). 

Steele, Guy, “LAMBDA: The Ultimate Declarative,” M.I.T. Artificial Intel-
ligence Laboratory Memo AIM-379 (1976). 

———, “The Definition and Implementation of a Computer Program-
ming Language Based on Constraints,” Ph.D. Dissertation, M.LT. Arti-
ficial Intelligence Laboratory, Report AIM-595 (1980). 

Steele, Guy and Sussman, Gerald. “LAMBDA: The Ultimate Imperative,” 
M.LT. Artificial Intelligence Laboratory Memo AIM-353 (1976). 

———, “The Revised Report on SCHEME, A Dialect of LISP”, M.I.T. Ar-
tificial Intelligence Laboratory Memo AIM-452 (1978a). 

———, “The Art of the Interpreter, or, The Modularity Complex (Parts 
Zero, One, and Two)”, M..I.T. Artificial Intelligence Laboratory Memo 
AIM-453, Cambridge, Mass. (1978b). 

———, “Constraints”, M.I.T. Artificial Intelligence Laboratory Memo 
AIM-502 (1979). 

Stefik, Mark J., “Planning with Constraints (MOLGEN, Part 1)”, Artificial 
Intelligence 16:2 (July 1981a) pp. 111–39. 

———, “Planning and Meta-Planning (MOLGEN: Part 2)”, Artificial Intel-
ligence 16:2 (July 1981b) pp. 141–69. 

Stoy, Joseph, Denotational Semantics: The Scott-Strachey Approach to Pro-



 2b · Reflection & Semantics · Introduction 
 
 

 171 

gramming Language Theory, Cambridge: MIT Press (1977). 
Sussman, Gerald, and Steele, Guy, “SCHEME: An Interpreter for Extended 

Lambda Calculus,” M.I.T. Artificial Intelligence Laboratory Memo 
AIM-349 (1975). 

———, “CONSTRAINTS: A Language for Expressing Almost-
Hierarchical Descriptions,” Artificial Intelligence 14:1 (August 1980) pp. 
1-39. 

Sussman, Gerald, et al. “Micro-PLANNER Reference Manual” M.I.T. Arti-
ficial Intelligence Laboratory Memo AIM-203a (1971). 

Tarski, Alfred, “The Concept of Truth in Formalized Languages” (1936), 
in Tarski, Alfred, Logic, Semantics, Metamathematics, Oxford (1956). 

———, “The Semantic Conception of Truth and the Foundations of Se-
mantics”. Philosophical and Phenomenological Research 4:341–76 (1944); 
reprinted in Linksy (ed.), Semantics and the Philosophy of Language, Ur-
bana: University of Illinois, 1952, pp. 13-47. 

Teitelman, Warren, “InterLISP Reference Manual,” Palo Alto: Xerox Palo 
Alto Research Center (1978). 

Tennent, R.D., “The Denotational Semantics of Programming Languages”, 
Communication of the ACM 19:8 pp. 437-453 (Aug. 1976). 

Thomason, Rich, (ed.), Formal Philosophy: Selected Papers of Richard Mon-
tague, New Haven: Yale University Press (1974.) 

Warren, David, Pereira, Luis, and Pereira, Fernando, “PROLOG: The Lan-
guage and its Implementation Compared with LISP”, Proc. Symposium 
on AI and Programming Languages, Rochester, New York, ACM 
SIGPLAN/SIGART Notices, 12:8 (August 1977) pp. 109-115. 

Weissman, Clark, LISP 1.5 Primer, Belmont: Dickenson Press (1967). 
Weinreb, Dan, and Moon, David, LISP Machine Manual, Cambridge: 

Massachusetts Institute of Technology (1981). 
Weyhrauch, Richard W., “Prolegomena to a Theory of Mechanized For-

mal Reasoning”, Stanford University Artificial Intelligence Laboratory, 
Memo AIM-315 (1978); °also Artificial Intelligence 13:1.2 (1980) pp. 
133-170. 

White, John L., “NIL - A Perspective”, Proceedings of the MACSYMA Users’ 
Conference, Washington, D. C. pp. 190-199 (June 1979). Available from 
The Laboratory for Computer Science, M.I.T., Cambridge, Mass. 

Winograd, Terry, Understanding Natural Language, Academic Press 
(1972). 

———, “Frame Representation and the Declarative-Procedural Contro-
versy,” in D. G. Bobrow and A. Collins, (eds.), Representation and Un-
derstanding: Studies in Cognitive Science, New York: Academic Press 
(1975) pp. 185–210. 

Winston, Patrick H and Horn, Bertold K. P., LISP, Reading, Mass: Ad-
disonWesley (1981). 



172 Indiscrete Affairs · I 

  

  References (added) 
Brooks, Rodney A., “Intelligence Without Representation,” Preprints of 

the Workshop in Foundations of Artificial Intelligence, Endicott House, 
Dedham, MA, June, 1987; final version published in Artificial Intelli-
gence Journal (47), 1991a, pp. 139–159. 

———, “Intelligence Without Reason”, in the Proceedings of 12th inter-
national Joint Conference on Artificial Intelligence, Sydney, Australia, 
August 1991b, pp. 569–95. 

Dennett, Daniel, The Intentional Stance, Cambridge, Mass.: MIT 
Press, 1987. 

Dennett, Daniel … on original/derivative etc. 
Dixon, Mike … on Amala 
Fodor, Jerry A., “Methodological solipsism considered as a research 

strategy in cognitive psychology”, Behavioral and Brain Sciences, 3, 
1980; pp. 63-73. Reprinted in Rosenthal, D., ed., The Nature of 
Mind, Oxford: Oxford University Press, 1990. 

Friedman, Daniel P. and Wand, Mitchell, “Reification: Reflection with-
out metaphysics,” Proceedings of the 1984 ACM Symposium on 
LISP and functional programming, Austin, Texas, United States, pp. 
348–55). 

Haugeland, John … on original/derivative etc. 
Searle, John … on original/derivative etc. 

 
 

————————————————•• ———————————————— 



3 · Refl ection & Semantics in LISP

173

3 — Refl ection and Semantics in LISP

Brian Cantwell Smith*
University of Toronto

†© Brian Cantwell Smith 2009 Last edited: December 17, 2009
Draft only (version 0.80) Please do not copy or cite.
Comments welcome brian.cantwell.smith@utoronto.ca
Edited version of a paper fi rst published in the Conference Record of the 
Elev-enth Annual acm Symposium on Principles of Programming Languages 
(popl), Salt Lake City, Utah, Jan. 1984, pp. 23–35. Th e original version was 
also published as Report No. csli-84-8, Stanford University Center for the 
Study of Language and Information, July 1984.
*Faculty of Information, University of Toronto, 90 Wellesley St W, Toronto, 
Ontario m5s 1c5 Canada.

 1 Abstract
A general architecture is presented, called procedural refl ection, 
designed to support self-directed reasoning in a serial programming 
language. Th e architecture, illustrated in a revamped dialect of Lisp 
called 3-Lisp, involves three steps: (i) reconstructing the semantics of 
a language so as to deal with both declarative and procedural aspects 
of program meaning; (ii) embedding a theory of the language—in-
cluding of its semantics—within the language; and (iii) defi ning an 
infi nite tower of procedural self-models in terms of this embedded 
theory, very much like a tower of metacircular interpreters, except 
causally-connected to each other in a simple but crucial way. In a 
procedurally refl ective architecture, any aspect of process state that 
can be described in terms of the theory can be rendered explicit, in 
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structures accessible for program examination and manipulation. 
Procedural refl ection enables a user to defi ne complex programming 
constructs by writing, within the programming language, direct an-
alogues of those metalinguistic semantical expressions that would 
normally be used to describe them. 

It is argued that the concept of procedural refl ection should be 
added to any language designer’s tool kit.

2010 Perspective�1

The work reported here, on procedural refl ection and 3-Lisp, started out as what 

I expected to be a small design study—part of a (hopelessly ambitious) project I 

had undertaken, as a graduate student in the 1970s, to develop a fully refl ective 

knowledge representation system. That project, to have been called Mantiq,�
2
 

never saw the light of day, most pointedly due to my encounter with the funda-

mental inability of Artifi cial Intelligence and computer science to deal adequately 

with the challenges of real-world ontology (the nature of objects, ambiguity and 

vagueness, relationality and process, etc.). But there were other challenges as 

well: another goal was to defi ne the Mantiq structural fi eld (effectively: its object 

or memory system—see p. ■■) at a suffi ciently high level of abstraction so as to 

be able to “fuse” meta-structural and intensional identity, so that structural iden-

tity could be identifi ed with (and thus used to determine) identity of meaning.
�3

 The idea was to employ a computationally-intensive background relaxation 

algorithm to implement the “structural fi eld” (memory system), loosening opera-

tional identity criteria to the point that, for example, the Mantiq analogues of 

(�x,y . x+y) and (�a,b . b+a) would appear to be structurally indistinguishable.

I still think that this issue of intensional identifi cation would be a worthwhile 

goal to pursue, especially since processing power today would make approximat-

ing it more computationally feasible than it was thirty years ago. At any rate, 

against this background of unrealistic dreams, the 3-Lisp project�4
 was intended 

as a site to work out the design details of refl ection’s self-referential structure. In 

particular, the idea of understanding level-shifting in terms of an idealized un-

bounded “tower” of referential layers struck me then (and still does now) as at 

least a good initial  idea about the structure of refl ection.�
5
 So I set out to explore 

it within the familiar context of Lisp, the “lingua franca” programming language 
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 1 Introduction
Among programming languages, Lisp is famous for (among other 
things) providing inchoate self-referential capabilities: standard 
coding of programs as data structures (s-expressions), a primitive 
quotation function (QUOTE), explicit access to interpreter procedures 
(EVAL and APPLY), support for meta-circular interpreters, etc. Yet 
these capacities have not led to a general understanding of what it is 
for a computational system to reason, in substantial ways, about its 
own operations and structures.

Th ere are several reasons we have not developed such an account. 
First, there is more to reasoning than reference; one also needs a 
theory, in terms of which to make sense of the referenced domain. 
A computer system able to reason about itself—what I will call a 
refl ective system—will therefore need an account of itself embed-
ded within it. Second, there must be a systematic, causally eff ec-
tive relationship between that embedded account and the system 
it describes. Without such a connection, the account would be 
useless—as disconnected as the words of a hapless drunk who car-
ries on about the evils of inebriation, without realising that his story 
applies to himself. Traditional language embeddings in Lisp (meta-
circular interpreters and implementations of other languages) are 
inadequate in just this way; they provide no means for the implicit 
state of the Lisp process to be refl ected, moment by moment, in the 
explicit terms of the embedded account. Th ird, a refl ective system 
must be given an appropriate vantage point at which to stand, far 
enough away to have itself in focus, and yet close enough to see the 
important details.

Th is paper presents a general architecture, called procedural 
refl ection, to support self-directed reasoning in a serial program-
ming language. Th e architecture, illustrated in a revamped Lisp 
dialect called 3-Lisp, solves all three problems with a single mecha-
nism. Th e basic idea is to defi ne an infi nite tower of procedural self-
models, very much like metacircular interpreters,1 except connected 
to each other in a simple but critical way. In such an architecture, 
any aspect of a process’ state that can be described in terms of the 
theory can be rendered explicit, in program accessible structures, at 
an arbitrary points throughout a computation. Furthermore, as I 

1. Steele and Sussman (1978b).



Indiscrete Affairs · I176

will demonstrate, this apparently infi nite architecture can be fi nitely 
and effi  ciently implemented.

Th e architecture allows the user to defi ne complex programming 
constructs (such as escape operators, deviant variable passing pro-
tocols, and debugging primitives) by writing, within the language, 
direct analogues of the metalinguistic semantical expressions that 
would normally be used to describe them. As is always true in se-
mantics, the metatheoretic descriptions must be phrased in terms 
of some particular set of concepts; in the 3-Lisp case I use a theory 
based on environments and continuations. A 3-Lisp program, there-
fore, at any point during a computation, can easily obtain represen-
tations of the environment and continuation characterising the state 
of the computation at that point. As a result, such constructs as THROW 
and CATCH, which must otherwise be provided primitively, can be eas-
ily defi ned in 3-Lisp as user procedures (and defi ned, furthermore, 
in code that is almost isomorphic to the �-calculus equations one 
normally writes, in the metalanguage, to describe such constructs). 
Moreover, these and other analogous control constructs can be de-
fi ned without having to write the entire program in a continuation-
passing style, of the sort illustrated in Steele (1976).

Th e point is not to decide at the outset what should and what 
should not be explicit, in other words (in Steele’s example, continua-
tions must be passed around explicitly from the beginning).a Rather, 

a) (Note: footnotes indicated with letters rather than numerals, and sans-serif 
font, as in this case, are annotative notes added in 2010, rather than material 
that appeared in the original paper.)

 This phrasing is somewhat disingenuous, since in a procedurally refl ective dia-
lect of the sort presented here the language designer must decide, advance, 
what aspects of the language will be able to be made explicit to user code; 
those aspects must then be dealt with, explicitly, in the metatheory in terms 
of which the refl ective processor and dialect are themselves defi ned, and then 
provided for in the implementation. The original paper would have been bet-
ter phrased if written as follows: “Although the metatheory (and refl ective 
processor) must deal explicitly with all of those aspects of the language that 
can, at any point, be made explicit, any user code that does not want to deal 
with them need not deal with them explicitly. In Steele’s dialect, in contrast, in 
order for an aspect to be referred to explicitly at any point, it must be explicit 
throughout the program. In a sense, therefore, refl ection can be understood 
as providing something like contextual information hiding—or perhaps more 
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the refl ective architecture provides a method of making some as-
pects of the computation explicit, right in the midst of a computa-
tion, even if they were implicit a moment earlier—and in such a 
way that they can be made implicit once again, a moment later. It 
provides a mechanism, in other words, when circumstances warrant 
it, of stepping back, “pulling information out of the sky,” dealing with 
that information appropriately, and then returning into the regular 
implicit fl ow of the program.

Th e thesis on which the 3-Lisp defi nition rests is the following:

 Refl ection is simple to build [R]
 on a semantically sound base.

By “semantically sound” I mean more than that the semantics be 
carefully formulated. Rather, it is assumed throughout that compu-
tational structures have a semantic signifi cance that transcends their 
behavioural import—or, to put this another way, that programs and 
computational structures are about something, over and above the 
causal eff ects they have on the systems they inhabit. Lisp’s NIL, for 
example, evaluates to itself forever—that is its procedural impact. 
In addition, however, in some contexts—and partially independent-
ly—it also stands for falsehood. It is that sense of “meaning false” that 
I take to be its declarative import. To be considered “semantically 
sound,” a reconstruction of Lisp semantics must deal explicitly with 
both of these dimensions of the overall signifi cance of computation-
al structures—both procedural and declarative.2

In what follows I will use the phrases “procedural result” (or “what 
it returns”) to name that to which its eff ective treatment gives rise, 
and “declarative import” for what a structure designates, declaratively. 
As well as distinguishing result and import, I will also discriminate 

2. Th is distinction between the procedural and declarative aspects of a pro-
gram’s meaning diff ers from the traditional distinction in programming 
language theory between operational and denotational semantics. It is a 
reconstruction developed within a view that programming languages are 
properly to be understood in the same theoretical terms used to under-
stand natural language and mind—not just other computer languages.

accurately, contextually-dependent explicitization of otherwise implicit infor-
mation.”

The next sentence in the text is more accurate, and more useful.
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entities, such as numerals and numbers, that are isomorphic but not 
identical, if they diff er in respect of either import or result.3 Both dis-
tinctions are instances of the general intellectual hygiene of avoiding 
use/mention errors. Lisp’s basic notion of evaluation, I will argue, is 
fundamentally confused on both counts—and should be replaced 
with independent notions of designation and simplifi cation. Th e 
result will be illustrated in a semantically rationalised dialect, called 
2-Lisp, based on a simplifying (designation-preserving) term-reduc-
ing processor.

Th e practical import of thesis [R] is demonstrated in a two-stage 
argument:

Th e semantically rationalised 2-Lisp is more elegant and 1. 
theoretically cleaner than any prior Lisp dialect (including 
both Lisp 1.5 and Scheme); and 

Th e refl ective dialect 2. 3-Lisp can be very simply defi ned on 
top of 2-Lisp—whereas a refl ective version of a non-seman-
tically-rationalised Lisp dialect would be inelegant in a spate 
of ways: gratuitously challenging to design, architecturally 
baroque, and much more diffi  cult to understand.

Th e strategy of presenting the general architecture of procedural re-
fl ection by developing a concrete instance of it was selected on the 
grounds that a genuine theory of refl ection (perhaps analogous to 
the theory of recursion) would be diffi  cult to motivate or defend 
without taking this fi rst, more pragmatic, step. In section 10, how-
ever, I will sketch a general “recipe” for adding refl ective capabilities 
to any serial language; 3-Lisp is the result of applying this conversion 
process to the non-refl ective 2-Lisp.

It is sometimes said that there are only a few constructs from 
which programming languages are assembled—including, for ex-
ample, predicates, terms, functions, composition, recursion, abstrac-
tion, a branching selector, and quantifi cation. Th ough diff erent from 
these notions (and not defi nable in terms of them), refl ection is per-
haps best viewed as a proposed addition to that family. Given this 
view, it is helpful to understand refl ection by comparing it, in particu-

3. Numerals denote numbers, but (at least in ordinary circumstances) num-
bers do not denote at all, not being symbols.
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lar, with recursion—a construct with which it shares many features. 
Specifi cally, recursion can seem viciously circular to the uninitiated, 
and can easily lead to confused implementations if poorly under-
stood. Careful theoretical analysis, however, backed by mathemati-
cal theory, underwrites our ability to use recursion in programming 
languages without doubting its fundamental soundness (in fact, for 
many programmers, without understanding much about the formal 
theory at all). Refl ective systems, similarly, are initially likely to seem 
viciously circular (or at least infi nite), and are correspondingly dif-
fi cult to implement without an adequate understanding. Th e intent 
of this paper, however, is to argue that refl ection is in fact as well-
tamed a concept as recursion, and potentially as effi  cient to use. Th e 
long-range goal is not to force programmers to understand the intri-
cacies of designing a refl ective dialect, but rather to enable them to 
use refl ection and recursion with equal abandon.

 2 Motivating Intuitions
Before taking up technical details, it will help to layout some moti-
vations and assumptions.

By ‘refl ection’ in its most general sense, I mean the ability of an 
agent to reason not only introspectively, about its self and internal 
thought processes, but also externally, about its behaviour and situ-
ation in the world. Ordinary reasoning is external in a simple sense: 
most of what we think about (chairs, other people, bank accounts, 
houses, politics, etc.) is external to us. Th e point of refl ection is to 
give an agent a more sophisticated stance from which to consider its 
own presence in that embedding world. Th ere is a growing consensus4 
that refl ective abilities underlie much of the plasticity with which 
we deal with the world, both in language (such as when one says 
“Do you understand what I mean?”) and in thought (such as when 
one wonders how to be compassionate about delivering bad news). 
Common sense suggests that refl ection enables us to master new 
skills, cope with incomplete knowledge, defi ne terms, examine as-
sumptions, review and distill experiences, learn from unexpected 
situations, plan, check for consistency, and recover from mistakes.

Although this paper focuses on refl ection in programming 

4. See Doyle (1980), Weyrauch (1980), Genesereth and Lenat (1980), and 
Batali (1983).
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languages, most of the driving intuitions on which it is based are 
grounded in considerations of human rationality and language. 
Tentative steps towards computational refl ection, however, are 
emerging in computational practice, and have also had a motivat-
ing impact here. Debugging systems, trace packages, dynamic code 
optimizers, runtime compilers, macros, metacircular interpreters, 
error handlers, type declarations, escape operators, comments, and 
a variety of other programming constructs in one way or another in-
volve structures that refer to or deal with other parts of a computa-
tional system. Th ese practices suggest. as a fi rst step towards a more 
general theory, defi ning a limited and rather introspective notion of 
“procedural refl ection”: self-referential behaviour in procedural lan-
guages, in which expressions are primarily used instructionally, to 
engender behaviour, rather than assertionally, to express judgments 
or make claims. It is the hope that the lessons learned in this smaller 
task will serve well in the larger account.b

I mentioned at the outset that the general task, in defi ning a refl ec-
tive system, is to embed a theory of the system in the system in such 
a way as to support smooth shifting between reasoning directly 
about the world and reasoning about that reasoning. Because the 
subject matter is reasoning, moreover, not merely language, an ad-
ditional requirement is placed on this embedded theory, also already 
mentioned, beyond its being descriptive and true: it must also be 
what I will call causally connected, so that the refl ective accounts 
of objects, events and states of aff airs are directly tied to those self-
same objects, events and states of aff airs. Th is causal relationship 
must run both directions: from event to description, and from de-
scription back to event. Th e goal is almost that of creating a magic 
kingdom, where from a cake you can automatically obtain a recipe, 
and from a recipe automatically produce a cake.

b) In part this is a reference to Mantiq, but I had also planned to develop a next 
dialect in the series, to be called “4-Lisp,” which was to include semantically-
rationalized data structures for (external) reference to the real-world, but 
otherwise to retain 3-Lisp’s basic style and control structure. Like Mantiq, 
4-Lisp never materialized, due to the challenges of developing representa-
tional regimens adequate to real-world ontology.
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Existing logical and mathematical cases of self-reference, includ-
ing both self-referential statements, and models of syntax and proof 
theory, involve no causation at all, since there is no temporality or 
behaviour (neither logical nor mathematical systems, per se, run). 
Eff ective causation is a critical part of any refl ective agent, however. 
As a human example, suppose you were to capsize while canoeing 
through diffi  cult rapids, and were to swim to shore to fi gure out 
what you did wrong. In terms of what I will call “upwards” causal 
connection, you would need a description of what you were doing at 
the moment the mishap occurred; in the concrete exigencies of that 
circumstance, merely having a name for yourself, or even a gener-
al description of yourself, would be useless. Similarly, in order for 
your on-shore refl ections to be of any subsequent paddling use, you 
would need “downwards” causal connection as well; no good will 
come from your merely contemplating a disconnected theory of a 
wonderfully improved you. As well as stepping back and being able 
to think about your behaviour, in other words, you must also be able 
to “step forwards,” as it were—to embrace a revised theory of self 
and “dive back in under it,” adjusting your behaviour so as to satisfy 
the new account. And fi nally, as already mentioned, when you take 
the step backwards, to refl ect, you need a place to stand that has just 
the right combination of connection and detachment to make this 
whole process eff ective and effi  cient (it is not an accident that the 
moment of self-contemplation is like to occur on shore).

Refl ective computational systems, similarly, must provide both 
directions of causal connection, and an appropriate vantage point. 
For example, consider a debugging system that accesses stack frames 
and other implementation-dependent representations of processor 
state, in order to give the user an account of what a program is up to 
in the midst of a computation. Note, fi rst, that stack-frames and im-
plementation byte-codes really are just descriptions, in a rather inel-
egant language, of the state of the process they describe. Like any de-
scription, they make explicit some of what was implicit in the process 
itself (this is one reason they are useful in debugging). Furthermore, 
because of the nature of implementation—because, that is, they are 
constitutively enabling descriptions, not detached observations—
they are always available in the implementing code, and always true. 
Th ey have these properties because they play a causal role in the 
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very existence of the process they implement, and therefore auto-
matically solve the “reality-to-description” direction of causal con-
nection. Second, debugging systems must solve the “description-to-
reality” problem, by providing a way of making revised descriptions 
of the process true of that process. Th ey carefully provide facilities 
for altering the underlying state, based on the user’s description of 
what that state should be (i.e., “return from this stack frame immedi-
ately”). Without this “map to reality” direction of causal connection, 
the debugging system, like an abstract model, could have no eff ect on 
the process it was examining. And fi nally, programmers who write 
debugging systems wrestle with the problem of providing a proper 
vantage point. In this case, practice has been particularly atheoreti-

cal; it is typical to arrange, 
very cautiously, for the de-
bugger to tiptoe around its 
own stack frames, in order 
to avoid control challenges, 
variable clashes and other 
unwanted interactions.

As will be evident in the 
design of 3-Lisp, all of these 
concerns can be dealt with 
in a refl ective language in 

ways that are simple, theoretically elegant, and implementation-in-
dependent. Th e procedural code in the metacircular processor serves 
as the “theory” discussed above; the causal connection is provided 
by a mechanism whereby procedures at one level in the refl ective 
tower are run in the process one level above (a clean way, essentially, 
of enabling a program to defi ne subroutines to be run in its own 
implementation). In one sense it is all straightforward; the subtlety 
of 3-Lisp has to do not so much with the power of such a mecha-
nism, which once presented is evident, but with how such power can 
be fi nitely provided—a question addressed in section 9.

Some fi nal assumptions. I assume a simple serial model of compu-
tation, illustrated in fi gure 1, in which a computational process as a 
whole is divided into an internal assemblage of program and data 
structures I will collectively call the structural fi eld, coupled with 

P
Processor

Structural Field

Figure 1 — A Serial Model of Computation
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an internal process that examines and manipulates these structures. 
In computer science this inner process (or ‘homunculus’) is typically 
called the interpreter; in order to avoid confusion with semantic no-
tions of interpretation, I will call it the processor. While models of 
refl ection for concurrent systems could undoubtedly be formulated, 
the claim I make here is only that the architecture I will describe is 
general for calculi of this serial (i.e., single processor) sort.

I will use the term ‘structure’ for elements of the structural fi eld, 
all of which are assumed to be inside the machine; the word will 
never be used for abstract mathematical or other “external” entities, 
such as numbers, functions, or radios.5 Consequently, I call meta-
structural any structure that designates another structure, reserv-
ing metasyntactic for expressions designating linguistic entities or ex-
pressions.6 Given an interest in internal self-reference, it is clear that 
both structural fi eld and processor, as well as numbers and functions 
and the like, must be part of the semantic domain. Note also that 
the property of being metastructural is to be distinguished from the 
orthogonal property of being higher-order, in which terms and argu-
ments may designate functions of any degree (2-Lisp and 3-Lisp will 
have both properties).7

5. Although this terminology may be confusing for semanticists who think 
of a “structure” as a model, I want to avoid calling internal ingredients ex-
pressions, since the latter term connotes linguistic or notational entities. 
What I am aiming for is a concept covering both (i) what we would tra-
ditionally call data structures, and (ii) the “internal representation” of the 
program, which we can indirectly use to categorize what we would in ordi-
nary English call the structure of the overall process or agent.

6. Because of the constraints of appropriate causal connection, the meta-
structural capability must be provided by primitive quotation mechanisms, 
as opposed simply to being able to model or designate syntax—something 
virtually any calculus can do, using for example Gödel numbering.

7. Most programming languages, such as Fortran and Algol 60, are neither 
higher-order nor metastructural; the �-calculus is the former but not the 
latter, whereas Lisp 1.5 is the latter but not the former (dynamic scoping is 
a contextual protocol that, coupled with the meta-structural facilities, al-
lows Lisp 1.5 partially to compensate for the fact that it is only fi rst-order. 
At least some incarnations of Scheme, on the other hand, are both higher-
order and metastructural (although Scheme’s metastructural powers are 
expressly limited). As will emerge, 3-Lisp’s combination of metastructural 
and higher-order properties are essential to its refl ective capabilities.
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 3 A Framework for Computational Semantics
Given this background, turn fi rst to questions of semantics. In the 
simplest case, semantics is taken to involve a mapping, possibly con-
textually relativized, from a syntactic to semantic domain, as shown 
in fi gure 2. Th e mapping � is typically called an interpretation func-
tion (to be distinguished, as noted above, from the standard com-
puter science notion of an “interpreter”). Interpretation functions 
are usually specifi ed inductively, with respect to the compositional 

structure of the ele-
ments of the syntac-
tic domain, which in 
turn is typically taken 
to be a set of enti-
ties of a syntactic or 

linguistic sort. Semantic domains may be of any type whatsoever, 
including domains of behaviour; in refl ective systems they will typi-
cally include the syntactic and structural domains as proper parts. 
In this paper, to minimize confusion, I will use a variety of diff erent 
meta-theoretic variables for diff erent kinds of semantic relationship; 
in the general case, I will use the variable s and its cognates (s1, s2, s’, 
etc.) to denote symbols or signs, and for any semantic value d will 
say that s signifi es d, or conversely that d is the signifi cance or inter-
pretation of s.

It is a fundamental tenet of the proposed approach to refl ection 
to recognize that, in a computational setting, there are several dif-
ferent semantic relationships—not diff erent ways of characterizing 
one and the same relationship (as operational and denotational 
semantical accounts are sometimes taken to be, for example), but 
genuinely distinct relationships. Th ese diff erent relationships make for 
a more complex semantic framework than is standard in logic and 
model theory, as do ambiguities in the use of words like ‘program.’ 
In many settings, such as in purely extensional functional program-
ming languages, such distinctions are relatively inconsequential, and 
can be harmlessly glossed or elided. But in cases of refl ection, self-
reference, and metastructural processing, these distinctions, which 
in other circumstances may seem minor, play a much more impor-
tant role.

Since the semantical theory adopted to analyse 3-Lisp will be at 

Syntactic Domain Semantic DomainS D

Figure 2 — Simple Semantic Interpretation
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least partially embedded within 3-Lisp, choice of semantical frame-
work aff ects the formal architecture and design. My approach, there-
fore, will be to start with basic and simple intuitions, and to identify 
a fi ner-grained set of distinctions than are usually employed. I will 
briefl y consider the issue of how the contemporary practice of pro-
gramming language semantics would be reconstructed in its terms, 
but the complexities involved in answering that question adequately 
would take us beyond the scope of the present paper.

Given these preliminaries, I will distinguish three things:

Th e 1. external objects and events in the world in which a com-
putational process is embedded—including both real-world 
objects such as cars and caviar, and set-theoretic abstractions 
such as numbers and functions (that is: I will adopt a kind 
of pan-Platonic idealism about mathematical entities);
Th e 1. internal elements, structures, or processes inside the 
computer, including data structures, program representa-
tions, execution sequences and so forth (these are all formal 
objects, in the sense that computation is formal symbol ma-
nipulationc); and
Notational 2. or communicational expressions, in some externally 
observable and consensually established medium of inter-
action, such as strings of characters, streams of words, or 
sequences of display images on a computer terminal.

Th e third set—of expressions—are assumed to include the constit-
uents of communication with the computational process (by human 
agents or other computational processes); the middle set are the in-
gredients of the process with which those communicating external 
agents and processes interact; and the fi rst (at least presumptively) 
are the elements of the world or “subject matter” about which that 
communication is held. In the human case, the three domains would 
correspond, respectively, to world, mind, and language.

c) Even at the time this paper was published I was critical of the idea that com-
putation could adequately be understood as formal symbol manipulation; I 
believe that the phrasing “in the sense that” was meant to signal (rather inef-
fectively) some distancing of my own view from that then-universal assump-
tion. It was not until 1986 that I explicitly argued against such a construal. See 
«ref “From Symbols to Knowledge”, and AOS.»
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It is a theoretical truism that the third domain of objects—the 
elements of communication—are semantic, in the sense of being 
meaningful, serving as vehicles of meaning, carrying information, or 
some such. In this work I will take the middle set to be semantic 

as well—i.e. will assume that inter-
nal structures are bearers of mean-
ing, information, and/or content. 
Distinguishing between the seman-
tics of communicative expressions 
and the semantics of internal struc-
tures will be one of the main features 
of the framework I adopt. It should 
be noted, however, that in spite of my 
endorsing the reality of internal struc-
tures, and assuming the reality of the 
embedding world, it is nonetheless 
true that in the cases I will consider 
(i.e., ignoring sensors and manipula-
tors), the only things that actually 
happen with computers are commu-
nicative interactions. For example, 
in a case that I might informally de-

scribe as “asking my Lisp machine what the square root of two is,” 
what in fact happens, concretely, is that I type an expression such as 
(SQRT 2.0) at the computer, and receive back some other expression, 
probably quite like 1.414, by way of response. What matters, for our 
purposes, is that the interaction is carried out entirely in terms of 
expressions; no structures, numbers, or functions are part of the in-
teractional event (in particular, it is metaphysically precluded, given 
the presumed philosophy of mathematics, for a computer to return 
the square root of two). Th e denotation or participation or relevance 
of any of more abstract objects, such as numbers, must be inferred 
from, and mediated through, the communicative act.

I will begin to analyse this complex of relationships using the ter-
minology suggested in fi gure 3. By �, very simply, I will refer to the 
relationship between external notational expressions and internal 
structures; by ‘�’ I will refer to the processes and behaviours those 

Structural Field

Figure 3 — Semantic Relationships
in a Computational Process
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structural fi eld elements engender (thus ‘�’ is inherently temporal); 
and by ‘�’ I will to the entities in the world that they designate. For 
mnemonic convenience, relations ‘�’ and ‘�’ have been named to sug-
gest philosophy and psychology, respectively, since a study of ‘�’ is a 
study of the relationship between structures and the world, whereas 
a study of ‘�’ is a study of the relationships among symbols, all of 
which are “within the head” (of person or machine).

Since computation is inherently temporal, the semantic analysis 
must deal explicitly with relationships across the passage of time. In 
fi gure 4, therefore, I have unfolded the diagram of fi gure 3 across a 
unit of time, so as to get at a full confi guration of these relationships. 
Entities nl and n2 are intended to be linguistic or communicative en-
tities, as described above;8 sl and s2 are internal structures over which 
internal processing is defi ned. Th e relationship �, which I will call 
internalisation (and its inverse, �-1, externalisation) relates these 
two kinds of object, as is appropriate given the device or process in 

question (thus 
I will say, in 
addition, that 
nl notates sl). 
For example, in 
fi rst order logic 
nl and n2 would 
be expressions, 
written with 
letters, spaces, 
‘�’ and ‘�’ signs, 
etc.; to the ex-
tent that sl and 
s2 could be said 
to exist, in log-

ic, they would be something like abstract derivation tree types of the 
corresponding fi rst-order formulae. In Lisp, as we will see, nl and n2 
would be the input and output expressions, written with letters and 
parentheses, or perhaps with boxes and arrows; sl and s2 would be 
the corresponding cons cells in the s-expression heap.

8. Th at is: the variable ‘n1’ and its cognates are used in this text is as a meta-
level variable to denote a linguistic or communication expression; etc.

Structure S1Structure S1

-1

Notation N1 Notation N2

Figure 4 — A Framework/or Computational Semantics
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In contrast, dl and d2 are elements or fragments of the embed-
ding world, and � is the relationship that internal structures bear 
to them. �, in other words, is semantics’ so-called “interpretation 
function” that makes explicit what I will call the designation of 
internal structures (not, note, the designation of linguistic expres-
sions or terms, which would be described by ⋶ º ⋶). Th e relationship 
between my mental token repre senting T. S. Eliot, for example, and 
the poet himself, would be formulated as part of ⋶, whereas the re-
lationship between the public name ‘T. S. Eliot’ and the poet would 
be expressed as ⋶(⋶(“T. S. Eliot”)) = T. S. Eliot. Similarly, ⋶ would 
relate an internal “numeral” structure (say, the numeral 3) to the cor-
responding number—if I can be permitted to use the word ‘numeral’ 
to refer to internal structures as well as to external expressions. As 
mentioned at the outset, my focus on ⋶ is evidence of the permeating 
semantical assumption that all structures have designations—or, to 
put it another way, that in the computational realm I am consider-
ing, all structures are taken to be symbols.9

In contrast to ⋶ and ⋶, the relation ⋶ always (and necessarily, since 
it does not have access to anything else) relates some internal struc-
tures to others, or to behaviours over them. To the extent that it 
would make sense to talk of a ⋶ in logic, it would be approximately 
the formally computed derivability relationship (⋶); in a natural 
deduction or resolution schemes, ⋶ would be a subset of the deriv-
ability relationship, picking out the particular inference procedures 
those regimens adopt. In a computational setting, however, ⋶ would 
be the function computed by the processor (i.e., in traditional Lisp 
it is evaluation).

9. For what I might call declarative languages, there is a natural account of the 
relationship between linguistic expressions and in-the-world designations 
that need not make crucial reference to issues of processing (to which I will 
turn in a moment). It is for such languages, in particular, that the composi-
tion ⋶ º ⋶ (call it ⋶'), would be formulated. For obvious reasons, it is ⋶' that is 
typically studied in mathematical model theory and logic, since those fi elds 
do not deal in any crucial way with the active use of the languages they study. 
In logic, for example, ⋶' would be the interpretation function of standard 
model theory. In what I will call computational languages, on the other hand, 
questions of processing (⋶) do arise for all aspects of signifi cance—and so, 
in a vaguely Wittgensteinian sense, ⋶' cannot in general be explicated inde-
pendent of ⋶.
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Th e relationships ⋶, ⋶, and ⋶ have diff erent relative importance in 
diff erent semiotic disciplines, and relationships among them have 
been given diff erent names. For example, ⋶ is usually ignored in 
logic, and there is little tendency to view the study of ⋶, called proof 
theory, as semantical, although it is always related to semantics, as in 
proving soundness and completeness.10 In addition, there are a vari-
ety of “independence” claims that have arisen in diff erent fi elds. Th at 
⋶ does not uniquely determine ⋶, for example, is the “psychology 
narrowly construed” and concomitant methodological solipsism of 
Putnam, Fodor, and others.11 Th at ⋶ is usually specifi able composi-
tionally and independently of ⋶ or ⋶ is essentially a statement of the 
autonomy thesis for language. Similarly, when ⋶ cannot be specifi ed 
independently of ⋶, computer science will say that a programming 
language “cannot be parsed except at runtime” (a property exempli-
fi ed by Teco and the fi rst versions of Smalltalk12).

A thorough analysis of these semantic relationships, however, 
and of the relationships among them, is the subject of a diff erent 
paper. For present purposes I need not take a stand on which of ⋶, 
⋶, or ⋶ has a prior claim on being “semantics,” but it will help to have 
some English terminology for some of these relations, in order not 
to have to devolve into formalism. For discussion, therefore, I will 
refer to the “⋶” of a structure as its declarative import, and to its 
“⋶” as its procedural consequence.d It is also convenient to identify 
some of the situations when two of the six entities (nl, n2, sl, s2, dl and 
d2) are identical. In particular, I will say that sl is self-referential if 

10. Soundness and completeness can be expressed as ⋶(s1,s1) ƛ [⋶(s1) # ⋶(d1)], if 
one takes ⋶ to be a relation, and ⋶ to be an inverse satisfaction relationship 
between sentences and possible worlds that satisfy them.

11. See Fodor (1980).
12. Teco (“text editor and corrector”) was a string-processing language which 

ran on the “Incompatible Time Sharing Systems” (its) at the mit Artifi cial 
Intelligence Lab in the 1970s. It is now remembered primarily as the pro-
gramming language in which the initial versions of the still-popular text 
editor emacs were written. Smalltalk, an object-centered, dynamically-
typed, “refl ective” programming language, was developed at the Xerox Palo 
Alto Research Center (parc) by Alan Kay and his colleagues, also during 
the 1970s.

d) «This was already said. Check that—but also check all the terminology used 
for these relations; there is redundancy and confusion throughout.»
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sl = dl, that ⋶ de-references sl if s2 = dl, and that ⋶ is designation-
preserving (at sl) when dl = d2 (as it always is, for example, in the 
⋶-calculus, where at least in the standard model ⋶—some combina-
tion of ⋶ and ⋶-reduction—does not alter the interpretation).

It is natural to ask what a program is, what programming language 
semantics gives an account of, and how (this is a related question) ⋶ 
and ⋶ relate in the programming language case. An adequate answer 
to this, however, introduces a maze of complexity that I will have 
to defer to future work. To appreciate some of the diffi  culties, note 
that there are two diff erent ways in which we can conceive of a pro-
gram, suggesting diff erent semantical analyses.e On the one hand, a 
program can be viewed as a linguistic object that describes or signifi es 
a computational process consisting of the data structures and activi-
ties that result from (or arise during) its execution. In this sense a 
program is primarily a referential or communicative entity—not so 
much playing a causal role within a computational process so much 
as existing outside the process and representing it. Putting aside for 
a moment the question of whom it is meant to communicate to, I 
would simply that on such a reading a program is in the domain of 
⋶, and, roughly, that ⋶ º ⋶ of such an expression would be the compu-
tation described. Th e same characterization would, of course, apply 
to a specifi cation; indeed, the only salient diff erence might be that a 
specifi cation would avoid using non-eff ective concepts in describing 
behaviour. One would expect specifi cations to be stated in a declara-
tive language (in the sense defi ned in footnote ■■), since specifi ca-
tions are not, per se, intended to be executed or run, even though 
they speak about behaviours or computations. Th us, for program 
or specifi cation b describing computational process c, we would 
have (for the relevant language) something like ⋶(⋶(b))=c. If b were 
a program, there would be an additional constraint that the program 
somehow play a causal role in engendering the computational pro-
cess c that it is taken to describe.

Th ere is an alternative conception, however, which places the 

e) «This may be the fi rst occurrence of my on-going attention to the differenc-
es between and among specifi cational, ingrediential, and communicational 
views of programs. Refer back to the 2010 perspective at the outset; and for-
ward to the places where I have the pictures, etc.»
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program inside the machine, as a causal participant in the behav-
iour that results. Th is view is closer to the one implicitly adopted 
in fi gure 1, and I believe that it is closer to the way in which a Lisp 
program must be semantically analysed if we are to understand Lisp’s 
emergent refl ective properties. In some ways this diff erent view has 
a von Neumann character, in the sense of equating program and 
data. On this view, the more appropriate equation would seem to be 
⋶(⋶(b))=c, since one would expect the processing of the program to 
yield the appropriate behaviour. One would seem to have to recon-
cile this equation with that in the previous paragraph, although it is 
not clear that this would be possible.f

Disentangling these points will require further work. What I can 
say here is that programming language semantics seems to focus on 
what, in the terminology I am using, would seem be an amalgam of 
⋶ and ⋶. For our purposes I need only note that we will have to keep 
⋶ and ⋶ strictly separate, while recognising (because of context rela-
tivity and non-local eff ects) that just because they are distinct does 
not mean they are independent. Formally, I would need to specify 
a general signifi cance function ⋶,13 which recursively specifi es ⋶ and 
⋶ together. In particular, given any structure s1, and any state of the 
processor and the rest of the fi eld (encoded, say, in an environment, 
continuation, and perhaps a store), ⋶ will specify the structure, con-
fi guration, and state that would result (i.e., it will specify the use of 
s1), and also the signifying relationship that s1 bears to the world. For 
example, given a Lisp structure of the form (+ 1 (PROG (SETQ A 2) A)), ⋶ 
would specify that the whole structure designated the number three, 
that it would “return” (i.e., that its procedural consequence would 
be) the numeral 3, and that the machine would be left in a state in 
which the binding of the variable A was changed to the (structural) 

13. Th is is what was done in «ref tr».
f) «I believe this last sentence is either confused or wrong. Think about it and fi x 

as appropriate.»

g) Computer science talks about a variable being “bound to” something—
namely, to its value—though, as evident in the semantical reconstruction be-
ing carried out here, that usually means to a co-referential structure. Strictly 
speaking, that is, a programming language variable would be bound to a 
numeral, not to a number—and should be so described, in contexts in which 
the differences between numerals and numbers are signifi cant. In mathemat-
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numeral 2.g

Before leaving semantics completely, it is instructive to apply these 
various distinctions to traditional Lisp. I said above that all interac-
tion with computational processes is mediated by communication; 
this can be stated in the present terminology by noting that ⋶ and 
⋶-1 (internalization and externalization) are a part of any interaction. 
Th us Lisp’s “READ-EVAL-PRINT” loop is mirrored in this analysis as an 
iterated version of ⋶-1 º ⋶ º ⋶ (i.e., if n1 is an expression that you type as 
input to a Lisp system, returning n2 as output, then n2 = ⋶-1(⋶(⋶(n1))). 
Th e Lisp structural fi eld, as it happens, has an extremely simple 
compositional structure, based on a binary directed graph of atomic 
elements called cons-cells, extended with atoms, numerals, and so 
forth. Th e linguistic or communicative expressions that we use to 
represent Lisp programs—the formal language objects that we edit 
with our editors and print in books and on terminal screens—is a 
separate lexical (or sometimes graphical) entity with its own syntax 
(parentheses and identifi ers in the lexical case; boxes and arrows in 
the graphical).

In Lisp there is a relatively close correspondence between ex-
pressions and structures; it is one-to-one in the graphical case, but 
the standard lexical notation is both ambiguous (because of shared 
tails) and incomplete (because of its inability to represent cyclical 
structures). Th e correspondence need not have been as close as it 
is; the process of converting from external syntax or notation to in-
ternal structure could involve arbitrary amounts of computation, as 
evidenced by read macros and other syntactic or notational devices. 
But the important point is that it is structural fi eld elements, not no-
tations, over which most Lisp operations are defi ned. If you type 
“(RPLACA '(A . B) 'C)”, for example, the processor will (as expected) 

ics and logic, variables are likely, if bound to anything, to be bound to num-
bers—i.e., to what is here being called declarative import. Moreover, it is also 
more common in logic and mathematics to describe a variable as “bound by” 
something—namely, bound by quantifi ers, scoping constructs, etc. This is just 
one small instance of the general phenomenon of computer science’s using, 
as technical terminology, vocabulary and phrasings derived from logic, but in 
its own distinct ways. Sometimes, as here, the differences are subtle, and not 
usually distracting; sometimes, as with the word ‘semantics,’ they are major, 
and cause of considerable confusion. See AOS.
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fi rst create and then change the CAR (fi rst element) of a fi eld structure; 
it will not back up your terminal and erase the eleventh character of 
the expression that you typed as input (if that were even physically 
possible). Similarly, Lisp atoms are fi eld elements, not to be con-
fused with their lexical representations (sometimes called ‘P-names’ 
or “print-names”). Again, quoted forms such as (QUOTE ABC) designate 
structural fi eld elements, not input strings. Th e form (QUOTE ___), in 
other words, is a structural quotation operator; notational quotation 
is diff erent, usually notated with string quotes (as in “ABC”).14

 4 Evaluation Considered Harmfulh

Th e claim that all three relationships (⋶, ⋶, and ⋶) fi gure crucially in 
an account of Lisp is not a formal one. It makes an empirical claim 
on the minds of programmers, and cannot be settled by pointing 
to any current theories or implementations. Arguments in its be-
half would point to the fact that Lisp’s numerals are universally 
taken to designate numbers, and that the atoms T and NIL (at least 
in predicative contexts) are similarly understood to stand for truth 
and falsity—no one could learn Lisp without learning these facts, 
and the behaviour of Lisp systems is only intelligible on such an 

14. Th e string “(QUOTE ABC)” notates a structure that designates another struc-
ture that in turn could be notated with the string “ABC”. Th e string “ “ABC“ ”, 
on the other hand, notates a structure that designates the string “ABC” di-
rectly.

h) This section title is a play on Edsger W. Dijkstra’s legendary “GO TO Statement 
Considered Harmful” (Communications of the ACM, Vol. 11, No. 3, March 
1968, pp. 147–48). No computer scientist in the 1980s would have failed 
to recognize the illusion; the Communications of the ACM (Association for 
Computing Machinery) was the première professional computer science jour-
nal at the time, and Dijkstra’s letter was widely taken to have inaugurated 
serious theoretical analysis of programming. Cf. this note from the History of 
Computing Project:

“In 1968 Edsger Dijkstra laid the foundation stone in the march towards 
creating structure in the domain of programming by writing, not a schol-
arly paper on the subject, but instead a letter to the editor entitled “GO TO 
Statement Considered Harmful”. (Comm. ACM, August 1968) The move-
ment to develop reliable software was underway.”

See http://www.thocp.net/biographies/dijkstra_edsger.htm

i) «Put in a pointer to (and discussion of) the “normatively governed effective 
mechanism” construal of logic and other intentional systems in other papers.»
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assumption.i In what follows I will therefore state, without qualifi ca-
tion, that ‘3’ (i.e., the structural numeral notated by the string char-
acter “3”) designates three; that T designates truth, that (EQ 'A 'B) 

designates falsity, etc. In a similar spirit, I will 
claim that the structure (CAR '(A . B)) desig-
nates the atom A; this is manifested by the fact 
that people, in describing Lisp, use expres-
sions such as “If the CAR of the list is LAMBDA, 
then it is a procedure,” where the ingredient 
term “the CAR of the list” is used as an English 
referring expression—specifi cally as a singular 
term—not as a quoted fragment of Lisp (and 
English, or natural language generally, is by 
defi nition the locus of what designation is). 
(QUOTE A), or 'A, is another way of naming or 
designating the atom a; that is just what quo-
tation is. By the same token, I will take such 
atoms as CAR and + to name or designate the 
obvious corresponding functions.

What, then, is the relationship between the 
declarative import (⋶) of Lisp structures and 
their procedural consequence (⋶)? Inspection 

of the superfi cially rather bewildering data given in fi gure 5 shows 
that Lisp obeys the following constraint, where S is the domain of 
structural fi eld elements (more must be said about ⋶ in those cases 
where ⋶(⋶(s)) = ⋶(s), since the identity function would satisfy this 
equation):

  ⋶s ⋶ S if ⋶(s) ⋶ S then ⋶(s) = ⋶(s) [1]
                          else ⋶(⋶(s)) = ⋶(s)

All Lisps, including Scheme,15 in other words, de-reference any struc-
ture whose designation is another structure, but will return a co-
designating structure for any whose designation is external to the 
machine. Th is regularity, which generates the variety of cases illus-
trated in fi gure 5, is depicted in fi gure 6. Whereas evaluation is often 

15. Steele and Sussman (1978a).

(EQ 'A 'B) NIL
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truth!

3(+ 1 2)

three

Figure 5 — Lisp Evaluation vs.
Designation: Some Examples
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thought to correspond to 
the semantic interpretation 
function ⋶, in other words, 
and therefore to have type 
expressions  values, evalua-
tion in Lisp is often a desig-
nation-preserving operation. 
In fact, it is a metaphysical 
fact that no computer can 
evaluate a structure such 
as (+ 2 3), if that means “re-
turning what is designated,” 
at least on the Platonist 
understanding of number I 
am working with, any more 
than it can evaluate the 
name Hesperus, or than it is 

likely to be able to evaluate the name peanut butter.
I take it as self-evident that obeying equation [1] is anomalous. 

It implies, among other things, that even if in a case in which one 
knows what y is, and knows that x evaluates to y, one still does not 
know what x designates. It also licenses such semantic anomalies as 
(+ 1 '2), which—contrary, 
I would argue, both to 
common and to theoreti-
cal sense—will evaluate 
to (the structure!) 3 in all 
extant Lisps. Informally, I 
will say that Lisp’s evalua-
tor crosses semantical levels, 
and therefore obscures the 
diff erence between sim-
plifi cation and designation. Given that processors cannot always 
de-reference (since by assumption the co-domain is limited to the 
structural fi eld), the only semantically consistent non-level-crossing 
behaviour they can exhibit in general is to preserve designation. It 
seems, therefore, that they should always simplify, and therefore 
obey the following constraint (diagrammed in fi gure 7):

Internal Structures

… edge of the machine

External World

Figure 6 — Lisp’s “De-reference
if You Can” Evaluation Protocol

S1 S2

D

Normal Form

Figure 7 — A Normalisation Protocol
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⋶s ⋶ S ⋶(⋶(s)) = ⋶(s) ⋶ normal-form(⋶(s)) [2]

Th e content of this equation clearly depends entirely on the content 
of the predicate “normal-form” (if “normal-form” were lx.true, then 
⋶ could be the identity function). In the ⋶-calculus, the notion of 
normal-formedness is defi ned in terms of the processing protocols 
(⋶- and ⋶-reduction), but I cannot use any such defi nition here, on 
threat of circularity. Instead, I will say that a structure is in normal 
form if and only if it satisfi es the following three independent condi-
tions:

It is 1. context-independent, in the sense of having the same 
declarative (⋶) and procedural (⋶) import independent of 
the context of use;

It is 2. side-effect-free, implying that the processing of the 
structure will have no eff ect on the structural fi eld, proces-
sor state, or external world; and

It is 3. stable, meaning that it must simplify to itself in all con-
texts, so that ⋶ will be idempotent.

We would then have to prove, given a language specifi cation, that 
equation [2] is satisfi ed (as it is in the case of 2-Lisp and 3-Lisp)

Two notes. First, I 
will not use the terms 
‘evaluate’ or ‘value’ for 
expressions or struc-
tures, referring instead 
to normalisation for 
⋶, and designation for 
⋶. I will sometimes call 
the result of normalis-
ing a structure its re-
sult or what it returns. 
Th ere is also a prob-
lem with the terms ‘ap-
ply’ and ‘application.’ In 

standard Lisps, APPLY is (the name of ) a function from structures 
and arguments onto values, but like ‘evaluate’, its use is rife with use/

FD function
designator AD argument

designator VD value
designator

F function A argument V value

Application

Reduction

Figure 8 —Application vs. Reduction
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mention confusions. As illustrated in fi gure 8, I will use ‘apply’ for 
mathematical function application—i.e., to refer to a relationship 
between a function, some arguments, and the value of the func-
tion applied to those arguments—and the term ‘reduce’ to relate 
the three structures that designate functions, arguments, and values, 
respectively. Note that this terminological practice retains use of the 
term ‘value’ (as, for example, in the previous sentence), but only to 
name that entity onto which a mathematical function maps its argu-
ments.

Second, the idea of a normalising processor depends on the idea 
that symbolic structures have a semantic signifi cance prior to, and 
independent of, the way in which they are treated by the processor.j 
Without this assumption we could not even ask about the semantic 
character of the Lisp (or any other) processor, let alone suggest a 
cleaner version. Without such an assumption, more generally, one 
cannot say that a given processor is correct, or coherent, or inco-
herent; it would merely be what it is. Given one account of what 
it did (such as an implementation), one could compare that to an-
other account (such as a specifi cation). One could also prove that 
it had certain properties, such as that it always terminated, or that 
it used resources in certain ways. One could even prove properties 
of programs written in the language it runs (from a specifi cation of 
the algol processor, for example, one might prove that a particular 
program sorted its input). However, none of these questions deal 
with the question I am taking to be more fundamental: about the se-
mantical nature of the processor itself. I am not satisfi ed to say that 
the semantics of (CAR '(A . B)) is A because that is how the processor is 
defi ned; rather, I want to say that the processor was defi ned that way 
because A is what (CAR I (A . B)) designates. Semantics, in other words, 
should be a tool with which to judge systems, not merely a method 
of describing them.

 5 2·Lisp: A Semantically Rationalised Dialect
Having torn apart the notion of evaluation into two constituent no-
tions (designation and simplifi cation), we need to start at the be-

j) «Talk about this in relation to Amala, Mike Dixon’s thesis, errors in the defi ni-
tion of factorial, etc.—and to subsequent semantical inquiry (also to logic).»
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ginning, and build Lisp over again. What I am calling 2-Lisp is a 
proposed result. Some summary comments can be made.

First, I have reconstructed what I call the category structure 
of Lisp, requiring that the categories into which Lisp structures are 
sorted, for various purposes, “line up” (giving the dialect a property 
I will call category alignment). More specifi cally, Lisp expressions 
are sorted into categories by notation, structure (atoms, cons pairs, 
numerals), procedural treatment (the “dispatch” inside the traditional 
EVAL), and declarative semantics (the type of object designated). As 
illustrated in fi gure 9, these categories are traditionally not aligned; 
lists, a derived structure type, include some of the pairs and one atom 
(NIL); the procedural regimen (⋶) treats some pairs (those with LAMB-
DA in the CAR) in one way, most atoms (except T and NIL) in another, 
and so forth. In 2-Lisp, in contrast, I have required the notational, 
structural, procedural, and semantic categories to correspond, as 
much as practicable, one-to-one, as illustrated in fi gure 10 (this is 
a bit of an oversimplifi cation, since atoms and pairs—representing 

Lexical Structural Procedural Declarative

Numerals
Labels

Dotted pairs

Numerals
Atoms
Pairs
Lists

T or NIL
Numerals

Atoms
(Lambda…)
(quote …)

Lists
Applications

Truth values
Numbers

Functions
S-expressions

Sequences“Lists”

✘

Figure 9 — Th e Category Structure of Lisp 1.5
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$T or $F

{closure…}
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Boolens
Closures

Rails Rails
Handles
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Normal-form

Truth values
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Functions
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Figure 10 — Th e Category Structure of 2-Lisp and 3-Lisp
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arbitrary variables and arbitrary function application structures or 
redexes—can designate entities of any semantic type).

2-Lisp is summarized in the sidebar (“An Overview of 2-Lisp,” 
starting below); some additional comments can be made here. Like 
most mathematical and logical languages, 2-Lisp is almost entire-
ly “declaratively extensional”. Th us (+ 1 2), an abbreviation for 
(+ . [1 2]), designates the value of the application of the function 
designated by the atom + to the sequence of numbers designated by 
the rail [1 2]. In other words, (+ 1 2) designates the number three, 
of which the numeral 3 is the normal-form designator; (+ 1 2) there-
fore normalises to the numeral 3, as expected. 2-Lisp is also usually 
call-by-value (what we might call “procedurally extensional”), in 
the sense that procedures by and large normalise their arguments. 
Th us the structure (+ 1 (BLOCK (PRINT “HELLO”) 2) will normalise to 3, 
printing out “HELLO” in the process.

Many properties of Lisp that must normally be posited in an ad 

An Overview of 2-Lisp
Begin with objects. Ignoring input/output categories such as characters, strings, 
and streams, there are seven 2-Lisp structure types, as illustrated in Table 1. 
Th e numerals (notated as usual) and the two Boolean constants (notated ‘$T’ 
and ‘$F’) are unique (i.e., canonical), atomic, normal-form designators of num-
bers and truth-values, respectively. Rails (notated ‘[Al A2 … Ak]’) designate se-
quences; they resemble standard Lisp lists, but are distinguished from pairs 
in order to avoid category confusion, and are given their own name in order 
to avoid confusion with sequences, vectors, and tuples, all of which are normally 
taken to be Platonic ideals.

All atoms are used as variables (i.e., as context-dependent names); as a 
consequence, no atom is normal-form, and no atom will ever be returned as 
the result of processing a structure (although a designator of an atom may 
be). Pairs (sometimes also called redexes—notated ‘(A1 . A2)’—designate the 
value of the function designated by their CAR (i.e., A1) applied to the arguments 
designated by their CDR (A2). By taking notational form ‘(Al A2 … Ak)’ to abbre-
viate ‘(Al . [A2 … Ak])’ instead of Lisp’s traditional ‘(Al . (A2 . … (Ak . NIL)…)))’, 
we preserve the standard look of Lisp programs, without sacrifi cing category 
alignment. (Note that 2-Lisp has no distinguished atom NIL, and ‘()’ is a nota-
tional error—corresponding to no structural fi eld element.) Closures (notated 
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hoc way fall out directly from this analysis. For example, it normally 
requires explicit statement that some atoms, such as T and NIL and 
all numerals, are self-evaluating; in 2-Lisp, the fact that the Boolean 
constants are self-normalising follows directly from the fact that 
they are normal-form designators. Similarly, closures are a natural 
category, and distinguishable from the functions they designate 
(there is ambiguity, in Scheme, as to whether the value of + is a func-
tion or a closure). Finally, because of category alignment, if X desig-
nates a sequence of the fi rst three numbers (i.e., it is bound to the 
rail [1 2 3]), then (+ . X) will designate the number fi ve and norma-
lise to the numeral 5; no metatheoretic machinery is needed for this 
“un-currying” operation (in regular Lisps one must use (APPLY '+ X); 
in Scheme, (APPLY + X)).

Numerous properties of 2-Lisp will be ignored in this paper. Th e 
dialect is defi ned in Smith (1982) to include side-eff ects, intensional 
procedures (procedures which do not normalise their arguments), 

‘{CLOSURE: … }’) are normal-form function designators, but they are not ca-
nonical, since it is not in general decidable whether two structures designate 
the same function. Finally, handles are unique normal-form designators of all 
structures; they are notated with a leading single quote mark (thus 'A notates 
the handle of the atom notated A, and '(A . B) notates the handle of the pair 
notated (A . B), etc. Because designation and simplifi cation are orthogonal, 
quotation is a structural primitive, not a special procedure (although QUOTE is 
easy to defi ne as a user function in 3-Lisp).

Turn next to the functions (and use ‘⇒’ to mean ‘normalises to’). Th ere are 
the usual arithmetic primitives (+, -, *, and /). Identity (signifi ed with ‘=’) is 
computable over the full semantic domain except functions; thus (= 3 (+ 1 2)) 
⇒ $T, but (= + (LAMBDA [X] (+ X X))) will generate a processing error, even though 
it designates truth. Th e traditionally rather atheoretical diff erence between EQ 
and EQUAL turns out to be an expected diff erence in granularity between the 
identity of mathematical sequences and their syntactic designators; thus:†

   (=  [1 2 3J  [1 2 3])  ⇒ $T
   (= '[1 2 3] '[1 2 3]) ⇒ $F
   (=  [1 2 3J '[1 2 3]) ⇒ $F

1ST and REST are the CAR/CDR analogues on both sequences and rails (i.e., 

An Overview of 2-Lisp (cont’d)
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and a variety of other sometimes-shunned properties, in part to 
show that this semantic reconstruction being argued for here is 
compatible with the full gamut of features found in real program-
ming languages. Recursion is defi ned with respect to an analysis 
using explicit fi xed-point operators. 2-Lisp is an eminently usable 
dialect (it subsumes Scheme but is more powerful, in part because 
of the metastructural access to closures), although it is ruthlessly 
semantically strict.

 6 Self-Reference in 2·Lisp
Turn now to matters of self-reference.

Traditional Lisps provide names (EVAL and APPLY) for the primitive 
processor procedures; the 2-Lisp analogues are NORMALISE and REDUCE. 
Ignoring for a moment context arguments such as environments. and 
continuations, (NORMALISE '(+ 2 3)) designates the normal-form struc-
ture to which (+ 2 3) normalises, and therefore returns the handle 

have overloaded defi nitions); thus (1ST [10 20 30]) ⇒ 10; 
and (REST [10 20 30]) ⇒ [20 30]. CAR and CDR are defi ned over 
pairs; thus (CAR '(A . B)) ⇒ 'A (because it designates A), and 
(CDR '(+ 1 2)) ⇒ '[1 2]. Th e pair constructor is called PCONS 
(thus (PCONS 'A 'B) ⇒ '(A . B); the corresponding constructors 
for atoms, rails, and closures are ACONS, RCONS, and CCONS, respec-
tively. Th ere are eleven primitive characteristic predicates—
seven for the internal structural types (ATOM, PAIR, RAIL, BOOLEAN, 
NUMERAL, CLOSURE, and HANDLE) and four for the external types 
(NUMBER, TRUTH-VALUE, SEQUENCE, and FUNCTION). Th us:

Numerals Booleans Handles Closures Rails Atoms Pairs

Yes
Yes

Some

CCONS

{closure …}'structure$T or $F [s1 … s2] (s1 . s2)

RCONS ACONS PCONS

No
No

Numbers

Digits Alphanumerics

Truth values Structures Functions Sequences (  of bndg) (value of app)Designation

Type

Normal

Constructor

Canonical

Notation

N/A

N/A

Table 1 — Th e 2-Lisp (and 3-Lisp) categories
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'5. Similarly:
  (NORMALISE '(CAR '(A. B)))  ⇒ ''A
  (NORMALISE (PCONS '= '[2 3J)) ⇒ '$F
  (REDUCE '1ST '[10 20 30J)   ⇒ '10

More generally—and entirely intuitively—the basic idea is that 
⋶(NORMALISE) = ⋶, to be contrasted with ⋶( ), which is approximately ⋶, 
except that because  is a partial function we have ⋶(  º NORMALISE) = ⋶. 
Given these equations, the behaviour illustrated in the foregoing ex-
amples is forced by general semantical considerations.

In any computational formalism able to model its own syntax and 
structures,16 it is possible to construct what are commonly known 

16. Virtually any language has the requisite power to do this kind of model-
ling. In a language with metastructural abilities, the metacircular proces-
sor can represent programs for the mcp as themselves—this is always done 

   (NUMBER 3)  ⇒ $T
   (NUMERAL '3) ⇒ $T
   (NUMBER '3)  ⇒ $F
   (FUNCTION +) ⇒ $T
   (FUNCTION '+) ⇒ $F

Procedurally intensional IF and COND are defi ned as usual; BLOCK (as in Scheme) 
is like standard Lisp’s PROGN. BODY, PATTERN, and ENVIRONMENT are the three selec-
tor functions on closures. Finally, functions are usually “defi ned” (i.e., conve-
niently designated in a contextually relative way) with structures of the form 
(LAMBDA SIMPLE ARGS BODY) (the term SIMPLE will be explained presently); thus 
(LAMBDA SIMPLE [X] (+ X X)) normalises to a closure that designates a function 
that doubles numbers:

   ((LAMBDA SIMPLE [X] (+ X X)) 4) ⇒ 8

2-Lisp is higher-order, and therefore lexically scoped, like the ⋶-calculus and 
Scheme. As mentioned earlier, however, and illustrated with the handles in 
the previous paragraph, it is also metastructural, providing an explicit abil-
ity to name internal structures. Two primitive procedures, called UP and DOWN 
(usually abbreviated ‘ ’ and ‘ ’, respectively) help to mediate this metastruc-

An Overview of 2-Lisp (cont’d)
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as metacircular interpreters, which I will call metacircular proces-
sors (or mcps)—“meta” because they operate on (and therefore 
terms within them designate) other formal structures, and “circu-
lar” because they do not constitute a defi nition of the processor in a 
prior, independently-understood language—but rather “defi ne” the 
processor only in terms of itself. Th is circularity takes two forms. 
First, on the procedural side, mcps must be run by the processor in 
order to yield any sort of behaviour (strictly speaking, that is, mcps 

in Lisp mcps—but we need not defi ne that to be an essential property. 
Th e term ‘metacircular processor’ is by no means strictly defi ned; there 
are various constraints that one might or might not put on it. My gen-
eral approach has been to view as metacircular any non-causally connected 
model of a calculus within itself; thus the 3-Lisp refl ective processor is not 
meta-circular, by my lights, because it does have the requisite causal con-
nections, and is therefore an essential (not additional) part of the 3-Lisp 
architecture.

tural hierarchy (there is otherwise no way to add or remove quotes—'2 will 
normalise to '2 forever, never to 2. Specifi cally, STRUC designates the normal-
form designator of the designation of STRUC; i.e., STRUC designates what STRUC 
normalises to (therefore (+ 2 3) ⇒ '5). Th us (note that ‘ ’ is call-by-value but 
not declaratively extensional):

  (LAMBDA SIMPLE [X] X) — designates a function
 '(LAMBDA SIMPLE [X] X) — designates a pair or redex
 (LAMBDA SIMPLE [X] X) — designates a closure

Similarly, STRUC designates the designation of the designation of STRUC, pro-
viding that the designation of STRUC is in normal-form (therefore '2 ⇒ 2). 

STRUC is always equivalent to STRUC, in terms of both designation and result; 
so is STRUC when it is defi ned. Th us if DOUBLE is bound to (the result of 
normalising) (LAMBDA [X] (+ X X)), then (BODY DOUBLE) generates an error, since 
BODY is extensional and DOUBLE designates a function, but (BODY DOUBLE) will 
designate the pair (+ X X).

†In the last case one structure designates a sequence and one a rail.
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are programs, not processors). Second, the behaviour they would 
thereby engender—which is to say, the behaviour they must also 
therefore designate—can be discerned from them only if one knows 
beforehand what that behaviour is (i.e., what the processor does).17 
Nonetheless, such processors are pedagogically illuminating, and 
play a critical role in the development of procedural refl ection.

Th e role of mcps is illustrated in fi gure 11, showing how, if we 
ever replace p in fi gure 1 with a process that results from p process-
ing the metacircular processor mcp, it would still correctly engender 

the behaviour of any overall 
program. Taking processes 
to be functions from struc-
tures onto behaviour, there-
fore (whatever behaviour 
is—functions from initial 
to fi nal states, say), and call-
ing the primitive processor 
p, we should be able to prove 
that p(mcp) ≈ p, where by 
‘≈’ we mean behaviourally 
equivalent in some appropri-
ate sense. Th e equivalence, 

of course, is in a certain sense global, or at the level of types; by and 
large the primitive processor and the processor resulting from the 
explicit running of the mcp cannot be arbitrarily mixed. If a vari-
able is bound by the underlying processor p, it will not be able to 
be looked up by the metacircular code, for example. Similarly, if the 
metacircular processor encounters a control-structure primitive, 
such as a THROW or a QUIT, it will not cause the metacircular proces-
sor itself to exit prematurely, or to terminate. Rather, the point is 
that if an entire computation is run by the process that results from 
the explicit processing of the mcp by p, the results will be the same 
(modulo time) as if that entire computation had been carried out 
by p directly. mcps, to put this in language to be used in providing 

17. Standard fi xed point techniques are of no help in discharging these kinds 
of circularity, since what is at issue here is essentially self-mention, whereas 
although that terminology is commonly applied to recursive defi nitions, it 
would be more accurate to characterise recursion in terms of self-use.

P

S

P

S

MCP
…

Figure 11 — Meta-Circular Processors
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genuine refl ection, are not causally connected with the systems they 
model.

Th e reason that we cannot mix code for the underlying proces-
sor and code for the mcp and the reason that we ignored context 
arguments in the defi nitions above both have to do with the state of 
the processor p. In very simple systems (unordered rewrite rule sys-
tems, for example, and hardware architectures that put even the pro-
gram counter into a memory location), the processor has no internal 
state, in the sense that it is in an identical confi guration at every 
“click point” during the running of a program (i.e., all information 
is recorded explicitly in the structural fi eld). But in more complex 
circumstances, there is always a certain amount of state to the pro-
cessor that aff ects its behaviour with respect to any particular em-
bedded fragment of code. In writing an mcp one must demonstrate, 
more or less explicitly, how the processor state aff ects the process-
ing of object-level structures. By “more or less explicitly” I mean that 
the designer of the mcp has options: the state can be represented in 
explicit structures that are passed around as arguments within the 
processor, or it can be “absorbed” into the state of the processor run-
ning the mcp.18

Th e state of a processor for a recursively embedded functional 
language, of which Lisp is an example, is typically represented in an 
environment and a continuation, both in mcps and in the standard 
metatheoretic accounts. (Note that these are notions that arise in 
the theory of Lisp, not in Lisp itself; except in self-referential or self-
modelling dialects, user programs do not traffi  c in such entitles.) 
Most mcps make the environment explicit. Th e control part of the 
state, however, encoded in a continuation, must also be made explic-
it in order to explain non-standard control operations, but in many 
mcps (such as that in McCarthy (1965) and in Steele and Sussman’s 

18. I say that a property or feature of an object language is absorbed in a 
metalanguage or theory just in case the metatheory uses the very same 
property to explain or describe the property of the object language. Th us 
conjunction is absorbed in standard model theories of fi rst-order logics, 
because the semantics of p ⋶ q is explained simply by conjoining the expla-
nation of p and q—specifi cally, in such a formula as “ ‘p ⋶ q’ is true just in 
case ‘p’ is true and ‘q’ is true”.

«Add a note pointing to “Th e Correspondence Continuum”»
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mcp for Scheme19) control context is absorbed.
Two versions of the 2-Lisp metacircular processor, one absorbing 

and one making explicit the continuation structure, are presented in 
sidebars on the following pages. Note that in both cases the underly-
ing agency or anima is not reifi ed; the “activity itself ” remains entire-
ly absorbed by the processor of the mcp. Nothing I have yet said (or 
in this paper will say) provides us with either name or mechanism 
to designate process itself (as opposed to structures and functional 

19. See for example Sussman and Steele (1978b).

Non-Continuation-Passing 2-LISP Metacircular Processor
(defi ne READ-NORMALISE-PRINT
 (lambda simple [env stream]
  (block (prompt&rep1y (normalise (prompt&read stream) env)
         stream)
     (read-normalise-print env stream))))

(defi ne NORMALISE
 (lambda simple [struc env]
  (cond [(normal struc) struc]
    [(atom struc) (binding struc env)]
    [(rail struc) (normalise-rail struc env)]
    [(pair struc) (reduce (car struc) (cdr struc) env)])))

(defi ne REDUCE
 (lambda simple [proc args env]
  (let [[proc! (normalise proc env)]]
   (selectq (procedure-type proc!)
    [simple (let [[args! (normalise args env)]]
        (if (primitive proc!)
          (reduce-primitive-simple proc! args!)
          (expand-closure proc! args!)))]
    [intensional (if (primitive proc!)
          (reduce-primitive-intensional proc! �args env)
          (expand-closure proc! �args))]
    [macro (normalise �(expand-closure proc! �args) env))]))))

(defi ne NORMALISE-RAIL
 (lambda simple [rail env]
  (if (empty rail)
    (rcons)
    (prep (normalise (1st rail) env)
      (normalise-rail (rest rail) env)))))

(defi ne EXPAND-CLOSURE
 (lambda simple [proc! args!]
  (normalise (body proc!)
       (bind (pattern proc!) args! (environment proc!)))))
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behaviour over structure), and no method of obtaining causal ac-
cess to an independent locus of active agency has been (or will be) 
provided.20

20. Th e reason being that, as computer scientists, we as yet have no real 
theory of what processes are.

«Add a comment on this lack—and foreshadow work to come?»

Continuation-Passing 2-LISP Metacircular Processor
(defi ne READ-NORMALISE-PRINT
 (lambda simple [env stream]
  (normalise (prompt&read stream) env
   (lambda simple [result]
    (block (prompt&reply result stream)
     (read-normalise-print env stream))))))

(defi ne NORMALISE
 (lambda simple [struc env cant]
  (cond [(normal struc) (cont struc)]
   [(atom struc) (cont (binding struc env»]
   [(rail struc) (normalise-rail struc env cant)]
   [(pair struc) (reduce (car struc) (cdr struc) env cant)])))

(defi ne REDUCE
 (lambda simple [proc args env cant]
  (normalise proc env
   (lambda simple [proc!]
    (selectq (procedure-type proc!)
     [simple (normalise args env
         (lambda simple [args!]
          (if (primitive proc!)
            (reduce-primitive-simple proc! args! cont)
            (expand-closure proc! args! cont))]
     [intensional (if (primitive proc!)
           (reduce-primitive-int proc! �args env cont)
           (expand-closure proc! �args cant))]
     [macro (expand-closure proc! �args
      (lambda simple [result]
       (normalise �result env cant)))])))))

(defi ne NORMALISE-RAIL
 (lambda simple [rail env cant]
  (if (empty rail)
    (cant (rcons))
    (normalise (1st rail) env
     (lambda simple [fi rst!]
      (normalise-rail (rest rail) env
       (lambda simple [rest!]
        (cant (prep fi rst! rest!)))))))))

(defi ne EXPAND-CLOSURE
 (lambda simple [proc! args! cant]
  (normalise (body proc!)
      (bind (pattern proc!) args! (environment proc!))
      cant)))
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 7 Procedural Refl ection and 3·Lisp
Given the metacircular processors defi ned above, 3-Lisp can be non-
eff ectively defi ned in a series of steps.

First, imagine a dialect of 2-Lisp, called 2-Lisp1, where user pro-
grams are not run directly by the primitive processor, but by that 
processor running a copy of an mcp. Next, imagine 2-Lisp2, in which 
the mcp in turn is not run by the primitive processor, but instead by 
the primitive processor running another copy of the mcp. And so 
on and so forth. 3-Lisp is essentially 2-Lisp∞, except that the mcp is 
changed in a critical way in order to provide the proper connection 
between levels. 3-Lisp, in other words, is what I will call a refl ective 

tower, defi ned as equivalent to an infi nite 
number of copies of an mcp-like program, 
run at the “top” by an (infi nitely fl eet) pro-
cessor. Th e claim that 3-Lisp is well-found-
ed is the claim that the limit exists—that 
is, that both sides of the following equation 
are sound:

Lim3-Lisp ≈ n ∞ 2-Lisp∞

I will explain the revised mcp presently, but 
fi rst some general properties of this tower 
architecture. A rough idea of the levels of 
processing is given in fi gure 12: at each level 
the processor code is processed by an ac-
tive process that interacts with it (locally 

and serially, as usual), but each processor is in turn composed of a 
structural fi eld fragment in turn processed by a refl ective processor 
on top of it. What I will show is that the implied infi nite regress is 
not problematic, and that the architecture can be effi  ciently realised, 
since only a fi nite amount of information is encoded in all but a 
fi nite number of the bottom levels.

Th ere are two ways to think about refl ection. On the one hand, on 
what I will call the “shifting view,” one can think of there being a 
primitive and noticeable refl ective act, which causes the processor, 
in the sense of the basic locus of animating activity, to shift levels 
rather markedly either up or down, in what logicians and philoso-

Level 1 code

Level 2 code

Level 3

L 4

Figure 12 — Th e 3-Lisp Refl ective Tower
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phers might think of as semantic ascent and semantic descent (this is 
the explanation that best coheres with some of our pre-theoretic 
intuitions about refl ective thinking, in the sense of contemplation). 
On the other hand, in what we might instead call the “tower view,” 
which accords better with the explanation given in the previous 
paragraph, the model is instead of an infi nite number of levels of 
refl ective processors, each implementing the one below, without any 
shifting going on.21 On this tower view, it is not coherent either to ask 
about what level the tower is running at, or to ask how many refl ective 
levels are running: on the tower view they are all running at once. Th e 
same situation obtains when you use an editor implemented in apl. 
It is not as if the editor and the apl interpreter are both running 
together, either side-by-side or independently; rather, the one (the 
apl interpreter), being “interior” to the other, supplies the anima or 
agency of the outer one (the editor). To put this another way, when 
you implement one process in another process, you might want to 
say that you have two diff erent processes, but you do not thereby 
have concurrency; the relation is is more like one of part and whole. 
It is just this sense in which the higher levels in our refl ective hier-
archy are always running: each of them is in some sense within the 
processor at the level below, so that it can thereby engender it.

I will not take a principled view on which account—a single lo-
cus of agency stepping between levels, or an infi nite hierarchy of 
simultaneous processors—is correct, since they turn out to be be-
haviourally equivalent. Indeed, one way to characterise the model of 
refl ection being proposed is as the following suggestion:

 The semantically cleanest and most [T]
 elegant way to understand a shifting refl ective 
 process is to model it as a tower.

(One pragmatic rule of thumb: the simultaneous infi nite tower of 
levels is often the better way to understand processes, whereas the 
shifting-level viewpoint is sometimes the better way to understand 
programs.)

21. Curiously, there are also intuitions about contemplative thinking, where 
one is both detached and yet directly present at the same time—which fi t 
more closely with this view.
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If we view 3-Lisp on the tower model, as an infi nite refl ective tower 
based on 2-Lisp, the code at each level can be understood as like the 
continuation-passing 2-Lisp mcp presented earlier,22 but extended 
in an essential way: to provide a mechanism whereby the user’s pro-
gram can gain access to fully-articulated descriptions of that pro-
gram’s operations and structures. Th us extended, and appropriately 
located in a refl ective tower, I will call this code the 3-Lisp refl ective 
processor procedure (RPP). Programs gain refl ective access to the 
articulated descriptions of the program’s operations and structures 
by using what I will call refl ective procedures—procedures that, 
when invoked, are: (i) run not at the level at which the invocation 
occurred, but one level higher, at the level of the refl ective processor 
running the program; and (ii) given as arguments those structures 
being passed around in the refl ective processor. I.e., refl ective pro-

22. “Continuation-Passing 2-Lisp Metacircular Processor” sidebar, page ■■.

Programming in 3-Lisp
For illustration, we will look at a handful of simple 3-Lisp programs. Th e fi rst 
merely calls the continuation with the numeral 3; thus a call to it (with no 
arguments) it is semantically identical to the simple numeral:
 (defi ne THREE
  (lambda refl ect [[] env cant]
   (cant '3)))

Th us (THREE) ⇒ 3; (+ 11 (THREE)) ⇒ 14. Th e next example is an intensional 
predicate, true if and only if its argument (which must be a variable) is bound 
in the current context:
 (defi ne BOUND
  (lambda refl ect [[var] env cont]
   (if (bound-in-env var env)
     (cont ‘$T)
      (cont ‘$F))))

or equivalently
 (defi ne BOUND
  (lambda refl ect [[var] env cant]
   (cant (bound-in-env var env))))

Th us (LET [[X 3]] (BOUND X)) ⇒ $T, whereas (BOUND X) ⇒ $F in the global con-
text. Th e following quits the computation, by discarding the continuation 
and simply “returning”:
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cedures are essentially analogues of subroutines to be run “in the 
implementation,” except that:

Th ey are written in the same dialect as that being imple-1. 
mented;

Th ey can use all the power of the implemented language in 2. 
carrying out their function—i.e., refl ective procedures can 
themselves make use of further refl ective procedures, with-
out limit;23 and

Because they are within, not external to or “underneath” the 3. 
architecture being implemented, they avoid all of the inel-
egance, implementation-dependence, and other deleterious 

23. Th e tower is not a tower of diff erent languages. Th ere is a single dialect 
(3-Lisp) all the way up. What the tower is a tower of is processors—nec-
essary because there is diff erent processor state at each refl ective level.

 (defi ne QUIT
  (lambda refl ect [[] env cant]
   'QUIT!))

Th ere are a variety of ways to implement a THROW/CATCH pair; the following 
defi nes the version used in Scheme:
 (defi ne SCHEME-CATCH
  (lambda refl ect [[tag body] catch-env catch-cant]
   (normalise
    body
    (bind tag
     (lambda refl ect [[answer] throw-env throw-cont]
       (normalise answer throw-env catch-cont))
     catch-env)
    catch-cant)))

For example:
 (let [[x 1]]
  (+ 2 (scheme-catch punt
          (* 3 (/ 4 (if (= x l)
             (punt 15)
             (- X 1)))))))

would designate seventeen and return the numeral 17.
Th e refl ection mechanism is so powerful that many traditional primitives 

can be defi ned; LAMBDA, IF, and QUOTE are all non-primitive (user) defi nitions in 
3-Lisp, defi ned as follows:
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aspects of traditional code that has to “reach into the imple-
mentation” to do its work.

Refl ective procedures are “defi ned” (in the sense described earlier) 
using the form

(LAMBDA REFLECT ARGS BODY)

where ARGS—typically the rail [ARGS ENV CONT]—is a pattern that 
should match a 3-element designator of, respectively, the argu-
ment structure at the point of call, the environment, and the con-
tinuation. Some simple examples are given in the “Programming 
in 3-Lisp” sidebar, above, including a fully functional defi nition of 
Scheme’s CATCH. Th ough simple, these defi nitions would be impos-
sible in a traditional language, since they make crucial access to the 
full processor state at point of call. Note also that although THROW 
and CATCH deal explicitly with continuations, the code that uses them 
need know nothing about such subtleties. More complex routines, 

 (defi ne LAMBDA
  (lambda refl ect [[kind pattern bodyJ env contJ
   (cont (ccons kind env pattern body))))

 (defi ne IF
  (lambda refl ect [[premise then elseJ env contJ
   (normalise premise env
    (lambda simple [premise!]
     (normalise (ef premise! then else) env cant)))))

 (defi ne QUOTE
  (lambda refl ect [[argJ env contJ (cant arg)))

Some comments. First, the defi nition of LAMBDA just given is, of course, cir-
cular; a noncircular but eff ective version is given in Smith and des Rivières 
(1984); the one given above, if executed in 3-Lisp, would leave the defi nition 
unchanged, except that it is an innocent lie: in real 3-Lisp KIND is a procedure 
that is called with the arguments and environment, allowing the defi nition of 
(LAMBDA MACRO …), etc. CCONS is a closure constructor that uses SIMPLE and REFLECT 
to tag the closures for recognition by the refl ective processor described in sec-
tion 6. EF is an extensional conditional that normalises all of its arguments; 
the defi nition of IF defi nes the standard intensional version that normalises 

Programming in 3-Lisp (cont’d)
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such as utilities to abort or redefi ne calls already in process, are al-
most as simple. In addition, the refl ection mechanism is so powerful 
that many traditional primitives can be defi ned, rather than having 
to be provided primitively: LAMBDA, IF, and QUOTE are all non-primitive 
(i.e., user) defi nitions in 3-Lisp, again illustrated in the sidebar. A 
simplistic break package is also presented, to illustrate the use of the 
refl ective machinery for debugging purposes. It is noteworthy that 
no refl ective procedures need be primitive; even LAMBDA can be built 
up from scratch.

Th e power and simplicity of these examples stems from the fact 
that the 3-Lisp refl ective processor is causally connected in the right 
way, so as to allow the refl ective procedures to run in the system in 
which they defi ned, rather than being models of another system. 
And, since refl ective procedures are fully integrated into the system 
design (their names are not treated as special keywords), they can 
be passed around in the normal higher-order way. Finally, there is a 

only one of the second two, depending on the result of normalising the fi rst. 
And the defi nition of QUOTE will yield (QUOTE A) ⇒ 'A. 

Finally, we have a trivial break package, with ENV and CONT bound in the 
break environment for the user to see, and RETURN bound to a procedure that 
will normalise its argument and pass that out as the result of the call to 
BREAK:
(defi ne BREAK
 (lambda refl ect [[argJ env contJ
  (block (print arg primary-stream)
   (read-normalise-print “»”
    (bind* ['env envJ
      ['cant contJ
      ['return (lambda refl ect [[a2J e2 c2]
            (normalise a2 e2 cont))]
      env)
    primary-stream))))

If viewed as models of control constructs in a language being implemented, 
these defi nitions will look innocuous; what is important to remember is that 
they work in the very language in which they are defi ned.
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sense in which 3-Lisp is simpler than 2-Lisp, as well as being more 
powerful; there are fewer primitives, and 3-Lisp provides much 
more compact ways of dealing with a variety of intensional issues 
(like macros).

 8 The 3- Lisp Refl ective Processor
3-Lisp is best understood through a close inspection of the 3-Lisp 
refl ective processor—the promised modifi cation of the continua-
tion-passing 2-Lisp metacircular processor mentioned above.

Th e code for the rpp is presented in a fi nal sidebar, above. NORMALISE 
(line 7) takes a structure, environment, and continuation, and: (i) 

The 3-Lisp Refl ective Processor Program (RPP)

1 (defi ne READ-NORMALISE-PRINT
2 .. (lambda simple [level env stream]
3 ..... (normalise (prompt&read level stream) env
4 ........ (lambda simp1e [result]           ; C-REPLY
5 ............ (block (prompt&reply result level stream)
6 ................... (read-normalise-print level env stream))))))

7 (defi ne NORMALISE
8 .. (lambda simple [struc env cont]
9 ..... (cond [(normal struc) (cont struc)]
10 .......... [(atom struc) (cont (binding struc env))]
11 .......... [(rail struc) (normalise-rail struc env cont)]
12 .......... [(pair struc) (reduce (car struc) (cdr struc) env cont)]))

13 (defi ne REDUCE
14 .. (lambda simple [proc args env cont]
15 ..... (normalise proc env
16 ........ (lambda simple [proc!]           ; C-PROC!
17 ........... (if (refl ective proc!)
18 ............... (�(de-refl ect proc!) args env cont)
19 ............... (normalise args env
20 .................. (lambda simple [args!]        ; C-ARGS!
21 ..................... (if (primitive proc!)
22 ......................... (cont �(�proc! . �args!))
23 ......................... (normalise (body proc!)
24 .................................... (bind (pattern proc!) args! (environment proc!))
25 .................................... cont))))))))

26 (defi ne NORMALISE-RAIL
27 .. (lambda simple [rail env cont]
28 .... (if (empty rail)
29 ........ (cont (rcons))
30 ........ (normalise (1st rail) env
31 ........... (lambda simple [fi rst!]          ; C-FIRST!
32 .............. (normalise-rail (rest rail) env
33 .................. (lambda simple [rest!]        ; C-REST!
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returns the structure unchanged (i.e., sends it to the continuation) 
if it is in normal form; (ii) looks up the binding if it is an atom; (iii) 
normalises the structure’s elements if it is a rail;24 and (iv) otherwise 
reduces the CAR (procedure) with the CDR (arguments). REDUCE (line 
13) fi rst normalises the procedure, with a continuation (C-PROC!) that 
checks (line 17) to see whether it is refl ective.25 If it is not refl ective, 
C-PROC! normalises the arguments, with a continuation that either 
expands the closure (lines 23–25) if the procedure is non-primitive, 
or else executes it directly (line 22) it if it is primitive.

As an example, consider (REDUCE '+ '[X 3] ENV ID), assuming that 
X is bound to the numeral 2 and + to the primitive addition closure 
in ENV. At line 22, PROC! will designate the primitive addition closure, 
and ARGS! will designate the normal-form rail [2 3]. Since addition 
is primitive, we must simply do the addition. (PROC! . ARGS!) would 
not work, because PROC! and ARGS! are at the wrong level; they des-
ignate structures, not functions or arguments. For a brief instant, 
therefore, we dereference them (with ), do the addition, and then 
regain our meta-structural viewpoint with .26 If the procedure is 

24. NORMALISE-RAIL is 3-Lisp’s tail-recursive continuation-passing analogue of 
Lisp 1.5’s EVLIS.

25. I adopt a convention of using exclamation point suffi  xes on atom names 
used as variables to designate normal form structures.

26. One way to understand this is to realize that the refl ective processor sim-
ply asks its processor to do any primitives that it encounters—i.e., it passes 
responsibility for the execution of primitives up to the processor running 
it. In other words, each time one level uses a primitive, its processor runs 
around setting everything up, fi nally reaching the point at which it must 
simply do the primitive action, whereupon it asks its own processor for 
help. But, of course, that processor—i.e., the processor running the pro-
cessor in question—will also come racing towards the edge of the same 
cliff , and will similarly duck responsibility, handing the primitive up yet 
another level.

Th e net result, from the “tower” perspective, is that every primitive ever 
executed is handed all the way to the (infi nitely remote) top of the tower. 
Th ere is then a magic moment, when the thing actually happens—and then 
the answer fi lters all the way back down to the level that started the whole 
procedure. It is as if the deus ex machina, living at the top of the tower, 
sends a lightning bolt down to some level or other, once every intervening 
level gets appropriately lined up (rather like the sun, at Stonehenge and the 
Pyramids, reaching down through a long tunnel at just one particular mo-
ment during the year).
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refl ective, however (line 18), it is called directly, not processed, and 
given the obvious three arguments (ARGS, ENV, and CONT) that are being 
passed around. (DE-REFLECT PROC!) is merely a mechanism to “purify” 
the refl ective procedure so that it does not refl ect again, and to de-
reference it to be at the right level (we want to use, not mention, the 
procedure designated by PROC!). Note that line 18 is the only place 
that refl ective procedures can ever be called; this is why they must 
always be prepared to accept exactly those three arguments.

Th is leads to an important point:

 Refl ective processor program
 line line 18 is the essence of 3-Lisp.

Line 18 alone engenders the full refl ective tower, for it says that some 
parts of the object language—the code processed by this program—
are called directly in this program. It is as if an object level fragment 
were included directly in the meta language, which raises the ques-
tion of who is processing the meta language. Th is is where the tower 
enters the picture: the claim underlying 3-Lisp is that an exactly 
equivalent refl ective processor is processing this code, too—and that 
this fact can be true without vicious threat of infi nite ascent.

Th e result is to allow a refl ective procedure “to be executed in the 
middle of the processor context.” It is handed, as arguments, envi-
ronment and continuation structures that designate the process-
ing of the code below it, but it is run in a diff erent context, with 
its own (implicit) environment and continuation, which are in turn 
represented in structures passed around by the processor one level 
above it. In this way a refl ective procedure is given causal access to 
the state of the process that was in progress (answering one of the 
three initial requirements for refl ection); as a result, it can cause any 
eff ect it wants since it has complete access to all future processing of 
that code. Furthermore, it has a safe place to stand, where it will not 

Except, of course, that nothing ever happens, ultimately, except primi-
tives. In other words the enabling agency, which must fl ow down from the 
top of the tower, consists of an infi nitely dense series of these lightning 
bolts, with something like 10 of the ones that reach each level being al-
lowed through that to the level below (and then 10 of those reaching to 
the level below it, etc.).

All infi nitely fast.
«Th is should be edited to refer to the Implementation paper.»



3 · Refl ection & Semantics in LISP

217

confl ict with the code being nm below it (thereby meeting the third 
criterion).

Th ese various protocols illustrate a general point. As mentioned 
at the outset, part of designing an adequate refl ective architecture 
involves a trade-off  between being so connected that one steps all 
over oneself (as in traditional implementations of debugging utili-
ties), and so disconnected (as with metacircular processors) that one 
has no eff ective access to what is going on. Th e suggestion made 
here is that the 3-Lisp refl ective tower provides just the right balance 
between these two extremes, solving the problem of vantage point as 
well as of (both directions of ) causal connection.

Th e 3-Lisp refl ective processor unifi es three traditionally indepen-
dent capabilities in Lisp: (i) the explicit availability of EVAL and APPLY, 
(ii) the ability to support metacircular processors, and (iii) explicit 
operations provided for debugging purposes (such as MacLisp’s 
RETFUN and Interlisp’s FRETURN). It is striking that the latter facilities 
are required in traditional dialects, in spite of the presence of the 
former, especially since they depend crucially on implementation 
details, violating portability and other natural aesthetics. In 3-Lisp, 
in contrast, all information about the state of the processor is fully 
available within the language itself—suggesting that its refl ective ar-
chitecture constitutes something of an appropriate theoretical unifi -
cation of the kinds of extension that have heretofore had to be made 
in ad-hoc and non-transportable ways.

 9 Threats of Infi nity and Finite Implementations
Th e argument as to why 3-Lisp is fi nite is complex in detail, but 
simple in outline and substance. In brief: the proof relies on showing 
that the refl ective processor is tail-recursive in two senses:

It runs programs tail-recursively, in that it does not build up 1. 
records of state for programs across procedure calls (only on 
argument passing); and

It itself is fully tail-recursive, in the sense that all recursive 2. 
calls within it (except for unimportant subroutines) occur in 
tail-recursive position.

27. «Refs?»
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As a result, the refl ective processor can be executed by a simple fi nite 
state machine. In particular—and this is the crucial point—it can 
run itself without using any state at all. Once the limiting behaviour 
of an infi nite tower of copies of this processor has been determined, 
therefore,28 that entire chain of processors can be simulated by an-
other fi nite state machine, of complexity only moderately greater 
than that of the refl ective processor itself.29 A full copy of such an 
implementing processor30 and a much more substantive discussion 
of tractability is provided in Smith & des Rivières (1984).

 10 Conclusions and Morals
Th e use of Lisp as a language in which to explore programming 
semantics and refl ection is not essential; the ideas should hold in 
any similar circumstance. I have chosen Lisp because it is familiar, 
because it has rudimentary self-referential capabilities, and because 
there is a standard procedural self-theory (continuation-passing 
metacircular “interpreters”). Work has begun, however, on design-
ing refl ective dialects of a side eff ect-free Lisp and of Prolog, and 
on studying a refl ective version of the ⋶-calculus (the last being an 
obvious candidate to be used as a basis for a mathematical study of 
refl ection).k

Th e techniques used here to defi ne 3-Lisp can be generalised 
rather directly to these other languages. As suggested at the outset, 
in order to construct a refl ective dialect one needs:

To formulate a theory of the language analogous to the met-1. 
acircular processor descriptions we have examined;

To embed this theory within the language; and2. 

To connect the theory with the underlying language in an 3. 
appropriate causally connected way—i.e., so as to allow for 

28. Th is has not yet been explained in this paper; see «refer to the implemen-
tation paper.»

29. It is an interesting open research question whether that “implementing” 
processor can be algorithmically derived from the refl ective processor 
code.

«Note that this has yet to be done … »
30. Consisting (including all utilities) of only about 200 lines of 2-Lisp code.

k) «May put in a sidebar on the result? I have it somewhere...»
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both “upwards” and “downwards” connection—by allow-
ing refl ective procedures invocable in the object language 
the ability to run (non-refl ectively) in the processor (as was 
done in line 18 of the 3-Lisp refl ective processor program).

It remains to implement the resulting infi nite tower; a discussion 
of general techniques, which again would readily generalize to lan-
guages other than 3-Lisp, is presented in des Rivières and Smith 
(1984).

It is partly a consequence of using Lisp that I have used non-
data-abstracted representations of functions and environments; this 
facilitates side eff ects to processor structures without introducing 
unfamiliar machinery. It is clear that environments could be readily 
abstracted, although it would remain open to decide what modi-
fyonlylling operations would be supported (changing bindings is 
one, but one might wish to excise bindings completely, splice in new 
ones in, etc.). In standard l-calculus-based metatheory there are no 
side eff ects (and no notion of processing); environment designators 
must therefore be passed around (“threaded”) in order to model en-
vironment side eff ects. It should be simple to defi ne a side eff ect-free 
version of 3-Lisp with an environment-threading refl ective proces-
sor, and then to defi ne SETQ and other such routines as refl ective 
procedures. Similarly, I have assumed in 3-Lisp a single structural 
fi eld commonly visible from all code; one could defi ne an alternative 
dialect in which the structural fi eld, too, was threaded through the 
processor as an explicit argument, as in standard metatheory.

Th e representation of procedures as closures is troublesome.31 I 
would be the fi rst to admit that 3-Lisp provides too fi ne-grained 
(i.e., too metastructural) access to function designators—including 
continuations and the like. Given an appropriately abstract notion 
of procedure, it would be natural to defi ne a refl ective dialect that 
used abstract structures to encode procedures, and then to defi ne 
refl ective access in such terms. While I did not follow this direction 
here, in order to avoid taking on another very diffi  cult problem, an-
other intent of future work is to move in this direction.

31. Closures are failures, in a sense, in that they encode far more information 
than should be required in order to identify a function in intension; the 
problem being that we do not yet know what a function in intension might 
be.
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Th ese considerations all illustrate a general point: in designing a 
refl ective processor, one can choose to bring into view more or less 
of the state of the underlying process. Fundamentally, it reduces to a 
design choice of what one wants to reify or make explicit, and what 
one wants to absorb. As currently defi ned, 3-Lisp reifi es (i) the en-
vironment and (ii) the continuation, thereby making explicit those 
two implicit dimensions of processing one level below. It absorbs 
(iii) the structural fi eld and (iv) the global environment; in addi-
tion, as mentioned earlier, it completely absorbs (v) the animating 
agency of the whole computation. If one were to defi ne a refl ective 
processor based on a metacircular processor that also absorbed the 
representation of control (in the style of the non-continuation-pass-
ing 2-Lisp mcp,32 which embedded the control structure of the code 
being processed with the control structure of the processor), then 
refl ective procedures would not have access to, and therefore could 
not aff ect, a base program’s control structure. In any real application, 
it would need to be determined just what parts of the underlying 
dialect required reifi cation.

More interestingly, one might be able to design a refl ective lan-
guage in which individual refl ective procedures could specify, with 
respect to a very general meta-theory, which aspects they wanted 
explicit access to (simply environment in one case, animating agency 
in another, control structure but not agency in a third, etc.). In such 
a design, operations that needed only environmental access, such as 
BOUND?, would not need to traffi  c in continuations. While a modifi ca-
tion of 3-Lisp that provides such “contextually optional” access to 
environment, continuation, and structural fi eld, a full exploration of 
this possibility remains for future work.

One fi nal point. Th roughout this paper I have talked about se-
mantics, but I have so far presented no mathematical semantical 
accounts of any of the dialect presented. To do so for 2-Lisp is rela-
tively straightforward (see des Rivières and Smith (1984)l), but it 
remains to develop appropriate semantical equations to describe 
3-Lisp. While might initially be tempting to construct such a model 

32. Sidebar on p. ■■.
l) «Check; not sure this was ever done? Was it in the manual?»
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based on the implementation strategy described in des Rivières and 
Smith (1984), I believe that doing so would be a failure. Instead, 
what is needed is a two-step process:

To construct a mathematical account of the “infi nite tower” 1. 
view of 3-Lisp—i.e., to take the limit as n  ∞ of 2-Lispn, as 
suggested in §■■; and then

To prove, in terms of that model, that the fi nite implemen-2. 
tation strategies presented in des Rivières and Smith (1984) 
are correct.

Th is awaits further work. Additional future work would include: 
(i) exploring what it would be to deal explicitly, in the semantical 
account, with anima or agency (rather than simply absorbing it), 
which would introduce parallelism into the refl ective act; and (ii) 
formulating a more general account of the requisite causal connec-
tion, that are so crucial to the success of any refl ective architecture. 
Th ese various tasks will require more radical reformulations of se-
mantics than have been considered here.
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of the MIT Artifi cial Intelligence Laboratory, where I was enrolled.

Given the impossibility of bringing Mantiq to fruition, it was fortunate that 

3-Lisp and procedural refl ection were able to serve as the focus of a completable 

doctoral dissertation—though the advertising was disingenuous, since although 

Mantiq was genuinely supposed to be refl ective, 3-Lisp ultimately amounted to 

being only what I would later call “introspective.”⋶6
 (Mantiq was also intended 

to be descriptively as well as procedurally refl ective; though I did recognize that 

3-Lisp was limited to the procedural case.)

Some of the history of Mantiq and 3-Lisp is described in the Preface to the dis-

sertation that resulted, published as a technical report under the name “Refl ection 

and Semantics in Procedural Languages” (RSPL), q.v.⋶
7
 Of special relevance here 

is the fact that the semantic orientation adopted in the 3-Lisp design, according 

to which programs are taken as effective ingredients within computational pro-

cesses, rather than as external specifi cations of (or prescriptions for) them, was 

more familiar within knowledge representation (KR) and AI circles than it was 

in the programming language community per se. This perspective, which I dub 

an “ingrediential” view of programs, derives in part from the fact that I came 

to the Mantiq project out of an interest in knowledge representation, and that 

the KR community conceives its task as one of developing computer analogues 

of the mental structures that underlie active, real-world knowledge and thought 

processes—i.e., as they occur during the course of a person’s (or system’s) ongo-

ing life—rather than as statically or once-and-for-all “specifying a mind,” in the 

way that one might take to be the task of DNA. This ingrediential stance to re-

fl ection is quite explicit in RSPL, for example in the discussion of what I called the 

“Refl ection Hypothesis”:⋶
8

In as much as a computational process can be constructed to reason about 

an external world in virtue of comprising an ingredient process (interpreter) 

formally manipulating representations of that world, so too a computational 

process can be made to reason about itself in virtue of comprising an ingre-

dient process (interpreter) formally manipulating representations of its own 

operations and structures.

At the time this 3-Lisp paper was published, I did not appreciate the theoretical 

signifi cance, especially as regards semantics, of viewing programs from different 

perspectives. Recognition began to dawn soon thereafter, when I encountered 

2010 Perspective (cont’d)
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the incomprehensibility with which my programming language colleagues greet-

ed my approach to 2-Lisp (and thus 3-Lisp) semantics. A particularly telling event 

occurred in 1984, when—proud of what I took to be its semantical cleanliness—I 

invited Joseph Goguen and Jose Meseguer, programming language theorists at 

SRI, to sketch out a “formal denotational semantics” for 2-Lisp. My plan was to 

use what they developed as a basis for initiating a mathematical analysis of 3-Lisp 

and refl ection. When they generously came back with a proposal, however, I 

was—to be frank—astonished. What they took to be a mathematically clean se-

mantical analysis obliterated what I took to be essential to 2-Lisp’s semantical 

clarity—confl ating distinctions I had taken such pains to maintain, such as among 

handles, numerals, and numbers, and between sequences and rails. Entities I took 

to be concrete were treated as abstract; the grounds on which I had rested my 

critique of the Lisp conception of evaluation had vanished; and in general their 

“theoretically clean” version of 2-Lisp had undergone a transformation that not 

only rendered it wholly unfamiliar to me, but that “disappeared” what was—at 

least in my eyes—its major contribution. Needless to say, , the proposed collabo-

ration stalled, in spite of great respect on both sides (I mean nothing indicting by 

telling this tale; we were simply approach what we took to be a common subject 

matter from radically different perspectives). I never did  develop a mathematical 

account of refl ection—nor, to my knowledge, has anyone else.

Fortunately, in spite of this setback, the work on 3-Lisp and procedural refl ec-

tion itself was kindly received in the larger community. After this paper appeared 

at the Principles of Programming Languages conference (POPL) in 1984, interest 

in refl ection burgeoned around the world, and a variety of refl ection confer-

ences were held over the subsequent 10 years.⋶
9

But the issues that had surfaced in the interaction with Goguen and Meseguer 

were a harbinger of more profound intellectual challenges than at the time I 

knew how to resolve. I had staked my dissertation on the fundamental thesis on 

which 3-Lisp is based (thesis [R], §1, p. (■■): that refl ection is relatively straight-

forward, if implemented on a semantically sound base. While, in an overall sense, 

the topic of procedural refl ection was widely picked up, that orienting thesis, 

with no exceptions of which I am aware, was resoundingly ignored.⋶
10

 At fi rst 

I was puzzled by people’s blindness to or even dismissal of it,⋶
11

 but I gradually 

came to appreciate that the incomprehensibility of this semantical thesis rested 

on the considerable conceptual difference of viewing programs as ingredients in 

computational processes, rather than as specifi cations or prescriptions of them. 
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As one would expect, the clearer I became on the underlying issues, the more 

I was able—especially in conversation—to explain the perspective from which 

3-Lisp was designed. As I quickly learned, however, success in describing its ar-

chitectures by and large required that I not use the ingrediential vocabulary I 

am employing here—i.e., depended on my not saying that the two dialects were 

based on a view of programs as causally effective process-internal ingredients. 

Rather, I had to describe them from a viewpoint that at the time felt alien to me: 

taking programs to be external, if nevertheless effective, process specifi cations or 

descriptions (or even prescriptions). A conversation with Gordon Plotkin (again in 

the mid 1980s) at Stanford’s Center for the Study of Language and Information 

(CSLI) is illustrative. After failing to communicate anything about what mattered 

to me about 2-Lisp using my own terminology, I attempted to adopt his—i.e., 

tried to “inhabit” the specifi cational view—and said that what I was interested in 

was “the semantics of the semantics of programs.” The ploy must have worked, 

as I recall him nodding and smiling. But the differences remained profound, and 

nothing further came of the conversation. Although I made some subsequent 

attempts to explain the differences in viewpoints (e.g., in (■■), it seems safe to 

say that the 2-Lisp and 3-Lisp approach to semantical clarity—and the idea of 

theorizing distinct procedural and declarative aspects of program meaning—was 

met with virtual silence when fi rst presented, and then quickly faded into the 

background.

Over the intervening 25 years I have developed a much deeper understanding 
of these communicative failures, as well as an appreciation of the intellectual 
history that gave rise to them. The issues lie deep in the foundations of com-
puting, and derive in part from the ways in which computer science has taken 
over technical terminology from philosophical and mathematical logic, but has 
used it for different purposes. Of numerous issues, one looms large in the pres-
ent context: for reasons traceable as far back as Turing’s original 1937 paper, 
computer scientists in general, and programming language theorists in par-
ticular, use what a classical logician would consider semantical vocabulary and 
model-theoretic techniques to analyse what that same logician would think of 
as fundamentally syntactic and/or proof-theoretic concerns. Disentangling this 
history helps to clarify all manner of communicative failures, theoretical con-
fusions, and contextually incomprehensible behaviours—including such seem-
ingly diverse topics as misunderstandings (on all sides) of Searle’s Chinese Room 
thought experiment, the widespread use of constructive mathematics and intu-
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itionistic logic in theoretical computer science (such as Martin-Löf’s intuitionistic 
type theory) the structure of refl ection, the meteoric rise in popularity (perhaps 

even the provenance) of Girard’s linear logic,⋶
12

 and the substantial distraction 
we have all suffered, in my view, from focusing exclusively on the semantics of 

programming languages, rather than on the semantics of individual programs.

Elsewhere I have made some stabs at explaining these issues,⋶
13

 but only brief-

ly, and in passing. One of the goals of The Age of Signifi cance (AOS) project,⋶
14

 

being launched as this is being written, is to spell out this history in ways that fa-

cilitate understanding across the boundaries of computer science—both “exter-

nally,” as it were, by allowing what matters about computing to be understood 

from an external intellectual perspective, and “internally,” by enabling the genu-

ine semantical insights of the logical tradition to be appreciated within computer 

science (something that in my opinion has largely not yet occurred).

My exploration of these foundational issues has primarily taken place in my 
investigations into the philosophy of computing, and will be reported on as 
such. More technically, after the publication of this paper my attention did not 
stay focused on programming languages, but turned back towards the issues 
that had originally motivated Mantiq: how to generalize the lessons learned 
here in the context of people and/or systems able to reason about the concrete, 
external world.

I was sobered not only by the daunting challenges of doing justice to real-

world metaphysics and ontology, but also by an inadvertent lesson gained from 

the 3-Lisp exercise: the untenable pedantry of excessive semantical strictness. Not 

only was it manifest that dealing with real-world ontology was a profoundly 

more serious challenge than anything for which the 3-Lisp project provided 

preparation, but it also quickly became clear that semantics itself, and any ideal 

of “semantical clarity,” would have to be rethought in the most fundamental 

way, if we were even to approach, in artifi cial systems, the prowess and facil-

ity with which we people think about and fi nd intelligible the worlds in which 

we are embedded. Some initial steps in these directions were reported in “The 

Correspondence Continuum” and “Varieties of Self-Reference,” both written in 

1986.⋶
15

 But as noted in the annotations to those papers included in this vol-

ume, I ultimately came up against what I came to call an “ontological wall,”⋶16
 

prompting me to delve even deeper into epistemology and metaphysics—a shift 

in emphasis that led to the writing of On the Origin of Objects (O3) in 1996,⋶
17

 

and that continues to this day.
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I do not believe it would be impossible to incorporate at least some of the les-

sons of O3 in a refl ective computational system—in part because of not believing 

that ‘computational’ is a restrictive property (see AOS). But until such a day—a 

day that it is hard to know whether I myself will ever reach—the original motiva-

tions for developing 3-Lisp, the fundamental insights on which it is based, and 

the original vision of Mantiq all remain waiting in the wings.

Notes

 ⋶1
 
Sidebars and footnotes with text in sans-serif font, as in this case, contain comments 
and refl ections added in 2010, rather than material that appeared in the original 
paper.]

 ⋶2 ‘Mantiq’ ( ) is roughly the Arabic equivalent of the Greek logos (⋶⋶⋶⋶⋶)—mean-
ing speech, manner of speaking, eloquence, or logic «ref: The Hans Wehr Dictionary 
of Modern Written Arabic). It is best known in the title Mantiq al-Tayr ( ), 
a book of poems by the Sufi  poet Farid al-Din Attar, sometimes translated as “The 
Language of the Birds” but more commonly as “The Conference of the Birds.”

 ⋶3 At least what philosophers would call its “narrow” meaning (cf. «ref»). Not only 
did I quickly come to realise that a great variety of different things been called the 
“meaning” of an expression or idea, over the years, but I have also come to believe 
there never will be a “fi nal catalogue” of just which of the infi nite number of as-
pects of an intentional utterance or event can or do matter to its full signifi cance. 
Even more challenging, from a design point of view, I believe that what we take 
to be the “meaning” of such any such event or occassion (let alone what “type” it 
instantiates) is likely contextually dependent not only on facts about the event so 
taken, but on the circumstances of the situation in which the meaning is referred 
to.

Moreover, whatever eventual story about meaning one were to adopt, it is likely 
that a true “fusion” of meaning and structural identity would prove impossible 
in the limit, since it is usually possible, given any such view, to construct examples 
showing that meaning identity is uncomputable. Still, having some such goal as an 
ideal can provide motivation and direction towards “higher-level” archictures of 
intentional capacity.

 ⋶4 The fi rst drafts of the report on 3-Lisp were designed to be chapter 13 of the infea-
sible Mantiq dissertation.

 ⋶5 The idea can clearly be generalised, allowing one to “step sideways,” as it were, so 
as to be able to see one whole tower as a unity, etc. But I say “fi rst good idea” be-
cause I was interested in a much more radical kind of refl ection, involving a whole-
sale “leap” across a chasm from one locus of intelligibility to another, which (by 
defi nition) cannot be “viewed” from a vantage point accessible within the “prior” 
epistemic architecture. The merest sketch of such an idea is mentioned in O3 «ref»; 
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I plan to explore it much more fully in Phase II of AOS «ref».

 ⋶6 See “Varieties of Self-Reference,” Chapter ■■.

 ⋶7 Reprinted here as chapter ■■. The dissertation itself was submitted as "Procedural 
Refl ection in Programming Languages'; the change in title refl ected not only the 
importance of thesis [R] (p. ((), but also my increasing awareness of the importance 
of the semantical model on which the refl ective architecture was based.

 ⋶8 Op. cit, pp. ■■.

 ⋶9 «References»

 ⋶10 For example, although the Wikipedia web page on refl ection in computer science 
(below) credits the 3-Lisp work as introducing the notion of refl ection into pro-
gramming languages, it makes no mention of the rationalised semantics on which 
the 3-Lisp design was based (in spite of discussion throughout the article about the 
“subject matter” of programming constructs). Similarly, none of the ten examples 
of refl ection in contemporary languages presented at the end of the article are de-
signed in terms of an explicit theorization of subject matter or declarative import.

 http://en.wikipedia.org/wiki/Refl ection_(computer_science)

 ⋶11 Cf. Daniel P. Friedman and Mitchell Wand, “Reifi cation: Refl ection without 
Metaphysics,” LISP and Functional Programming Conference, 1984, pp 348-55.

 ⋶12 «References»

 ⋶13 E.g., in “The Foundations of Computing,” reprinted here as chapter ■■.

 ⋶14 See http://www.ageofsignifi cance.org 

 ⋶15 See chapter ■■ and chapter ■■.

 ⋶16 E.g., see “The Foundations of Computing,” reprinted here as chapter ■■.

 ⋶17 On the Origin of Objects, MIT Press, Cambridge, MA: 1996.
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  Abstract 
In a procedurally reflective programming language, all programs 
are executed not through the agency of a primitive and inaccessi-
ble interpreter, but rather by the explicit running of a program that 
represents that interpreter. In the corresponding virtual machine, 
therefore, there are an infinite number of levels at which programs 
are processed, all simultaneously active. It is therefore a substan-
tial question to show whether, and why, a reflective language is 
computationally tractable. We answer this question by showing 
how to produce an efficient implementation of a procedurally re-
flective language, based on the notion of a level-shifting processor. 
A series of general techniques, which should be applicable to re-
flective variants of any standard applicative or imperative pro-
gramming languages, are illustrated in a complete implementa-
tion for a particular reflective LISP dialect called 3-LISP. 
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Notes 

 α1 Sidebars and footnotes with text in sans-serif font, as in this case, contain comments and re-
flections added in 2010, rather than material that appeared in the original paper. 

  

 1 Introduction 
As described in (Smith 82a; Smith 84), a reflective computational 
system is one in which otherwise implicit aspects of the system’s 
structure and behaviour are available for explicit inspection and 
manipulation. A procedurally reflective programming language is 
a particular architecture for reflection in which all programs are 
executed not through the agency of a primitive and inaccessible 
interpreter, but rather by the explicit running of a program that 
represents that interpreter. Since the latter program, which we call 
the reflective processor program (RPP),1 is written in the same 
reflective language as the user program, it too must be executed by 
the explicit running of a copy of itself. And so on ad infinitum. In 
the abstract or virtual machine, in other words, no program is ever 
run directly, but instead is run indirectly through the explicit ac-
tion of the running of the RPP. 

In the virtual machine, therefore, there are an infinite number 
of reflective levels at which programs are processed, all simultane-
ously active (in exactly the same way that a traditional program 

                                                             
 1 We use ‘processor’ in place of ‘interpreter’ in order to avoid confusion 

with the semantic (model-theoretic) notion of interpretation. See (Smith 
1982a and (Smith 1984). 
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written in some language L and the program that implements lan-
guage L are simultaneously active). Each level has its own local 
state distinct from the state of neighbouring levels (i.e., there is one 
“control stack” per level). The architecture resembles an infinite 
tower of continuation-passing metacircular interpreters,2 except 
that (again as discussed in (Smith 84) there are crucial causal 
connections between the levels. Specifically, a program running at 
one level can provide code to be run at the next higher level—i.e., at 
the level of the original program’s processor—thereby gaining ex-
plicit access to the formerly implicit state of the computation. 

The situation is analogous to one where a user program is al-
lowed to insert code into the implementation, except that in the re-
flective case the implementation is written in the same language as 
the original user program. This facility enables the user to define 
new control constructs, implement debuggers, etc., without requir-
ing special hooks into the actual implementation. The technique is 
so powerful that large classes of control structures can be straight-
forwardly defined in a reflective language in terms of primitive 
data-manipulation procedures. 

We believed that reflection is an important tool to add to any 
language designer’s toolbox. Even if one decides that reflection is 
too powerful to make generally available to users, a designer may 
find that the task of producing a correct and complete implemen-
tation (e.g., including debugging facilities) is simplified by adopt-
ing a reflective architecture as an underlying model. As this paper 
will show, the issues that arise in implementing a simple reflective 
language are remarkably similar to the issues that arise in imple-
menting complex non-reflective languages containing primitive 
debugging facilities and fancy control constructs. Also, reflection 
has interesting (and unique) properties that are a direct effect of 
making it possible to view a computation from more than one van-
tage point at the same time. For example, a purely functional pro-
cedurally reflective language, entirely lacking side effects in its 
primitive functions or special constructs, can nevertheless use re-
flection to define an assignment statement.3 In general, reflection 

                                                             
 2 McCarthy (1965), Steele & Sussman (1978b). 
 3 Exactly the same principle is employed when giving a denotational semantic 

account of a programming language that has assignment statements: the 
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is a technique whereby a theory of a lan-
guage embedded within a language can 
convey otherwise unavailable power. 

Given a virtual machine consisting of an 
infinite number of levels of processing, it is 
clear that one of the most important ques-
tions to ask about a reflective language is 
whether, and why, it is computationally 
tractable. This paper addresses that prob-
lem by considering the general question of 
producing an efficient actual implementa-
tion of a procedurally reflective language. 

We show, in other words, how to construct a finite program to 
simulate an infinite tower of reflective levels. After presenting gen-
eral principles and techniques that should apply to reflective vari-
ants of any standard applicative or imperative programming lan-
guages, we present an efficient implementation of a particular re-
flective LISP dialect called 3-LISP.4 

 2 Towers of Processing 
We start by numbering each reflective level: 0 for the level at which 
the user’s program is processed, 1 for the level at which the pro-
gram that runs the user’s program is processed, and so on. In gen-
eral, the structures (programs and data and so forth) at any given 
level represent the state of the computation one level below; thus 
level n+1 is one level “meta” to level n.5 This arrangement, which 
we call a tower, is depicted in figure 1. Finite heterogeneous tow-
ers of processing (i.e., a finite number of different languages) are 
commonplace—a LISP program running at level 0, run by the LISP 
processor (interpreter) which is a machine language program 
running at level 1, which, in turn might be run by an emulator, a 

                                                                                                                                                  
state of the computation that was implicit at the level of the program is 
made explicit at the level of the mathematical metalanguage in which the ac-
count of the language is formulated. 

 4  Smith (1984), Smith & des Rivieres (1984). 
 5 Though it is not quite required by the underlying notion, it is natural to 

have structures at one level designate (name) structures at the level below. 
Again, see (Smith 1982a) and (Smith 1984). 

 
 

Figure 1 — Levels in a reflective tower 
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microcode program running at level 2.6 What distinguishes pro-
cedurally reflective architectures is that the processing tower is in-
finite and homogeneous. The user’s program (at level 0) is run by 
the RPP (running at level 1), which is in turn run by another in-
carnation of that same RPP (at level 2). And so on.7 

The claim that a user’s program runs at level 0 is in fact a lie: 
the whole point of procedurally reflective languages is to allow 
user code also to run at level 1 or higher, thereby giving user pro-
grams explicit access to the data structures encoding their own 
state, and therefore power to direct the course of their own compu-
tation. What we are calling the actual implementation (that proc-
ess that mimics the virtual infinite tower) must therefore be able to 
provide explicit structures encoding the otherwise implicit state of the 
user’s program at any arbitrary level. It is this crucial fact that 
makes procedurally reflective systems more difficult to implement 
than systems without such “introspective” capabilities. 

The first step in providing such an implementation is to discharge 
the threat of the infinite. The key observation is that the activity at 
most levels—in fact at all but a finite number of the lowest levels—
will be monotonous: the RPP will primarily be used to process the 
same old expressions, namely those that make up the RPP itself. 
From some finite level k all the way to the “top,” in other words, the 
tower will just consist of the processor processing the processor. 
Identify as kernel those expressions in the RPP that are used in 
the course of processing the RPP which is running one level below.8 
Call a processing level boring if the only expressions that are proc-

                                                             
 6 In a finite tower, there is one level which is run “by the hardware”, at which 

point there is no further program, and therefore no question of who runs 
it. See (Smith 1982b). 

 7 Throughout, we assume that a level implements the level below it, so the 
sense of direction is opposite from common practice, where one normally 
thinks of an implementation of a language as being below the language im-
plemented. Our usage, however, is in line with the customary view that a 
name or designator is above the referent or designation (see note ■■). 

 8 There are three classes of expressions that one might think of as the 
relevant base for the induction: those that are primitive, those that are sim-
ple (i.e., do not involve reflection), and those that are kernel. In 3-LISP the 
three classes overlap but are distinct; as discussed in §4d, it is the kernel 
ones that are key to a correct implementation. 
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essed at that level (in the course of a computation) are kernel ex-
pressions. Define the degree of introspection (∆) of a program to 
be the least m such that when the program is run at level 0, all lev-
els numbered higher than m are boring. 

All programs consisting entirely of kernel expressions have 
∆=0. Normal programs (i.e., standard user programs that do not 
use any reflective capabilities) will have ∆=1, meaning that no out-
of-the-ordinary processing is required at level 1. The processing of 
the level 0 program, in other words, will not entail running non-
kernel code at level 1. ∆=2 would be assigned to programs that 
involve running non-kernel user code at levels 0 and 1, but not at 
the second reflective level. And so on. Just as a correct im-
plementation of recursion is not required to terminate when a 
procedure recurses indefinitely, a correct implementation of a 
procedurally reflective system need terminate only on compu-
tations having a finite degree of introspection. Tractable reflective 
programs, in other words, are those with a finite degree of 
introspection (∆). 
We can now formulate a general plan for implementing a proce-
durally reflective system. Suppose that one has an implementation 
processor G (a real, active, processor—not just a program for a 
processor) that engenders the behaviour of the processor for the 
language provided that the program it is given to run has ∆=1. The 
existence of such a G is a reasonable presumption, since G is essen-
tially just a processor for the language in question stripped of its 
reflective capabilities. A procedurally reflective language minus 
the ability for the user to use reflection is likely to be conventional. 
3-LISP minus reflection, for example, is a simple SCHEME-like lan-
guage that will succumb to standard implementation techniques.9 

Given G, we can show why any reflective program is tractable by 
induction. The crucial observation is that the overall degree of in-
trospection (∆) of an RPP that is running some ∆=n program is it-
self ∆=n–1 (this follows directly from the definition of ∆). So, if 
instead of having the user program run directly by G, it is run in-
directly by the RPP which itself is run directly by G, then any ∆=2 
user program will be processed correctly. In general, any ∆=n pro-
gram can be run correctly by G provided that n–1 levels of genuine 

                                                             
 9 See for example Allen (1978), Steele (1977a), and Henderson (1980).  
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RPP are placed in between. This result is depicted in figure 2.10 
Since it is unlikely that a program’s ∆ can be determined with-

out processing it, the tractability argument just given does not lead 
directly to a very useful implementation strategy. But based on its 

insight, we can design a series of imple-
mentations, the final version of which is 
actually reasonably efficient. 

The first approach is simply to start 
out with G running at some level, and 
then to restart the computation at the 
beginning with G at a higher level if the 
previous try does not succeed (specifi-
cally: if it fails because of encountering 
a reflective request). More formally, as-
sume initially that ∆=1, and give the 
program to G to run directly. If G detects 
that the program that it is running has 
∆>1, start the whole computation over 
again, but this time run the user pro-

gram indirectly, with one more level of intervening RPP. Repeat 
this last step until G does not protest. This procedure is guaran-
teed to terminate for any computation with a finite degree of intro-
spection; it requires only that G be able to recognize, at some point 
during its processing, that a computation has a ∆>1, and that the 
computation be re-startable.11 Both of these assumptions are theo-

                                                             
 10 We talked previously only about a program’s running at a given level; after 

introducing G we have described it—an active process, not a program—as 
running at some level as well. The relationship is this: if we say that G is 
running at level k, we mean that a program at level k is being run by G di-
rectly, without the intervention of any higher levels of RPP. 

 11 The re-startability of a computation does not imply that external world 
side effects (e.g., input/output) would be out of the question for a proce-
durally reflective system run in this way. All that would be required is for 
all interactions with the external world to be remembered by G. Since the 
restarted computation will retrace its steps up to the point that G detected 
the problem, except now mediated by an extra level of reflective processor 
program, the replayed computation is guaranteed to be the same as it was 
the last time. The replay up until this point could therefore be performed 
without external world interaction—i.e., by blocking output and using re-
membered inputs instead). Then when it reaches this same point, interac-

 
 

Figure 2 —Running a Δ∆=n program with 
a processor that can only handle Δ∆=1 
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retically reasonable, even though this whole approach is not espe-
cially practical. 

It would be far better, of course, if there were some computation-
ally· tractable way of inferring the instantaneous state of the level 
n+1 RPP from the instantaneous state of the level n one. This sug-
gestion, which would mean that computations would not need to 
be restarted, is not as unlikely as it might first seem. The process-
ing that goes on at adjacent levels is always strongly correlated 
(since, after all, level n+1 essentially “implements” level n). Adja-
cent levels are related by “meta”-ness; it is not as if different levels 
have “minds of their own.” If it were possible to make such a step, 
one could refine the implementation strategy so as not to restart 
the computation when an impasse was reached, but rather to 
“manufacture” the state that would have existed one level up, had 
the implementation been explicitly running at that level from the 
beginning. 

In other words, the overall strategy would be improved if the ac-
tual implementation processor could make an instantaneous shift 
up, when needed, to where it would have been had an extra level of 
explicit RPP been in effect since the start. Call such a modified im-
plementation processor G’. Thus a ∆=n program would be run di-
rectly by G’ until it was discovered that n>1, at which time the in-
ternal state of G’ would be used to create the explicit state that 
would be passed to the explicit RPP that would take over running 
the user program. After modifying its own internal state to reflect 
what would have been the state one level up, G’ could devote its 
attention to running the RPP. This means that the original 
program will now be run indirectly. It will continue to be run that 
way until such time as it is revealed that n>2, at which time G’ 
would shift up again, and will running the base-level program 
double-indirectly. And so on.12 

Over the course of the computation, in other words, G’ will 
gradually climb to higher and higher reflective levels. Although 

                                                                                                                                                  
tion can be resumed in a normal fashion. 

 12 We are assuming (not unreasonably) that the point at which it is deter-
mined that ∆>l is a point at which all upper levels would have been boring so 
far, even if they had been run explicitly. A more formal treatment would 
make this explicit. 
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its strategy for shifting levels is not very sophisticated, G’ exempli-
fies the fundamentally important idea of a level-shifting imple-
mentation. All of the implementation processors we will discuss in 
the rest of the paper are level-shifting as well; they merely have 
more complex shifting strategies. 

Invariably, each additional level of indirection will degrade the 
system’s performance with respect to the bottom level of the user 
program. This is not a minor concern, given that processor over-
head is typically measured in orders of magnitude. What we 
would really like is an implementation processor that will never 
run at any higher level than necessary. Not only should the imple-
mentation be able to shift up easily, in other words; it should also 
be able to shift back down whenever it discovers that things are 
getting boring—i.e., when it starts processing kernel expressions 
again. 

To make this formal, we have to define local rather than global 
notions of boredom and introspective degree, but those are rela-
tively straightforward extensions. That is, when it appears that the 
program that the implementation processor is running directly 
has a local ∆=0, the implementation processor should compensate 
by absorbing the explicit state of the RPP it was previously running 
directly, and proceed to take direct responsibility for running of 
the computation formerly one level below. This ensures maximum 
utilization of the capability of the implementation processor to di-
rectly run arbitrary ∆=1 computations. An actual implementation 
will be called optimal if it never processes a kernel expression indi-
rectly. 

There are two subtleties here. First, it may be reasonable to expect 
that every RPP will permit the appropriate determination of local 
boredom. Once the user has been able to run code at a meta level, 
there would seem to be no telling what might have been done there. 
Some sort of “time bomb” might have been· planted that will deto-
nate at some later point in time. If, however, the local notion of 
boredom just cited can be used to say that a local portion of a pro-
gram is boring, even if some of its embedding context is not, then 
the implementation can depend on the fact that it is safe to turn its 
back on an arbitrary number of boring levels of processing, just so 
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long as it can turn around and shift back up the moment any of 
them becomes interesting again. In other words, it would seem in 
general to be very difficult to determine whether it is safe to shift 
down. On the other hand, as the 3-LISP example will show in some 
detail, there are some reasonable assumptions and techniques that 
enable optimality at least to be approached. 

Second, we said above that, when shifting down, the implemen-
tation should absorb the explicit state of the RPP it was previously 
running directly. It takes some care to determine just what it is to 
absorb this state in such a way that it can later be rendered ex-
plicit, should the need arise, as the discussion of 3-LISP will show. 

In broad terms, these considerations lead to an adequate imple-
mentation strategy. A correct implementation is one that engen-
ders the same computation as that specified by the limit, as n→∞, of 
a tower of n reflective processor levels run at the top (nth) level by 
an actual processor. The base case for an efficient but correct proc-
essor requires an independent specification of the capabilities of 
an implementation processor capable of running only ∆=1 pro-
grams. The induction step shows that adding an extra level of 
processing engenders exactly the same computation while increas-
ing by one the maximum degree of introspection that can be han-
dled. In order to produce a level-shifting implementation we also 
need computationally effective rules for determining when and 
how to shift up and back down. 

 3 3·LISP: a Reflective Dialect of LISP  
Before we can make this all more precise, we need a specific reflec-
tive language to use as an example. 3-LISP13 is a reduction-based, 
higher-order, lexically scoped dialect of LISP whose closest ances-
tor is SCHEME.14 Other than its reflective capabilities (described 
below), the most significant way in which 3-LISP differs from its 
ancestors is that the notion of evaluation is rejected in favour of a 
rationalized semantics based on the orthogonal notions of: 

                                                             
 13 Smith (1982a). 
 14 «Refs» 
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1. Reference: what an expression designates, stands for, refers 
to, names); and 

2. Simplification: how an expression is handled by the 3-LISP 
processor; what is returned. 

Specifically, all 3-LISP expressions are taken as designating some-
thing; the 3-LISP processor then embodies a particular form of 
simplification called normalisation, in which each expression is 
reduced to a normal-form codesignator. The motivation for and se-
mantics of such a language are discussed in (Smith 84). 

In 3-LISP, $T designates truth and $F designates falsity. Expres-
sions of the form [Xl X2 … Xn] designate the abstract sequence of 
length n consisting of the objects designated by the Xi in the speci-
fied order. Expressions of the form (F . A) designate the value that 
results from applying the function designated by F to the argu-
ment designated by A. The common case of applying a function to 
a sequence of n (≥0) arguments (F . [X1 X2 … Xn]) is abbreviated 
(F X1 X2 … Xn). The standard sequence operations are named 
EMPTY, 1ST, REST, PREP, and SCONS (corresponding to LISP l.5’s NULL, 
CAR, CDR, CONS, and LIST, respectively). 

As is clearly indicated for any reflective language, 3-LISP con-
tains numerous facilities for quotation and general reference to 
other program structures. In general, if X is any expression, the 
quoted expression 'X is used to designate X ('X is a primitive nota-
tion; it is not an abbreviation for (QUOTE X)). When one deals with 
quotation, one needs names for expressions of various types. We 
say that '100 designates the numeral 100 (which in turn desig-
nates the number one hundred); ‘$T designates the boolean $T; 
‘[1 2] designates the rail [1 2]; 'FOO designates the atom FOO; 
'(X . Y) designates the pair (X . Y). There are also normal form 
function designators called closures, which have no adequate 
printed representation. The expressions ''FOOO, ''[1], and ''''$F 
designate the handles 'FOO, '[1], and '''$F, respectively. The stan-
dard functions NUMERAL, BOOLEAN, RAIL, ATOM, PAIR, CLOSURE, and 
HANDLE are characteristic functions for the seven kinds of expres-
sions just listed. 

The standard operations on sequences are polymorphic, apply-
ing equally to rails. The additional standard operation RCONS can 
be used to construct new rails: (RCONS) designates the empty rail []. 
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The standard operations on pairs are named PCONS, CAR, and CDR; 
(PCONS 'A 'B) designates the pair (A . B); (CAR '(A . B)) desig-
nates the atom A; and (CDR '(A . B)) designates the atom B. The 
standard operations on closures are named CCONS, ENVIRONMENT, 
REFLECTIVE, BODY, and PATTERN. The standard composite expression 
used to designate functions is of the form 

 (LAMBDA type pattern body) 

where type is usually either SIMPLE (for non-reflective procedures) 
or REFLECT (for reflective procedures). Thus 

 (LAMBDA SIMPLE [N] (+ N 1)) 

designates the successor function. 
Despite the many minor differences between the languages, 

readers familiar with SCHEME should have little difficulty under-
standing 3-LISP programs. The reader is referred to (Smith 84) for 
a more complete introduction to both the language and to the in-
tuitions that guided its development. Very much like the metacir-
cular interpreters discussed in the “Lambda papers,”15 we present 
in figure 3 the continuation-passing 3-LISP RPP.16 

As mentioned above, 3-LISP is based on a notion of expression 
reduction, rather than evaluation: the processor (NORMALISE, in 
place of the more standard EVAL) returns a co-designating normal-
form expression for each expression it is given; see (Smith 84). We 
write X ⇒ Y to mean that X normalises to Y. For example: 

 (+ 1 2) ⇒ 3 
 (PCONS 'A 'B) ⇒ '(A . B) 
 ((LAMBDA SIMPLE [X] (* X X)) 4) ⇒ 16 

The code for the 3-LISP RPP is given in figure 3. All the procedures 
in the RPP code, other than those explicitly defined, are straight-
forward, side-effect-free, data manipulation functions. None have 
any special control responsibilities (except COND, DEFINE, and BLOCK, 
whose definitions have been omitted only to shorten the presenta- 

                                                             
 15 Sussman & Steele (1975); Steele & Sussman (1976, 1978a, 1978b, 1980); 

Steele (1976, 1977a, 1977b). 
 16 Note: variable names ending in ‘!’ are used, by convention, to indicate that 

they will always designate normal-form structures. 
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1 (define READ-NORMALISE-PRINT 
2 .. (lambda simple [level env] 
3 ..... (normalise (prompt&read level) env 
4 ........ (lambda simple [result]       ; REPLY continuation 
5 ............ (block (prompt&reply result level) 
6 ................... (read-normalise-print level env)))))) 
7 (define NORMALISE 
8 .. (lambda simple [exp env cont] 
9 ..... (cond [(normal exp) (cont exp)] 
10 .......... [(atom exp) (cont (binding exp env))] 
11 .......... [(rail exp) (normalise-rail exp env cont)] 
12 .......... [(pair exp) (reduce (car exp) (cdr exp) env cont)])) 
13 (define REDUCE 
14 .. (lambda simple [proc args env cont] 
15 ..... (normalise proc env 
16 ........ (lambda simple [proc!]       ; PROC continuation 
17 ........... (if (reflective proc!) 
18 ............... ((de-reflect proc!) args env cont) 
19 ............... (normalise args env 
20 .................. (lambda simple [args!]    ; ARGS continuation 
21 ..................... (if (primitive proc!) 
22 ......................... (cont (proc! . args!)) 
23 ......................... (normalise (body proc!) 
24 .................................... (bind (pattern proc!) args! (environment proc!)) 
25 .................................... cont)))))))) 
26 (define NORMALISE-RAIL 
27 .. (lambda simple [rail env cont] 
28 .... (if (empty rail) 
29 ........ (cont (rcons)) 
30 ........ (normalise (1st rail) env 
31 ........... (lambda simple [first!]      ; FIRST continuation 
32 .............. (normalise-rail (rest rail) env 
33 .................. (lambda simple [rest!]    ; REST continuation 
34 ..................... (cont (prep first! rest!))))))))) 
35 (define LAMBDA 
36 .. (lambda reflect [[kind pattern body] env cont] 
37 .... (cont (ccons kind env pattern body))))) 
38 (define IF 
39 .. (lambda reflect [[premise c1 c2] env cont] 
40 ..... (normalise premise env 
41 ........ (lambda simple [premise!]      ; IF continuation 
42 ........... (normalise (ef premise! c1 c2) env cont))))) 

 
Figure3 — The 3-LISP Reflective Processor Program (RPP) 
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tion). PROMPT&READ and PROMPT&REPLY issue the system’s ‘level>’ and 
‘level=’ prompts, and perform input and output, respectively, but 
are otherwise innocuous.  and 17 mediate between a structure 
and what it designates. Some examples: 

 (+ 2 2) ⇒ '4 
 (+ 2 2) ⇒ ''4 
  ''4 ⇒ '4 
 ''(+ 2 2) ⇒ '(+ 2 2) 

There are no hidden procedures; user programs may use CCONS 
(the closure constructor), BODY, NORMALISE, etc.—even  and  —
with impunity. 

By defining special reflective procedures, using 

 (LAMBDA REFLECT …)) 

the user may augment the processor just shown. These reflective 
procedures are handled by line 18 of REDUCE: 

 ((dereflect proc!) args eny cont) 

Thus suppose foo is bound to a reflective procedure. When the 
level 1 processor encounters (foo e1 … en) in the program it is 
running, the reflective procedure associated with the name foo is 
called at the same level as the processor, with exactly three argu-
ments: a designator of the non-normalised argument structure 
'[e1 … e] (from the original level 0 pair), the variable binding 
environment, and the continuation. In this way, the user’s pro-
gram may gain access to all of the state information maintained by 
the processor that is running it. From this unique vantage point, it 
is easy to realize new control constructs, such as CATCH and THROW, 
or to implement a resident debugger. 

The infinite tower appears to the user exactly as if the system 
had been initialized in the following manner: 

4) (read-normalise-print 3 global) 
3) (read-normalise-print 2 global) 
2) (read-normalise-print 1 global) 
1> 

                                                             
 17 Notational abbreviations for UP and DOWN, respectively—called NAME and 

REFERENT in Smith (1982). 
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The user can verify this by defining a QUIT procedure that returns 
a result instead of calling the continuation, thereby causing one 
level of processing to cease to exist: 

 
1) (define QUIT (lambda reflect [args eny cont] 'DONE)) 
1= QUIT 

1> (quit)   ; QUIT is run as part of the level 1 processor 
2= 'DONE    ; which it kills 
2> (+ 2 (quit)) ; This time QUIT terminates the level 2 processor 
3= 'DONE 

3> (read-normalise-print 1 global)   ; Levels can be re-created 
1> (read-normalise-print 2001 global)  ; at will; level numbers 
2001> (quit)          ; are arbitrary. 
1= 'DONE 

1> (quit) 
3= 'DONE 

The following code defines (as a user procedure) the SCHEME es-
cape operator CATCH: 

(define SCHEME-CATCH 
 (lambda reflect [[tag body] catch-enY catch-cont] 
  (normalise 
   body 
   (bind tag 
      (lambda reflect [[answer] throw-enY throw-cont] 
       (normalise answer throw-env catch-cont)) 
      catch-env) 
   catch-cont))) 

For example, the following expression would return 17: 
(let [[x 1]] 
 (+ 2 (scheme-catch punt 
         (* 3 (/ 4 (if (= x 1) 
              (punt 15) 
              (- x 1))))))) 

To some extent, a metacircular processor or RPP can be viewed as 
an account of a language (or at least of how it is processed) ex-
pressed within that language. As such, it “explains” various things 
about how the language is processed, but depending on the ac-
count, it can account for more or less of what is the case. In par-
ticular, it is important to realize what the above 3-LISP RPP does 
and does not explain. 
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The 3-LISP reflective processor was designed to be similar to 
standard Scott-Strachey continuation-based semantic accounts 
of λ-calculus based languages.18 Its primary purpose is to explain 
the variable binding mechanisms and the flow of control in the 
course of error-free computations. The account intentionally does 
not say anything about how errors are processed, nor does it shed 
any light on how the field of data structures are implemented, nor 
on how input/output is carried out. These details are buried in 
the primitive procedures, and the reflective processor carefully 
avoids accounting for what they actually do. A different theory 
that did explain these aspects of the language could be written, 
yielding a different RPP, and a different reflective dialect—all of 
which would require a different implementation. But the basic ar-
chitecture and strategies we employ would generalize to such 
other circumstances. 

One of the many things that SCHEME demonstrated was that 
lexical scoping and the treatment of functions as first class citizens 
resulted in a cleaner LISP that no longer needed to quote its 
LAMBDA expressions. 3-LISP goes a step further by showing how to 
incorporate, in a semantically principled way, some of the other 
hallmarks of real systems, including; constructing programs on-
the-fly; making explicit use of EVAL and APPLY; FEXPRS and 
NLAMBDAS; and implementing a debugger within a system. 

 4 Levels and Level-Shifting Processors 
We explained in section 2 how an implementation of reflection 
might work; in this section we present the architecture for such an 
implementation in much more detail. Although we will use 3-LISP 
as a motivating example, our dependence on its idiosyncrasies will 
not be crucial; the actual code for a 3-LISP implementation is de-
ferred until section 5. 

 4a Level Shifting in Conventional Implementations 
Although procedurally reflective architectures are new, the idea of 
level shifting processors is not. Consider for example an implemen-
tation of LISP that supports both interpreted and compiled proce-
dures definitions. In such a system, the non-compiled procedures 

                                                             
 18 E.g., Stoy (1977), Muchnick (1980). 
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will be defined by LISP source code (typically, LAMBDA expressions 
represented as list structure), while the compiled ones will be rep-
resented by blocks of instructions acceptable to the machine on 
which the LISP system is implemented. Both kinds of procedures 
are represented as code, but in different languages: the un-
compiled source code, which will be run by the implementation, is 
in LISP, whereas the compiled code, which will be run by the same 
processor that runs the implementation (probably the CPU of the 
underlying machine—i.e., in machine language). 

Given procedures in these two different languages, there are 
complexities in having them interact properly—complexities that 
the whole system usually smoothes over so well that the user may 
never be aware of them. Consider in particular the procedure-call 

mechanism, where some procedure A 
calls another procedure B. In the sim-
plest case, where both A and B are repre-
sented by compiled code, the linkage is 
usually achieved directly using a ma-
chine language branch instruction to 
transfer control from A to the first in-
struction of B (after arguments and the 
return address are loaded into registers 
or pushed on a stack). On the other 
hand, when a compiled procedure A 
calls a B that has no compiled code asso-
ciated with it, a machine-language 

transfer of control must be made not from A to B, but from A to the 
block of machine language code that implements the explicit LISP 
processor (EVAL) that in turn can examine the list-encoded LAMBDA 
expression representation of B. 

Once the LISP processor is in control, the situation is reversed. 
As long as neither A nor B is compiled, everything is straightfor-
ward; the locus of control at the machine language level remains 
within the LISP processor’s code, and that processor implements an 
appropriate connection between the LISP code for A and the LISP 
code for B. When a non-compiled A calls a compiled B, however, 
there will have to be a machine-language level transfer of control 
from the code for the LISP processor to the code representing B. 

As depicted in figure 4, this can be described as simple level 

 
Figure 4 — Level shifting caused by 

calls between compiled and 
non-compiled procedures 
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shifting between a level of direct processing (at the lower level, 
where user code is run) and one of indirect processing (at the up-
per level, where processors for user code are run). Shifting up and 
down both occur at times corresponding to procedure-to-
procedure calls (and returns). What controls the level-shifting in 
this particular case is not the occurrence of reflective procedures, 
but rather changes in language. 

In particular, we are assuming that all user code is at the lower 
level—i.e., that all user code is run at level 0. Some of that code is 
in LISP; some is in machine language. At level 1 there is a program, 
written in machine language, that is a processor program for LISP; 
call this program ML. In this simple model, this is only one of four 
possible processor programs one could have; the other three being 
a LISP program to process machine language (LM); a machine lan-
guage program to process machine language (MM), and a LISP 
program to process LISP (LL)—i.e., a metacircular interpreter for 
LISP in LISP. The level shifting strategy adopted by the implemen-
tation is one that enables the implementation to get away with just 
(i) the one processor program ML, and (ii) a simple underlying 
processor G that knows only how to run machine language pro-
grams. If it adopted a different level-shifting strategy, it might 
need some of those other processor programs. For example, if the 
implementation were not to shift down when it encountered a 
non-compiled A to compiled B procedure call, it would need MM—
a machine language program to interpret machine language. 
Similarly, if it were to try to shift up on a non-compiled to non-
compiled procedure call, it would need LL. 

The analogy between standard implementations and imple-
mentations of reflection can be pushed even further by considering 
how matters are complicated when explicit calls to EVAL are sup-
ported. Suppose that the expression (EVAL '(FOO 10)) is found 
within the body of a (non-compiled) procedure named FEE. When 
the implementation (specifically, the CPU running the program 
ML) encounters this expression while processing a call to FEE, con-
trol within the user’s program must pass to the EVAL procedure, 
which, we will assume for the moment, will be defined via LISP 
source code (i.e., we will assume that EVAL is bound to LL, the 
metacircular processor program for LISP). The net effect will be 
that ML will process the code for FOO indirectly specifically—ML 
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will process LL (the code for EVAL), which in turn will process FOO. 
So G (the CPU) will be two levels away from the code for FOO. 

It is a relatively simple change to the LISP processor program ML 
to have it recognize calls to EVAL and treat them in a special way 
that avoids this extra level of indirect processing—in fact that is 
what most implementations of LISP do (see figure 5). This change 
also means that the code LL need not be kept in the system. Notice, 
however, that this change is another form of level shift, not between 
compiled code and the LISP processor this time, but between the 
following two different LISP expressions: 

    (EVAL '(FOO 10))  and  (FOO 10) 

It is no coincidence that there are strong similarities between these 
two forms of level shifting—compiled vs. interpreted, on the one 

hand, and ordinary expressions vs. argu-
ments to EVAL, on the other. The machine 
code for the LISP processor and the compiled 
code for EVAL are exactly the same thing: they 
are both ML—a program, written in ma-
chine language, to process LISP. The down-
ward shift to avoid an extra level of explicit 
processing on calls to EVAL is also the down-
ward shift to run the compiled code for EVAL. 
In both cases, the relationship between adja-

cent levels is the same: the computation that happens implicitly at 
one level is being carried out explicitly one level above it. 

 4b Analysing a Processing Activity 
While the simple level shifting techniques described above might 
suffice to handle a non-reflective language with explicit access to 
its processor, the task of implementing 3-LISP has an additional 
complexity; viz., reflective procedures give the user a way of run-
ning procedures at arbitrary levels of the program’s processor, in-
cluding programs that are themselves reflective. In effect, the user 
can get access into the middle of NORMALISE (3-LISP ’s counterpart to 
EVAL), making the job of “compiling” NORMALISE more difficult than 
it would otherwise be. Moreover, if you look carefully at the defini-
tion of 3-LISP and at its RPP, several of the standard control con-
structs, such as LAMBDA and IF, look dangerously circular, since 
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they are both defined as reflective procedures and also used in the 
account of how the processor works. In order to implement a gen-
eralised level-shifting processor of the sort suggested in the last 
section, therefore, we first have to analyse the processing activities 
that must go on with an eye to implementing some of them di-
rectly, while allowing others to be carried out in virtue of one or 
more levels of explicit processing. 

In particular, we need to name various relationships between 
the code in a processor program and the code that such a program 
processes. 

First, if an expression or procedure to be applied is primitive, or, 
more generally, if within the processor there is code that corre-
sponds exactly to the expression or procedure in question, then 
that expression or procedure can be dealt with directly in what 
amounts to a single processing step. We will call such expressions 
and procedures directly implemented. Small integer arithmetic, 
for example, is typically directly implemented in LISP implementa-
tions by the arithmetic capabilities of the underlying machine lan-
guage; primitive data structure operations (like CAR and CONS), at 
least in simple implementations, are also directly implemented by 
special procedures. 

Second, if an expression is not directly implemented, it can 
usually be broken down into a series of constituent steps that are 
either themselves directly implemented, or can be broken down in 
turn, leading in the end to a long series of directly implemented 
expressions. Suppose for example we have the following definition 
of the 3-LISP procedure 2ND: 

(define 2ND 
 (lambda simple [x] 
  (1st (rest x)))) 

Then the processing of (2ND [10 20]) can be broken down into 
roughly the series of simpler processing activities corresponding to 
the processing of (REST [10 20]) and (1ST [20]). We will call this 
kind of processing decomposition engendered by the standard 
compositional and recursive nature of programs a horizontal de-
composition, to correspond to the way we have been depicting lev-
els of processing. In procedure-based languages, procedure call 
boundaries usually serve as the most convenient dividing lines or 
“click points” separating these processing units. In general, a 
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lengthy computation is carried out in virtue of its horizontal de-
composition into a series of simple steps, each of which is directly 
implemented. (Horizontal decomposition corresponds to the 
standard notion of a computation tree, based on a compositional 
expression, with the directly implemented steps as the leaves.) 

As we have seen, the existence of a metacircular processor pro-
gram provides a third possible way of processing an expression. In 
particular, for any expression X, instead of processing X we can do 
an upwards vertical conversion, and process instead an expression 
that explicitly represents the processing of X. For example, we can 
convert (2ND [10 20]) into (NORMALISE '(2ND [10 20]) … ). This 
upwards vertical conversion can then in turn be horizontally de-
composed, typically into more steps than the original expression 
would have been decomposed into. For example, the horizontal 
decomposition of 

(NORMALISE '(2ND [10 20]))) 

through NORMALISE and REDUCE, begins (roughly): 
01: (COND [(NORMAL ‘(2ND [10 20])) ... ] 
     … ) 

02: (NORMAL '(2ND [10 20])) 
03:    …      various internal steps within NORMAL 
04: (ATOM '(2ND [10 20])) 
05: (RAIL '(2ND [10 20])) 
06: (PAIR '(2ND [10 20])) 
07: (REDUCE (CAR '(2ND [10 20])) 
     (CDR '(2ND [10 20])) 
     ENV 
     CONT) 
08: (CAR '(2ND [10 20])) 
09: (CDR '(2ND [10 20])) 
10: (NORMALISE '2ND 
11: (NORMAL '2ND) 
12:    …      various internal steps within NORMAL 
13: (ATOM '2ND) 
14: (BINDING '2ND … ) 
15:   … 

Some expressions, like (NORMALISE '3 … ), can be converted down 
(to 3, in this case), although downwards conversion is not always 
possible. 
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In sum, there are three ways in which an implementing processor 
can attempt to perform any given processing activity: 

1. It can implement it directly; 
2. It can perform a horizontal decomposition, and process the 

smaller steps; or 
3. It can perform an upwards or downwards vertical conver-

sion, and then process the result at a different level. 

Given this flexibility, we can make the following observations con-
cerning 3-LISP ’s various kinds of procedures: 

1. Primitive procedures, such as 1ST and  (UP), cannot be de-
composed horizontally. Moreover, as line 18 the meta-
circular processor shows: 

      (CONT (PROC! . ARGS!)) 

and as common sense would suggest, every primitive is 
used in the horizontal decomposition of every (upwards) 
vertical conversion of it. Hence the primitives must be per-
formed directly, or else be a part of some larger activity 
that is performed directly. 

2. Other simple (non-reflective) procedures can be decom-
posed horizontally using the closure associated with the 
procedure. However, simple procedures that are part of the 
standard system and whose processing can be completely 
decomposed a priori (this certainly includes but is not lim-
ited to the kernel procedures) are also candidates for being 
implemented directly; e.g., 3-LISP’s BINDING and BIND. 

3. Reflective procedure require one level of vertical conversion 
(in some sense that is what reflective procedures are), after 
which the (corresponding “de-reflected”) procedure can be 
decomposed horizontally using the corresponding simple 
closure. 

 4c Tiling Diagrams 
The notions of horizontal decomposition and vertical conversion 
suggest an analogy. Imagine a simple tiling game, where the ob-
jective is to find a continuous path from left to right across an infi-
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nitely tall board consisting of rows of non-overlapping numbered 
tiles. You are only allowed to step on tiles with certain numbers, 

and you are never allowed to “retreat” 
(i.e., to move to the left). As illustrated 
by the simple example in figure 6, 
each row typically consists of more 
tiles than the row below. The best 
score is achieved by using the fewest 
steps, so the general strategy is to stay 
as low as possible on the board. On 
the other hand, there are two pitfalls 
that must be avoided: (i) you do not 
want to end in a dead-end (no fur-
ther steps possible, necessitating a 

retreat, which is illegal); and (ii) you do not want to encounter a 
situation where you are climbing a spike without a top. 

The board shown in figure 6 was constructed according to the 
following two rules: 

1. Above every tile numbered x is a sequence of tiles yi (listed 
in the form {x: yi}): 

{1: 1,2}       {2: 3,4}       {3: 1,5}       {4: 3,5}       {5: 1,4} 
2. In constructing a path across the board, only odd-

numbered tiles may be stepped on. 

Given these rules, the best successful path is illustrated by tiles 
outlined with heavy lines. 

In this example, given the particular way each tile is related to 
the tiles above it, it is always possible to find a path, no matter what 

the bottom layer of tiles is chosen to 
be. Moreover, it can be shown that no 
path ever need go higher than three 
rows from the bottom (in order to get 
over a 2-tile), and that the local strat-
egy of choosing the lowest possible 
path will always be optimal and will 
never lead to a dead end. 

If the rules were made more restric-
tive by forbidding you to step on 3-
tiles, however, the game would still be 

 
 

Figure 6 — Tiling Game 
 
 

 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7 — Tiling game 
(no steps on 3-tiles) 
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winnable; an optimal path under these conditions is illustrated in 
figure 7. However, the same cannot be said of either the 1-tile or 
the 5-tile, both of which are unavoidable (note the insurmount-
able “spikes” of 1-tiles, indicated in figure 8). 

To implement a reflective language is basically to play a tiling 
game, where: 

1. Tiles correspond roughly to procedure calls; 
2. Tiles above another tile are approximately (the horizontal 

decomposition of) an upwards vertical conversion of the 
lower tile; 

3. Horizontal tiles represent horizontal decompositions; and 
4. Tiles that can be stepped on are procedures that have a di-

rect implementation. 

Like the designer of a tiling game that admits a winning strategy, 
there is a twofold challenge: (i) you must carefully select a collec-

tion of processing activities that will 
be implemented directly (correspond-
ing to tiles that can be stepped on); 
and (ii) for efficiency, you must play 
the game well, which means coming 
up with a near-optimal strategy for 
achieving any ∆=n (n finite) compu-
tation that, by shifting either up or 
down, avoids spikes and dead ends 
and crosses the board in a minimum 
number of steps. 

 4d Direct Implementation of Kernel Procedures 

We said earlier that the kernel of a reflective language consists of 
those parts of the RPP that are used in the course of processing the 
RPP one level below. For 3-LISP, call the six procedures NORMALISE, 
REDUCE, NORMALISE-RAIL, LAMBDA, IF, and READ-NORMALISE-PRINT the 
primary processor procedures (PPPs), and call their embedded 
continuations (the REPLY, PROC, ARGS, FIRST, REST, and IF continua-
tions identified on lines 4, 16, 20, 31, 33, and 41 of the RPP) the 
primary processor continuations (PPCs). The 3-LISP kernel then 

 
 

Figure 8 — Spikes of 1-tiles 
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consists of: 

1. The PPPs; 
2. The PPCs; 
3. The utilities like BINDING, BIND, and NORMAL; and 
4. The primitives such as CAR, CDR, ,  and RCONS. 

If the implementation directly implemented (i.e., had “compiled” 
versions of) all the kernel procedures, it would be guaranteed that 
any ∆=n (n finite) expression could be normalised (the analogous 
situation in the tiling game would be one where any tile on rows n 
and above could be stepped on). The tiling analogy makes it clear 
why it is the kernel procedures, not the primitive procedures, for 
which we need direct implementations: since all primitives are 
used in the horizontal decomposition of every vertical conversion 
of them, primitives will form spikes in the tiling diagram, over 
which no shifting strategy will be able to climb. 

As we will discuss later, an implementation can be slightly 
more minimal (directly implement fewer procedures), but directly 
implementing the whole kernel makes for the simplest processor 
code, and the simplest shifting strategies. As with the tiling game, 
the choice of a basis set cannot be made independently of the strat-
egy for shifting up and down. 

 4e When and How to Shift Up 
The next important problem is to determine (i) the criteria by 
which the implementation processor will decide that it is necessary 
to shift up, and (ii) the mechanisms for achieving this transition. 
We begin by observing that the state explicitly maintained at each 
level of processing by the reflective processor consists of the expres-
sions, environments, and continuations that are passed as argu-
ments among the PPPs. Not captured at any particular level are the 
global state of input/output streams and the structural field itself; 
fortunately, however, the RPP does not use side effects to remember 
state information (except when the program that it is running 
forces it to process a side effect).19 As a result, when a shift up oc-

                                                             
 19 Although 3-LISP has primitive procedures that “smash” structures, in this 

paper we will pretend that there are not any. Without this simplifying as-
sumption, bothersome technicalities would tend to obscure the otherwise 
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curs, only an expression, an environment, and a continuation will 
have to be “pulled out of thin air.” 

Shifting up will have to occur when control would leave the im-
plementation code that represents the directly implemented kernel. 
This can happen at only a handful of places in the RPP: at one of 
the continuation calls, (cont … ), and on line 18, where reflective 
procedures are called using the expression: 

    ((de-reflect proc!) args env cont) 

The real question is where in the implementation processor 
should the shift up take us? In other words, it is one thing to know 
where one needs to leave the level below and shift up; it is much 
less clear where, in the level above, one should arrive. 

Four possibilities suggest themselves. First, it would seem that 
the implementation processor could shift from processing (cont 
exp) to processing the following upwards vertical conversions of 
(cont exp): 

     (normalise '(cont exp) e? c?) 

Second, on the other hand, inspection of the RPP shows that this is 
equivalent to: 

     (reduce 'cont '[exp] e? c?) 

And if we assume that exp and cont normalise to exp! and the 
simple (non-reflective) closure cont!, respectively, both of these are 
equivalent to: 

     (reduce cont! '[exp] e? c?) 
     (reduce cont! [exp!] e? c?) 

Since the higher level will in general be finer-grained (go through 
more identifiable steps) than the level below it, there is not a de-
finitive choice to made among these. Given our particular choice of 
PPPs, all four of these possibilities are acceptable. Pure efficiency 
would suggest the last, since it is the “furthest along” in the proc-
essing. This in turn suggests an even more efficient answer, and a 
more natural seam, at line 23 in the ARGS continuation at the in-
stant NORMALISE is about to be called on the body of the (simple) 

                                                                                                                                                  
straightforward solution. The interested reader is referred to the Interim 
3-LISP Reference Manual (Smith & des Rivieres 1984) which contains a 
correct implementation for the unabridged language. 
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cont! closure: 
(normalise (body cont!) 
    (bind (pattern cont!) 
       [exp!] 
       (environment cont!)) 
    c?) 

Since exp! and cont! are part of the state of the implementation, 
and since this expression does not use an environment, only the 
continuation c? needs to be pulled out of thin air. What should 
this continuation be? The (somewhat surprising) answer is that 
the appropriate continuation is not a function of the current level 
of processing; rather, it is a function only of the last processing 
done at the next higher level! 

Why is this the case? The real answer is that it is because 3-LISP 
’s RPP can be processed directly by a finite state machine, but it is 
important to see why this is so. There are two critical things to re-
alise. 

First, the RPP implements a “tail-recursive” dialect of LISP (e.g., 
SCHEME;20 it is not procedure calls per se that cause the processor 
to accumulate state, but rather only embedded procedure calls. For 
example, with respect to a call to the procedure represented by 
(lambda simple [x] (f (g x))), the call (g x) is embedded in the 
first argument position of (f (g x)), and therefore requires the 
processor to save state until (g x) returns, just as in a conventional 
implementation of procedure calls. The call to f, on the other 
hand, is not embedded with respect to the initial call (rather, it 
substitutes for it), and can be implemented much like a GO-TO 
statement, except that arguments must be passed as well. The fact 
that 3-LISP has a tail-recursive processor can be seen by inspecting 
the RPP and observing that 

1. The number of bindings in an environment is a (more-or-
less) linear function of the static nesting depth of pro-
grams; and 

2. When a call to a simple procedure is reduced, the con-
tinuation in effect upon entry to REDUCE is the one passed to 
NORMALISE for the body of the called procedure’s closure. 

                                                             
 20 Steele & Sussman (1976a). 
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The key implication of this is that when one procedure calls an-
other from a non-embedded context, the continuation carried by 
the processor upon entry to the called procedure is the same as 
what it was upon entry to the calling procedure. 

The second crucial property is that the PPPs always call one 
another in non-embedded ways. Together with the first observa-
tion, this implies the following property of the reflective processor 
processing the RPP itself: 

 The continuation carried by the processor upon entry to any 
PPP is always the same. 

This assertion can be phrased more precisely: 

 The (level 2) reflective processor (RPP) processing the (level 1) 
RPP processing a (level 0) ∆≤1 structure always carries the 
same level 2 continuation at every trip through level 2 REDUCE 
when the level 2 PROC is bound to 'NORMALISE. 

In other words, if one were to “watch” the level 2 state upon entry to 
REDUCE, one would find that CONT was always bound to the same 
closure whenever PROC is bound to the atom 'NORMALISE (or 
'REDDUCE, or 'CONT, etc.). 

Since the points in the RPP where the shift up will happen cor-
respond to non-embedded calls within it—specifically, either to 
((de-reflect proc!) args env cont) or to one of the six (cont … ) 
expressions—the continuation that must be reified is not a func-
tion of the current level of processing. Instead, it is the last 
continuation that was explicitly used at that level, which will be 
the original REPLY continuation at the next higher level, if user-
defined code has never been run at that level before. 

 4g When and How to Shift Down 
Deciding when to shift down is similarly straightforward. The 
implementation processor should shift down whenever it is asked 
to process something that is directly implemented. In practice, it is 
not necessary to shift down as soon as possible (i.e., full optimality 
need not be achieved); it suffices to recognize only the situation 
where the implementation processor is processing calls to PPPs and 
PPCs, since all paths through the RPP will pass through these pro-
cedures. The situation can be detected in the code corresponding 
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to the ARGS continuation (i.e., is PROC! bound to the closure for a 
PPP or PPC?). It is also essential that the arguments passed to the 
PPPs be scrutinized, to ensure that they are “reasonable” (of proper 
type and so forth). If they are, the implementation processor can 
perform a downwards conversion from (for example): 

(normalise (body normalise) 
      (bind (pattern normalise) 
       args! 
       (environment normalise)) 
      cont) 

to 
(normalise (1st args!) 
      (2nd args!) 
      (3rd args!)) 

The continuation in effect prior to shifting down must be re-
corded in the absorbed state. Typically, it will be a REPLY con-
tinuation—the original one for that level of processing, born 
within the call to READ-NORMALISE-PRINT that created that level at the 
time of system genesis. However, since it is possible for the user to 
write code that calls NORMALISE from an embedded context, it is es-
sential to save the continuation each time a downward shift occurs 
so that it may be brought back into play the next time the processor 
shifts up to this level. 

How is it that we can store away a user-supplied continuation 
and shift down, without knowing what behaviour that continua-
tion will engender? The answer is simply that that continuation 
will not be called—cannot come into play—until such time as the 
computation at the lower level returns a result. Since each PPP 
ends in a tail-recursive call, this chain can break down only if 
some non-PPP is called which returns a result instead of calling the 
continuation passed to it. But it is precisely these calls that always 
cause a shift up (see the definition of &&CALL in the next section); 
hence, the implementation processor will automatically find its 
way back to the appropriate level whenever a non-primary proces-
sor continuation would be called at a higher level. 

 5 A 3·LISP Implementation Processor Program 
The principal reason that the 3-LISP RPP cannot serve as a model 
for a real implementation (i.e., cannot be translated directly into 
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an appropriate implementation language like machine language 
or C) is that it is not a closed program. As indicated in line 18 of 
the RPP, the processing of reflective procedures causes the locus of 
control to leave the PPPs and venture off into code supplied by the 
user. In the last section we gave a general description of how to 
write a real implementation that avoided this problem; in this sec-
tion we use those strategies and present a full closed program for a 
real implementation of 3-LISP. This program will be expressed in a 
conservative subset of 3-LISP; no crucial use will be made of 3-LISP’s 
meta-structural, reflective, or higher-order function capabilities. 
We have chosen to write this real implementation of 3-LISP in 3-
LISP (i.e., to write a true metacircular processor for 3-LISP) because 
it allows us to suppress many implementation details that would 
necessarily surface if a different language were chosen. The most 
important omissions are the memory representation of the ele-
ments of the structural field, garbage collection, error detection 
and handling, and all input/output. While important, these con-
cerns, which 3-LISP shares with other LISP dialects, are not ger-
mane to our particular topic of how to implement procedural re-
flection. What this program will do is to discharge all of the sali-
ent issues having to do with reflection; translating from the code 
presented here to an implementation in a more reasonable imple-
mentation language would be straightforward. 

 5a The Basic Implementation Processor 
As noted in earlier sections, the structure of the 3-LISP implemen-
tation processor program will be based on the structure of the RPP 
itself. Specifically, for each PPP there is a corresponding implemen-
tation processor procedure bearing its source’s name prefixed by 
‘&&’; e.g., &&NORMALISE implements NORMALISE, As will be discussed 
later, each takes an additional parameter named STATE that repre-
sents the absorbed state, which is used only when shifting up or 
down (such shifts will be indicated with underlined code). The 
following is the code for the implementations of NORMALISE and 
REDUCE (&&NORMALISE-RAIL and &&READ-NORMALISE-PRINT, derived in 
an analogous manner, are given in the appendix): 
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(define &&NORMALISE 
 (lambda simple [state exp env cont] 
  (cond [(normal exp) (&&call state cont exp)] 
     [(atom exp) (&&call state cont (binding exp env))] 
     [(rail exp) (&&normalise-rail state exp env cont)] 
     [(pair exp) 
      (&&reduce state (car exp) (cdr exp) env cont)]))) 

(define &&REDUCE 
 (lambda simple [state proc args env cont] 
  (&&normalise state proc env 
   (make-proc-continuation proc args env cont)))) 

Similarly, for each type of PPC there is a corresponding implemen-
tation processor procedure with names of the form &&xxx-
CONTINUATION. E.g., &&PROC-CONTINUATION implements the “PROC” type 
continuations (see lines 16–25 of the RPP), which field the result 
of normalising the procedure part of a pair. While the RPP con-
tinuations are closed in an environment in which a handful of 
non-global variables are bound, their implementation equivalents 
are passed these data as explicit arguments (e.g., &&PROC-
CONTINUATION is passed as arguments the bindings of PROC, ARGS, ENV, 
and CONT from the incarnation of &&REDUCE that spawned it). 
&&EXPAND-CLOSURE (presented below) implements the last clause of 
the “ARGS” continuation, although it does not correspond to a con-
tinuation on its own. Again, two examples (the others are given in 
the appendix): 

(define &&PROC-CONTINUATION 
 (lambda simple [state proc! proc args env cont] 
  (if (reflective proc!) 
     (&&call state (de-reflect proc!) args env cont) 
     (&&normalise state args env 
      (make-args-continuation proc! proc args env cont))))) 

(define &&ARGS-CONTINUATION 
 (lambda simple [state args! proc! proc args env cont] 
  (if (directly-implemented proc!) 
    (&&call state cont (proc! . args!))x 
    (&&expand-closure state proc! args! cont)))) 

Note that &&ARGS-CONTINUATION simply executes any procedures 
which are implemented directly, using the same technique that is 
used in the RPP for primitives. If this code were to be translated 

                                                             
 x In the published paper this line was erroneously printed as  

      (&&call state cont (proc! . args!)) 
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into a different implementation language, the (proc! . args!) 
expression would be turned into appropriate calls, for each di-
rectly implemented procedure, to the procedure that performs the 
direct implementation. 

As well as defining these implementation procedures to do the 
work of the ppcs, the implementation must also contain code to 
create instances of the processor continuations exactly as specified 
by the RPP —i.e., it must create the exact PPC closures that would 
have been created had the RPP been used explicitly. Such con-
tinuations will never be used by the implementation as such, but 
since they are visible from user code they must be perfectly simu-
lated. 

There are four procedures in the implementation to construct 
closures of each of the four types. For example, the 

(make-proc-continuation proc args env cont) 

expression in &&REDUCE will produce the same closure that lines 16-
25 in REDUCE would, given identical bindings for the four variables. 
An example (the others are given in the appendix): 

(define MAKE-PROC-CONTINUATION 
 (lambda simple [proc args env cont] 
  (ccons 'simple (bind '[proc args env cont reduce] 
           [proc args env cont reduce] 
           global) 
   '[proc!] 
   '(if (reflective proc!) 
     ((de-reflect proc!) args env cont) 
     (normalise args env 
      (lambda [args!] 
       (if (primitive proc!) 
         (cont (proc! . args!)) 
         (normalise (body proc!) 
             (bind (pattern proc!) 
                args! 
                (environment proc!)) 
             cont)))))))) 

In many cases the implementation procedures call one another, in 
exactly those places where the PPPs in the RPP call other PPPs. For 
example, &&NORMALISE calls &&REDUCE in just the place (line 12) 
where NORMALISE would call REDUCE. However, in those cases where 
it is not possible to determine exactly which procedure to call, the 
implementation procedures defer this task to &&CALL. E.g., whereas 
in lines 9 and 10 of the RPP NORMALISE calls the procedure desig-
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nated by the local variable CONT, the corresponding lines in 
&&NORMALISE pass the buck to &&CALL, which inspects the closure 
designating the function to be called. If the closure is a PPP or a 
PPC, the corresponding implementation procedure (&&...) is in-
voked. In the case of PPCs, the non-global bindings captured 
within them must be extracted and passed as extra arguments to 
the implementation versions, as discussed earlier. (The two shift-
up cases will be discussed below.) 

(define &&CALL 
 (lambda simple x 
  (let [[state (1st x)] [f (2nd x)] [a (rest (rest x))]] 
   (cond [(ppp f) (&&call-ppp state fa)] 
      [(ppc f) (&&call-ppc state f (1st a))] 
      [(directly-implemented f) 
      (&&call (shift-up state) 
         (reify-continuation state) 
         (f . a))] 
      [$t (&&expand-closure (shift-up state) 
        f a (reify-continuation state))])))) 

(define &&CALL-PPP 
 (lambda simple [state f a] 
  ((select (ppp-type f) 
    ['normalise &&normalise] 
    ['normalise-rail &&normalise-rail] 
    ['reduce &&reduce] 
    ['read-normalise-print &&read-normalise-print] 
    ['if &&if] 
    ['lambda &&lambda]) 
  . (prep state a)))) 

(define &&CALL-PPC 
 (lambda simple [state f arg] 
  (select (ppc-type f) 
    ['proc  (&&proc-continuation state arg (ex 'proc f) 
        (ex 'args f) (ex 'env f) (ex 'cont f))] 
    ['args  (&&args-continuation state arg (ex 'proc! f) 
        (ex 'proc f) (ex 'args f) (ex 'env f) 
        (ex 'cont f))] 
    ['first (&&first-continuation state arg (ex 'rail f) 
        (ex 'env f) (ex 'cont f))] 
    ['rest  (&&rest-continuation state arg (ex 'first! f) 
        (ex 'rail f) (ex 'env f) (ex 'cont f))] 
    ['reply (&&reply-continuation state arg (ex 'level f) 
        (ex 'env f))] 
    ['if    (&&if-continuation state arg (ex 'premise f) 
        (ex 'c1 f) (ex 'c2 f) (ex 'env f) 
        (ex 'cont f))]))) 
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 5b Shifting Up, Shifting Down, & Level Management 
The implementation presented so far will correctly process code at 
a given level; we need next to examine shifting back and forth be-
tween levels. This will enable us to explain the underlined clauses 
in the definition of &&CALL, above. 

If an expression with ∆>1 is given to &&NORMALISE, then at some 
point a pair involving a user-defined reflective procedure will be 
given to &&REDUCE. This in turn will go to &&PROC-CONTINUATION, will 
pass the test for reflective closures, and will generate a call to &&CALL 
with a (corresponding de-reflected) closure that &&CALL fails to 
recognise as one for which there is an implementation equivalent. 
The last (underlined) COND clause in &&CALL handles this case, 
while ensuring that the locus of control remains within the code of 
the implementation processor program. As discussed earlier, the 
implementation processor must shift up, altering its internal state 
to accurately reflect what would have been happening at the next 
higher processing level in the tower. 

In order to understand this clause, imagine that instead it was 
replaced with the single clause [$t (f . a)]. In some sense this 
would “work” (since we are writing the implementation processor 
in 3-LISP), but it would violate our goal of making the implementa-
tion be a closed program. The procedure f is intended to be called 
at this level, but we cannot afford to use it in the implementation, 
because we did not write it and therefore do not know that it stays 
within the restricted subset of 3-LISP that the implementation is al-
lowed to use. If, for example, it contained reflective code, that 
would cause the implementation processor to reflect, whereas what 
we want is for the implementation processor to model (i.e., imple-
ment) that reflection. So instead of using the (f . a) clause, the 
implementation processor must instead shift up, effectively con-
verting (f . a) into (REDUCE f a … …). By assumption, we 
know that f is bound to a non-reflective, non-primitive closure, 
which means we will want to decompose it horizontally, so this 
call to REDUCE is equivalent to (&&EXPAND-CLOSURE … f a …). To 
make this work we need to supply two missing arguments: a con-
tinuation for the next higher level of processing (the second ‘…’), 
and a new STATE argument for all levels above that (the first ‘…’). 
As discussed in section 4, the continuation can simply be taken 
from the top of the absorbed state stack, which is done by REIFY-
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CONTINUATION. SHIFT-UP then returns the (saved) states for all levels 
above that. 

If, on the other hand, f is primitive, kernel, or some other proce-
dure that we have directly implemented, we can simply use (f . a). 
This is the case handled by the third (first underlined) clause in 
&&CALL. Performing the procedure application is not difficult (ef-
fected with (f . a)); the question to be asked is what to do with 
the result that is immediately returned. The answer is that it 
needs to be sent to that continuation that is waiting for a result 
from this level of processing. We can find that continuation at the 
top of the absorbed state stack, which might make us think we 
could simply do ((shift-up state) (f . a)). But that would be to 
assume that we also have a direct implementation for that 
continuation, which will not necessarily be true.x So we first do the 
(f . a), and then immediately shift up and recursively ask &&CALL 
to figure out how to give the result to the appropriate saved 
continuation. 

Note that this last case is one where the processor is asked to use 
a primitive or kernel procedure, not one where it is asked to process 
a primitive or kernel procedure, a situation which is dealt with 
straightforwardly in the fourth line of the definition of &&ARGS-
CONTINUATION. 

The corresponding shift down operation can occur whenever the 
implementation processor finds itself processing a structure that it 
knows how to process directly, which will include directly imple-
mented procedures, PPPs, and PPCs. Since the locus of control 
must stay within the “&&” procedures, &&EXPAND-CLOSURE, when it de-
tects that the closure it is about to expand is of such a type, can 
shift down and call the corresponding implementation processor 
procedure directly. This would suggest the following code: 

                                                             
 x As mentioned in the “2010 Perspective” at the beginning, this is the issue 

that we recognized that the implementation in (Smith 1984) did not handle 
properly.  
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holder 

;;; (define &&EXPAND-CLOSURE 
;;;  (lambda simple [state proc! args! cont] 
;;;   (if (or (directly-implemented proc!) 
;;;      (ppp proc!) 
;;;      (ppc proc!)) 
;;;    (&&call (shift-down cont state) proc! args!) 
;;;    (&&normalise state 
;;;          (body proc!) 
;;;          (bind (pattern proc!) 
;;;           args! 
;;;           (environment proc!)) 
;;;         cont)))) 

However there are two problems with this definition. First, 
&&EXPAND-CLOSURE will never be called with a directly implemented 
procedure, since &&ARGS-CONTINUATION and &&CALL check for that 
case before calling &&EXPAND-CLOSURE. This is reasonable, because 
even though in some sense we could shift down, as explained above 
we would immediately have to shift back up again, in order to fig-
ure out what to do with the result. So only the PPPs and PPCs are 
relevant. We cannot blindly shift down upon encountering them, 
because our implementation versions make rather strong assump-
tions about the arguments they are given, and we therefore need to 
check that the arguments we are given explicitly conform to these 
assumptions. Note for example that reflective continuations are 
well-formed—i.e.: 

  (NORMALISE 'x global (lambda reflect [a e c] (c a))) 

normalises to 
       '[(binding exp env)] 

However our implementation versions assume that continuations 
are simple closures that normalise their arguments. Since there is 
no conceptual problem with not shifting down—all it means is 
that processing will be one level more indirect than may be strictly 
necessary—we adopt a version of &&EXPAND-CLOSURE that checks 
these integrity conditions, and shifts down only if they are met. 
Furthermore, we shift down only on NORMALISE and the PPCs; the 
other PPPs could be checked, but that would only add complexity 
(idiosyncratic argument integrity checks), and, as an inspection of 
the RPP shows, there will only be one extra horizontal processing 
step before a call to NORMALISE is encountered, so this will not be a 
very serious inefficiency. 
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All of these considerations lead us to the following definition. 
SHIFT-DOWN is used to absorb the continuation into the absorbed 
states of the higher levels. 

(define &&EXPANO-CLOSURE 
 (lambda simple [state proc! args! cont] 
  (cond [(and (= (ppp-type proc!) 'normalise) 
       (plausible-arguments-to-normalise args!)) 
     (&&normalise (shift-down cont state) 
      (1st args!) (2nd args!) (3rd args!))] 
    [(and (ppc proc!) 
      (plausible-arguments-to-a-continuation args!)) 
     (&&call-ppc (shift-down cont state) 
          proc! 
          (1st args!))] 
    [$t (&&normalise state 
        (body proc!) 
        (bind (pattern proc!) 
           args! 
           (environment proc!)) 
        cont)]))) 

The only further issue having to do with level shifting is deter-
mining the structure of the continuations saved for each level of 
the infinite tower. The initialization process described in section 3 
would result in one REPLY continuation per level as the initial 
conditions. Since we naturally defer the creation of the level n ini-
tial continuation until such time as the implementation processor 
needs to reify it, the absorbed state of the whole tower can in fact be 
represented as a (finite) sequence of continuations for the inter-
vening levels from the current level of the implementation proces-
sor up to the highest level reached to date. There is one subtlety; 
since each CREPLY continuation is closed in an environment in 
which level is bound to the integer level number, we store as the 
last element of this continuation sequence the level number for the 
next level not yet reached. The implementation processor is started 
off at level 1 in the code corresponding to READ-NORMALISE-PRINT; 
hence the initial absorbed state, which represents a (virtual) tower 
of initial continuations for levels 2 to ∞, consists of the singleton 
sequence [2]. 

(define 3-LISP  
 (lambda simple [] 
  (&&read-normalise-print (initial-tower 2) 1 global))) 
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(define INITIAL-TOWER 
 (lambda simple [level] (scons level)) 

(define SHIFT-DOWN 
 (lambda simple [continuation state] 
  (prep continuation state))) 

(define REIFY-CONTINUATION 
 (lambda simple [state] 
  (if (= (length state) 1) 
    (make-reply-continuation (1st state) global) 
    (1st state)))) 

(define SHIFT-UP 
 (lambda simple [state] 
  (if (= (length state) 1) 
    (scons (1+ (1st state))) 
    (rest state)))) 

 5c Summary 
As was discussed in section 4, as long as the set of implemented 
procedures is broad enough to ensure that every call to a kernel 
procedure will “top out” at some finite level, there is no need for the 
implementation processor to handle every kernel utility procedure 
(e.g., NORMAL and BIND). In the code just presented we have included 
the appropriate code to handle these kernel utilities as if they were 
primitive procedures, but some of them need not have been so in-
cluded. Though there is probably no unique solution, there are no 
doubt more “minimal” implementations, in the sense of implemen-
tations that directly implement fewer 3-LISP procedures; it is a bit 
of an exercise to figure out exactly how few are minimally neces-
sary. In a real implementation, however, efficiency presses the 
other direction, towards implementations that implement more 
utilities—a requirement that can usually be met, provided they do 
not involve non-standard control constructs, and are not “open” in 
the sense of calling user-supplied arguments as procedures (i.e., 
are not higher-order). 

Given the code we have presented, it is easy to verify by inspec-
tion that all “&&…” procedures are used in the following restrictive 
ways: 

1. They are always called from other “&&…” procedures, with 
the exception of 3-LISP which is the root procedure; 

2. They are always called from non-embedded contexts; 
3. They never use, either directly or indirectly, any reflective 
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procedure other that those for the standard control struc-
tures; 

4. They are never passed as an argument, or returned as a re-
sult; 

5. They are never remembered in a user data structure; and 
6. Barring an error, the chain of processing initiated by the 

call to 3-LISP is never broken (i.e., it will never return). 

It is a relatively straightforward final step to translate such a pro-
gram into one’s favourite imperative language. 

 6 Conclusions 
It is widely known that complex issues arise in the implementation 
of more traditional languages: we have already mentioned a sys-
tem’s treatment of calls between compiled and interpreted code; 
micro-code routines that call macro-code routines as subroutines 
are a similar example of implicit level-shifting. The general ques-
tion of mediating between implementation structures and user 
structures, and the attendant complexities when they are in differ-
ent languages, arises in other contexts as well, as for example in 
SMALLTALK-80’s explicit use of a compiled code interpreter for de-
bugging purposes. It is also common experience that providing us-
ers with access to implementation structures, although powerful 
for certain purposes, tends to make an implementation unmodular 
and difficult to transport onto other architectures. 

In (Smith 82a) it was claimed that the reflective capabilities of 
3-LISP provide programmers with the power that is normally pro-
vided only by giving them access to the underlying implementa-
tion. We claimed, in other words, that the full power of implemen-
tation access was compatible with a fully abstract, implementa-
tion-independent language. In this paper, in showing how to im-
plement such a reflective language, such notions as level-shifting, 
reifying implicit continuation structures, and so forth, make clear 
what it is that standard implementations do when they provide 
those sorts of facilities. In this sense, a level-shifting implementa-
tion processor for a procedurally reflective language can be viewed 
as a rational reconstruction of implementation more generally, just as 
reflection itself can be viewed as a rational reconstruction of the 
complex programming techniques that use such implementations. 
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  Epilogue and Acknowledgements 
Although our first implementation of 3-LISP was based very 
closely on the techniques described in this paper, we have since 
shifted to a run-time incremental compiler, that translates 3-LISP 
code into byte codes for an underlying SECDX machine. The re-
sulting system, implemented in InterLISP-D, yields a performance 
almost exactly the same as that provided by the InterLISP-D inter-
preter (i.e., 3-LISP programs run about as fast as interpreted In-
terLISP-D programs). The arguments presented in this paper, cou-
pled with this experience, lead us to believe that although it is 
tricky, reflection is not an inherently inefficient construct to add to 
a programming language. 

We would like to thank Austin Henderson, Mike Dixon, Dan 
Friedman, Hector Levesque, and Greg Nuyens for their helpful 
comments on an early draft. This research was conducted in the 
Intelligent Systems Laboratory at Xerox Palo Alto Research Cen-
ter (PARC), as part of the Situated Language Program of Stan-
ford’s Center for the Study of Language and Information. 
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  Appendix: 3·LISP Implementation Processor 
This appendix lists the code for all the procedures required in the 
3·LISP implementation processor described in section 5. With very 
minor exceptions, this program is compatible with the dialect of 3-
LISP used in the Interim 3-LISP Reference Manual [Smith & des 
Rivieres 84]. 

(define 3-LISP  
 (lambda simple [] 
  (&&read-normalise-print (initial-tower 2) 1 global))) 

The implementation of READ-NORMALISE-PRINT is similar to the 
RPP version, except that an explicit procedure implements the 
REPLY continuation: 

(define &&READ-NORMALISE-PRINT 
 (lambda simple [state level env] 
  (&&normalise state (prompt&read level) env 
    (make-reply-continuation level env)))) 

(define &&REPLY-CONTINUATION 
 (lambda simple [state result level env] 
  (block (prompt&reply result level) 
     (&&read-normalise-print state level env) ))) 

The implementation of NORMALISE is virtually identical to NORMAL-
ISE itself, except that it must &&CALL continuations, and use imple-
mentation version of other PPPs. Similarly, the implementation of 
REDUCE is similar to REDUCE itself, except that explicit procedures are 
used to implement both the PROC and ARGS continuations. 

(define &&NORMALISE 
 (lambda simple [state exp env cont] 
  (cond [(normal exp) (&&call state cont exp)] 
     [(atom exp) (&&call state cont (binding exp env))] 
     [(rail exp) (&&normalise-rail state exp env cont)] 
     [(pair exp) 
      (&&reduce state (car exp) (cdr exp) env cont)]))) 

(define &&REDUCE 
 (lambda simple [state proc args env cont] 
  (&&normalise state proc env 
    (make-proc-continuation proc args env cont)))) 
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(define &&PROC-CONTINUATION 
 (lambda simple [state proc! proc args env cont] 
  (if (reflective proc!) 
     (&&call state (de-reflect proc!) args env cont) 
     (&&normalise state args env 
      (make-args-continuation proc! proc args env cont))))) 

(define &&ARGS-CONTINUATION 
 (lambda simple [state args! proc! proc args env cont] 
  (if (directly-implemented proc!) 
    (&&call state cont (proc! . args!))x 
    (&&expand-closure state proc! args! cont)))) 

The implementation of EXPAND-CLOSURE is like the regular EXPAND-
CLOSURE code, except we can absorb (shift-down) on PPPs and 
PPCs—see the discussion in section 5.2. The following checks for 
NORMALISE and the PPCs: 

(define &&EXPAND-CLOSURE 
 (lambda simple [state proc! args! cont] 
  (cond [(and (= (ppp-type proc!) 'normalise) 
          (plausible-arguments-to-normalise args!)) 
      (&&normalise (shift-down cont state) 
      (1st args!) (2nd args!) (3rd args!))] 
     [(and (ppc proc!) 
        (plausible-arguments-to-a-continuation args!)) 
       (&&call-ppc (shift-down cont state) 
         proc! 
         (1st args!))] 
     [$t (&&normalise state 
           (body proc!) 
           (bind (pattern proc!) 
              args! 
              (environment proc!)) 
           cont)]))) 

The implementation of NORMALISE-RAIL is similar to NORMALISE-RAIL 
itself, except that explicit procedures are used to implement both 
the FIRST and REST continuations. 

(define &&NORMALISE-RAIL 
 (lambda simple [state rail env cont] 
  (if (empty rail) 
    (&&call state cont (rcons)) 
    (&&normalise state (1st rail) env 
     (make-first-continuation rail env cont))))) 

                                                             
 x In the published paper this line was erroneously printed as  

      (&&call state cont (proc! . args!)) 
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(define &&FIRST-CONTINUATION 
 (lambda simple [state first! rail env cont] 
  (&&normalise-rail state (rest rail) env 
    (make-rest-continuation first! rail env cont))) 

(define &&REST-CONTINUATION 
 (lambda simple [state rest! first! rail env cont] 
  (&&call state cont (prep first! rest!))))) 

LAMBDA and IF must be implemented as primary processor proce-
dures, IF with an explicit procedure in place of its normal con-
tinuation: 

(define &&LAMBDA 
 (lambda simple [state [kind pattern body] env cont] 
  (&&call state cont (ccons kind env pattern body))) 

(define &&IF 
 (lambda simple [state [premise c1 c2] env cont] 
  (&&normalise state premise env 
    (make-if-continuation premise c1 c2 env cont)))) 

(define &&IF-CONTINUATION 
 (lambda simple [state premise! premise c1 c2 env cont] 
  (&&normalise state (ef premise! c1 c2) env cont)))) 

(&&CALL f a1 ... ak) would be like (f a1 ... ak) except that if f is 
a PPP or PPC, the corresponding implementation version is used 
instead; if f is directly implemented, we use the implementation 
directly and then shift up; otherwise we shift up and do an explicit 
expand closure one level higher. 

(define &&CALL 
 (lambda simple x 
  (let [[state (1st x)] [f (2nd x)] [a (rest (rest x)))]] 
   (cond [(ppp f) (&&call-ppp state f a)] 
      [(ppc f) (&&call-ppc state f (1st a)] 
      [(directly-implemented f) 
       (&&call (shift-up state) 
         (reify-continuation state) 
         (f . a))] 
      [$t (&&expand-closure (shift-up state) 
        f a (reify-continuation state))])))) 

(define &&CALL-PPP 
 (lambda simple [state f a] 
  ((select (ppp-type f) 
    ['normalise &&normalise] 
    ['normalise-rail &&normalise-rail] 
    ['reduce &&reduce] 
    ['read-normalise-print &&read-normalise-print] 
    ['if &&if] 
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    ['lambda &&lambda]) 
   . (prep state a)))) 

(define &&CALL-PPC 
 (lambda simple [state f arg] 
  (select (ppc-type f) 
   ['proc (&&proc-continuation state arg (ex 'proc f) 
    (ex 'args f) (ex 'env f) (ex 'cont f))] 
   ['args (&&args-continuation state arg (ex 'proc! f) 
    (ex 'proc f) (ex 'args f) (ex 'env f) (ex 'cont f)))] 
   ['first (&&first-continuation state arg (ex 'rail f) 
    (ex 'env f) (ex 'cont f))] 
   ['rest (&&rest-continuation state arg (ex 'first! f) 
    (ex 'rail f) (ex 'env f) (ex 'cont f))] 
   ['reply (&&reply-continuation state arg (ex 'level f) 
    (ex 'env f))] 
   ['if (&&if-continuation state arg (ex 'premise f) 
    (ex 'c! f) (ex 'c2 f) (ex 'env f) (ex 'cont f))]))) 

The next six MAKE-XXX-CONTINUATION procedures look very messy, 
but they are really trivial: all they do is to construct a closure that 
is identical to the type of closure that would have been constructed 
by the RPP, had it been running instead of this implementation. 
These continuations are only used to fake the RPP; their only use 
here is as templates for later recognition. EX(TRACT) is used to ex-
tract bindings for variables that were enclosed in these faked con-
tinuations. 

(define MAKE-PROC-CONTINUATION 
 (lambda simple [proc args env cont] 
  (ccons 'simple (bind '[proc args env cont reduce] 
           [proc args env cont reduce] 
           global) 
   '[proc!] 
   '(if (reflective proc!) 
      ((de-reflect proc!) args env cont)x 
      (normalise args env 
      (lambda [args!] 
       (if (primitive proc!) 
         (cont (proc! . args!)) 
         (normalise (body proc!) 
             (bind (pattern proc!) 
                args! 
                (environment proc!)) 
             cont)))))))) 

                                                             
 x The ‘’ in this line was ‘’ in the published paper, but that was an error. 
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(define MAKE-ARGS-CONTINUATION 
 (lambda simple [proc! proc args env cont] 
  (ccons 'simple 
     (bind '[proc! proc args env cont reduce] 
         [proc! proc args env cont reduce] 
         global) 
     '[args!] 
     (if (primitive proc!) 
       (cont (proc! . args!)) 
       (normalise (body proc!) 
           (bind (pattern proc!) 
              args! 
              (environment proc!)) 
           cont))))) 

(define MAKE-FIRST-CONTINUATION 
 (lambda simple [rail env cont] 
  (ccons 'simple 
     (bind '[rail env cont normalise-rail] 
         [rail env cont normalise-rail] 
         global) 
     '[first!] 
     '(normalise-rail (rest rail) env 
       (lambda [rest!] 
        (cont (prep first! rest!))))))) 

(define MAKE-REST-CONTINUATION 
 (lambda simple [first! rail env cont] 
  (ccons 'simple 
     (bind '[first! rail env cont normalise-rail] 
         [first! rail env cont normalise-rail] 
         global) 
     '[rest!] 
     '(cont (prep first! rest!)))))) 

(define MAKE-REPLY-CONTINUATION 
 (lambda simple [level env] 
  (ccons 'simple 
     (bind '[level env read-normalise-print] 
         [level env read-normalise-print] 
         global) 
     '[result] 
     '(block (prompt&reply result level) 
        (read-normalise-print level env))))) 

(define MAKE-IF-CONTINUATION 
 (lambda simple [premise c1 c2 env cont] 
  (ccons 'simple 
     (bind '[premise c1 c2 env cont if] 
         [premise c1 c2 env cont if] 
         global) 
     '[premise!] 
     '(normalise (ef premise! c1 c2) env cont)))) 
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(define EX 
 (lambda simple [variable function] 
  (binding variable (environment function)))) 

Various utilities dealing with state management and continua-
tions for each level: 

(define INITIAL-TOWER 
 (lambda simple [level] (scons level)) 

(define SHIFT-DOWN 
 (lambda simple [continuation state] 
  (prep continuation state))) 

(define REIFY-CONTINUATION 
 (lambda simple [state] 
  (if (= (length state) 1) 
     (make-reply-continuation (1st state) global) 
     (1st state)))) 

(define SHIFT-UP 
 (lambda simple [state] 
  (if (= (length state) 1) 
     (scons (1+ (1st state))) 
     (rest state)))) 

Predicates to check the plausibility of arguments, closures, and 
environments, to be used preparatory to shifting down and using 
implementation versions: 

(define PLAUSIBLE-ARGUMENTS-TO-A-CONTINUATION 
 (lambda simple [args!] 
  (and (rail args!) 
    (= (length args!) 1) 
    (handle (1st args!))))) 

(define PLAUSIBLE-ARGUMENTS-TO-NORMALISE 
 (lambda simple [args!] 
  (and (rail args!) 
    (= (length args!) 3) 
    (handle (1st args!)) 
    (plausible-environment-designator (2nd args!)) 
    (plausible-continuation-designator (3rd args!))))) 

(define PLAUSIBLE-ENVIRONMENT-DESIGNATOR 
 (lambda simple [env!] 
  (and (rail env!) 
    (or (= env! global) 
      (empty env!) 
      (and (plausible-binding-designator (1st env!)) 
        (plausible-environment-designator 
         (rest env!))))))) 
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(define PLAUSIBLE-BINDING-DESIGNATOR 
 (lambda simple [b!] 
  (and (rail b!) 
    (= (length b!) 2) 
    (handle (1st b!) 
    (atom (1st b!) 
    (handle (2nd b!)))) 

(define PLAUSIBLE-CONTINUATION-DESIGNATOR 
 (lambda simple [c!] 
  (and (closure c!) 
      (not (reflective c!)) 
      (or (atom (pattern c!)) 
      (and (rail (pattern c!)) 
      (= 1 (length (pattern c!)))))))) 

Predicates defined over closures, sorting them into the various 
types that the implementation needs to know about: PPPs, PPCs, 
etc. Also, there are utilities for recognizing closures of these vari-
ous types. 

(define DIRECTLY-IMPLEMENTED 
 (lambda [closure] 
  (or (primitive closure) 
    (kernel-utility closure)))) 

(define PPP 
 (lambda simple [closure] 
  (not (= 'unknown (ppp-type closure))))) 

(define PPP-TYPE 
 (lambda simple [closure] 
  (identify-closure closure *ppp-table*))) 

(set *PPP-TABLE* 
 [['normalise normalise] 
  ['reduce reduce] 
  ['normalise-rail normalise-rail] 
  ['read-normalise-print read-normalise-print] 
  ['lambda (de-reflect lambda)] 
  ['if (de-reflect if)]]) 

(define PPC 
 (lambda simple [closure] 
  (not (= 'unknown (ppc-type closure))))) 

(define PPC-TYPE 
 (lambda simple [closure] 
  (identify-closure closure *ppc-table*))) 
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(set *PPC-TABLE* 
 [['proc  (make-proc-continuation  '? '?  '?  '? )] 
  ['args  (make-args-continuation  '?  '?  '?  '?  '? )] 
  ['first (make-first-continuation '?  '?  '? )] 
  ['rest  (make-rest-continuation  '?  '?  '?  '? ) ] 
  ['reply (make-reply-continuation '?  '? ) ] 
  ['if    (make-if-continuation    '?  '?  '?  '?  '? )]]) 
(define KERNEL-UTILITY 
 (lambda simple [closure] 
  (member closure *kernel-utility-table*))) 

(set *KERNEL-UTILITY-TABLE* 
 [1st    double   normal   rail 
  2nd    environment normal-rail rebind 
  atom   external  pair    reflective 
  bind   handle   primitive  rest 
  binding  length   prompt&read unit  
  de-reflect member   prompt&reply vector-constructor]) 

(define IDENTIFY-CLOSURE 
 (lambda simple [closure table] 
  (cond [(empty table) 'unknown] 
     [(similar-closure closure (2nd (1st table))) 
      (1st (1st table))] 
     [$T (identify-closure closure (rest table))] I))~ 

(define SIMILAR-CLOSURE 
 (lambda simple [closure template] 
  (or (= closure template) 
    (and (isomorphic (pattern closure) (pattern template)) 
     (isomorphic (body closure) (body template)) 
     (= (reflective closure) (reflective template)) 
     (similar-environment (environment closure) 
             (environment template)))))) 

(define SIMILAR-ENVIRONMENT 
 (lambda simple [environment template] 
  (or (= environment template) 
    (and (empty environment) (empty template)) 
    (and (not (empty template)) 
     (not (empty environment)) 
     (= (1st (1st environment)) (1st (1st template))) 
     (or (= ''? (2nd (1st template))) 
       (= (2nd (1st environment)) 
        (2nd (1st template)))) 
     (similar-environment (rest environment) 
             (rest template)))))) 
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5 — Varieties of Self-Reference†  

  Abstract 
The significance of any system of explicit representation depends 
not only on the immediate properties of its representational struc-
tures, but also on two aspects of the attendant circumstances: im-
plicit relations among, and processes defined over, those individ-
ual representations, and larger circumstances in the world in 
which the whole representational system is embedded. This rela-
tivity of representation to circumstance facilitates local inference, 
and enables representation to connect with action, but it also lim-
its expressive power, blocks generalisation, and inhibits communi-
cation. Thus there seems to be an inherent tension between the ef-
fectiveness of located action and the detachment of general-
purpose reasoning. 

It is argued that various mechanisms of causally-connected self-
reference enable a system to transcend the apparent tension, and 
partially escape the confines of circumstantial relativity. As well as 
examining self-reference in general, the paper shows how a variety 
of particular self-referential mechanisms—autonymy, introspec-
tion, and reflection—provide the means to overcome specific kinds 
of implicit relativity. These mechanisms are based on distinct no-
tions of self: self as unity, self as complex system, self as independ-
ent agent. Their power derives from their ability to render explicit 
what would otherwise be implicit, and implicit what would other-

                                                             
†Original published in Joseph Y. Halpern (ed.), Theoretical Aspects of Rea-
soning about Knowledge: Proceedings of the 1986 Conference, Monterey, Cali-
fornia, March 19–22. Los Altos, California: Morgan Kaufmann: 1986, pp. 
19–43. Also available as CSLI Technical Report CSLI–87–76, Center for 
the Study of Language and Information, Stanford, California, 1986. 
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wise be explicit, all the while maintaining causal connection be-
tween the two. Without this causal connection, a system would ei-
ther be inexorably parochial, or else remain entirely disconnected 
from its subject matter. When appropriately connected, however, a 
self-referential system can move plastically back and forth between 
local effectiveness and detached generality. 

 1 Introduction 
“If I had more time, I would write you more briefly.” So, according 
to legend, said Cicero—thereby making reference to himself in 
three different ways at once. First, he quite explicitly referred to 
himself, in the sense of naming himself (with the word ‘I’) as part 
of his subject matter. Second, his sentence has content, or conveys 
information, only when understood “with reference to him”—
specifically, with reference to the circumstances of his utterance. 
To see this, note that if I were to use the same sentence right now I 
would say something quite different (something, for example, that 
might lead you to wonder whether this paper might not have been 
shorter). Similarly, the pronoun ‘you’ picks someone out only 
relative to Cicero’s speech act; the present tense aspect of ’had’ gets 
at a time two millennia ago; and so on and so forth. Third, as well 
as referring to himself in these elementary ways, he also said 
something that reflected a certain understanding of himself and of 
his writing, enabling him to make a claim about how he would 
have behaved, had his circumstances differed. 

In spite of all these self-directed properties, though, there is 
something universal about Cicero’s statement as well, transcend-
ing what was particular to his situation. It is exactly this univer-
sality that has led the statement to survive. So we might say in 
summary that Cicero referred to himself, that the content of his 
statement was self relative, that he expressed or manifested self un-
derstanding, and yet that, in spite of all of these things, he managed 
to say something that did not, ultimately, have much to do with 
himself at all. 

Or we might like to say such things, if only we knew what those 
phrases meant. One problem is that thay all talk about the famil-
iar, but not very well-understood, notion of ‘self’. Perry (1983) has 
claimed that the self is so “burdened by the history of philosophy” 
as to almost have been abandoned by that tradition (though his 
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own work, on which I will depend in the first two sections, is a no-
table exception). Researchers in Artificial Intelligence (AI), how-
ever, have rushed in with characteristic fearlessness and tackled 
self-reference head-on. AI’s interest in the self is not new: dreams 
of self-understanding systems have permeated the field since its 
earliest days. Only recently, however, has this general interest 
given way to specific analyses and proposals. Technical reports 
have begun to appear in what we can informally divide into three 
traditions. The first., which (following Moore) I will call the 
autoepistemic tradition, has emerged as part of a more general 
investigation into reasoning about knowledge and belief (the 
theme of this conference). A second more procedural tradition, fo-
cusing on so-called meta-level reasoning and inference about con-
trol, is illustrated by such systems as FOL1 and 3-l.isp:2 for discus-
sion I will call this the control camp. Finally, in collaboration 
with the philosophical and linguistic communities, what I will 
call the circumstantial tradition in AI has increasing come to rec-
ognise the pervasiveness of the self-relativity of thought and lan-
guage (self-reference in the sense of “with reference to self”).3 

In spite of all this burgeoning activity, two problems have not 
been adequately addressed. 

The first problem is obvious, though difficult: while many par-
ticular mechanisms have been proposed, no clear, single concept of 
the self has emerged, capable of unifying all the disparate efforts. 
Technical results in the three traditions overlap surprisingly little, 
for example, in spite of their apparently common concern. Nor has 

                                                             
1«Ref» 
2«Ref» 
3For examples of the autoepistemic tradition, see for example Fagin & 
Halpern (1985), Konolige (1985), Levesque (1984), Moore (1983), and 
Perlis (1985). For the control tradition, see Batali (1983), Bowen & Kow-
alski (1982), Davis (1976), Davis (1980), de Kleer et al. (1979), des Rivières 
and Smith (1984), Doyle (1980), Friedman and Wand (1984), Genesereth 
and Smith (1982), Hayes (1973), Laird and Newell (1983), Laird et al. 
(forthcoming), Smith (1982), Smith (1984), and Weyhrauch (1980). For 
the circumstantial tradition, see Kaplan (1979), Barwise and Perry (1983), 
Perry (1985a), Perry (1985b), Perry (forthcoming), and Rosenschein 
(1985). Finally, I should mention those who have studied self-reference in 
specific cognitive tasks: for example Collins (1975) and Lenat and Brown 
(1984). 
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the general enterprise been properly located in the wider intellec-
tual context. For example, as well as exploring the self we should 
understand what sort of reference self-reference involves, and how 
it relates to reference more generally. Also, it has not been made 
clear how the inquiries just cited relate to the self-referential puz-
zles and paradoxes of logic (which, for discussion, I will call nar-
row self-reference). At first glance the two seem rather different: 
AI is apparently concerned with reference to agents, not to sen-
tences, for starters—and with whole, complex selves, not individ-
ual utterances or even beliefs. We are interested in something like 
the lay, intuitive notion of “self” that we use in explaining some-
one’s actions by saying that they lack self-knowledge. It is not ob-
vious that there is anything even circular, let alone paradoxical, 
about this familiar notion (folk psychology does not go into any 
infinite loops over it). And yet we will uncover important similari-
ties having to do with limits. 

The second problem is more pointed: there seems to be a con-
tradiction lurking behind all this interest in self-reference. The 
real goal of AI, after all, is to design or understand systems that 
can reason about the world, not about themselves. Who cares, 
really, about a computer’s sitting in the corner referring to itself? 
Like people, computers are presumably useful to the extent that 
they participate with us in our common environment: help us with 
finances, control medical systems, etc. Introspection, reflection, 
and self-reference may be intriguing and incestuous puzzles, but 
AI is [fundamentally] a pragmatic enterprise. Somehow—in ways 
that no one has yet adequately explained—self-reference must 
have some connection with full participation in the world. 

In this paper I will attempt to address both problems at once, 
claiming that the deep regularities underlying self-reference arise 
from necessary architectural aspects of any embedded system. 
Both cited problems arise from our failure to understand this—a 
failure attributable in part to our reliance on restricted semantical 
techniques, particularly techniques borrowed from traditional 
mathematical logic, that ignore circumstantial relativity. Once we 
can see what problem the self is “designed to solve”, we will be able 
to integrate the separate traditions, and explain the apparent con-
tradiction. 
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The analysis will proceed in three parts. First, in section 2 I will 
assemble a framework in terms of which to understand both self 
and self-reference, motivated in part by the technical proposals just 
cited. The major insights of the circumstantial tradition will be 
particularly relevant here. Second, in section 3, I will sketch a ten-
tative analysis of the structure of the circumstantial relativity of 
any representational system. This specificity will be necessary in 
order to ground the third, more particular analysis, presented in 
section 4, of a spectrum of self-referential mechanisms. Starting 
with the simple indexical pronoun ‘I’, and with unique identifiers, 
I will examine assumptions underlying the autoepistemic tradi-
tion, moving finally to canvass various models of introspection 
and reflection that have developed within the control camp. 

The way l will resolve the contradiction is actually quite simple. 
It is suggested by my inclusion of self-relativity right alongside 
genuine self-reference. Some readers (semanticists, especially) may 
suspect that this is a pun, or even a use/mention mistake. But in 
fact almost exactly the opposite is true. [It is a fundamental thesis 
underlying the present analysis that] the two notions are inti-
mately related, forming something of a complementary pair. Time 
and again we will see how an increase in the latter (self-reference) 
enables a decrease in the former (self-relativity). For fundamental 
reasons of efficiency, all organisms must at the ground level be 
tremendously self-relative.a On the other hand, although it en-
ables action, this [basic] self-relativity inhibits cognitive expres-
siveness, proscribes communication, restricts awareness of higher 
level generalisations, and generally interferes with the agent’s at-
taining a variety of otherwise desirable states. The role of self-
reference, [it will be argued,] is to compensate for this parochial self-
relativity, while retaining the ability to act, 

Explicit self-reference, that is, can provide an escape from im-
plicit self-relativity. 

Intuitively, it is easy to see why. Suppose, upon hearing a twig 
break in the woods, I shout “There is a bear on the right!” My 
meaning would be perfectly clear, but I have explicitly mentioned 
only one of the four arguments involved in the TO-THE-RIGHT-OF 

                                                             
a«Talk about this as a precursor to the deixis adumbrated in O3» 
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relation;4 the other three remain implicit and self-relative, deter-
mined by circumstance. However I can lessen the degree of implicit 
self-relativity by mentioning some of the other arguments explic-
itly. Look at this as a two stage process: one to get rid of the implic-
itness, one to get rid of the self-relativity (implicitness and self-
relativity, that is, are distinct; both characterise ground-level ac-
tion). In particular, the first move is to shift from the original 
statement to another that has roughly the same content, but that 
makes another argument explicit: “There is someone to the right of 
me.” This latter statement is still self-relative, of course, but in a 
different, explicit, way. Now that I have a place for another argu-
ment, I can make the second move, and use a different expression 
to refer to someone else: “There is someone to the right of you,” or 
“There is someone to the right of us all.” 

Thus the self provides a fulcrum, allowing a system to shift in 
and out of the particularities of its local situation. Both directions 
of mediation are necessary: neither totally local relativity, nor 
completely detached generality, would be adequate on its own. 
Roughly, the first would enable you to act, but thoughtlessly; the 
second, to think, but ineffectively. 

So there is really no contradiction, after all. But there is some 
irony: the self is the source of the problem, as well as being an in-
gredient in the solution. The overall goal in attaining detached 
general-purpose reasoning is to flush the self from the wings. How-
ever, the way to do that is first to drag it onto center stage. If you 
were to stop there, then you really would be stuck with a contra-
diction—or at least with a system so self-involved it could not rea-
son about the world at all. Fortunately, however, once the self is 
brought into explicit view, it can then be summarily dismissed. 

 2 Circumstance, Self, and Causal Connection 
«Put in an introductory sentence or three … » 

… 

                                                             
4The fourth is orientation. Even if you and I are in essentially the same 
place, and looking out in the same direction, and if A is to the right of B 
from my point of view, A will nonetheless be to the left of B from your 
point of view. if you happen to be standing on your head. Gravity estab-
lishes such a universal orientation that we rarely need to make this [final?] 
circumstantially determined argument position explicit. 
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 2a Assumptions 
I will focus on representational systems—without defining them, 
though I will assume they include both people and computers, at 
least with respect to what we would intuitively call their linguistic, 
logical, or rational properties. For a variety of reasons I will not in-
sist that representational systems be ‘syntactic’ or ‘formal’ (al-
though what I have to say would equally well apply under what 
people take to be that conception).5 Several other assumptions, 
however, will be important. 

First, I take it that systems do not represent as indivisible 
wholes, in single representational acts, but in some sense have rep-
resentational parts, each of which can be said to have content at 
least somewhat independently (what content a part has, however, 
will often depend on all the other parts—i.e., the parts do not need 
to be semantically independent). I take this notion of ”part” very 
broadly: parts might be internal structures (tokens of mentalese, 
data structures, whatever), distinct utterances or discourse frag-
ments issued over time, or even different aspects or dimensions of a 
complex mental state (what Perry has informally called mental 
“counties”). I will use ‘agent’ or ‘system’ to refer to a representa-
tional system as a whole, and ‘representational structure’ to refer 
to [such] ingredients. When I specifically want to focus on the in-
ternal structures that are causally responsible for an agent’s or 
system’s actions, however, I will talk of impressions (as opposed 
to expressions, which I take to be tokens or utterances, external to 
an agent, in a consensual [or communicative] language). Impres-
sions are meant to include data structures, elements of a knowl-
edge representation system, or aspects of a total mental state. Such 
structures are sometimes classified abstractly (particularly in 
[computer science’s] “abstract data type” tradition), or identified 
with other abstract things to which they are thought to be isomor-
phic (like beliefs), but I will refer to them directly, because of my 
architectural bias and interest in causal role. 

Second, [as well as severally constituting a complex system or 
agent as a whole,] representational structures are themselves likely 

                                                             
5[I set formality aside] primarily because, [in spite of prevailing consensus,] 
I do not think the notion is in fact coherently applicable to computation. 
See [Smith forthcoming (a)]. 
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to be compositionally constituted, which just means that they too 
may have parts (nothing is being said about compositional se-
mantics—at least not yet). Again, the notion of part is rough: 
imagine something like a grammatical structure, or set of partially 
independent properties or elements, each of which contributes to 
the meaning of the whole. Utterances constituted of words accord-
ing to the dictates of grammar are one example; composite struc-
tures in a data or “knowledge” base are another. Thus the words 
‘I’, ‘would’, ‘have’, and so on, are components of Cicero’s claim (at 
least in its English translation). Since the term ‘element’ is biased 
towards ingredient objects and away from features or characteris-
tics, and ‘property’ is biased the other way, I will refer to such parts 
as aspects of a structure or impression. 

Finally, each constituent will be assumed to have what philoso-
phers would call a meaning which is something, probably abstract, 
that indicates just what and how it contributes to [what I will call] 
the interpretive content of the composite wholes in which it partici-
pates (i.e., I mean now to embrace just about the weakest form of 
compositional semantics I can imagine). Meaning [in this sense] 
is not, typically, the same as [interpretive] content; rather, it is 
something that plays a role in giving a representation, or a use of a 
representation, whatever [interpretive] content it has. So the mean-
ing of the word ‘Caitlyn’ might be something like a relation be-
tween speakers and the world, a relation that enables those speak-
ers, when they use the word, thereby to refer to whomever has that 
particular name in the overall situation being described. Though 
it is ultimately untenable, one can think of meaning as something 
a representational structure has “on its own”, so to speak, in the 
sense of being independent of context of use; the [interpretive] 
content arises only when it is used, in a full set of circumstances. 
So ‘I’ means the same thing when different people use it, but those 
uses have different [interpretive] contents—[you when you use it, 
I when I do]. 

As well as distinguishing meaning and content, we need to dis-
tinguish the latter—roughly, what a representation or statement 
is about—from an even wider notion of [general] semantical sig-
nificance, where the latter is taken to include not only the content 
but the full conceptual or functional role that the representational 
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structure can play in and for the agent.6 So for example in a com-
puter implementation of a natural deduction system for tradi-
tional logic, a formula’s content might be taken to be its standard 
(model-theoretic) interpretation, whereas its full significance 
would include its proof-theoretic role as well. It is distinctive of 
standard logical systems to view a sentence’s meaning as the sole 
determiner of its content, and to take content as independent of 
any other aspect of significance. Situation theory7 distinguishes 
meaning and content, and admits the dependence of the latter on 
circumstance, but takes both as specifiable independent of concep-
tual or functional role. In some of the cases we will look at, how-
ever, such as the use of inheritance mechanisms to implement de-
fault reasoning, all three will be inextricably intertwined.c 

 2b Circumstantial Relativity 
The first and most important observation we can make about rep-
resentational systems in terms of these distinctionsd is that a great 
deal of the full significance of a representational system will not, 
in general, be directly or explicitly represented by any of the repre-
sentational structures of which it is composed. Instead, [that ad-
ditional significance] will be contributed by the attendant circum-
stances. Section 3 will be devoted to saying what “attendant cir-
cumstances” might mean, but some familiar examples will illus-
trate the basic intuition. As we have already seen, whom the word 
‘I’ refers to is not indicated on the word itself, nor is it part of the 
word’s meaning; rather, the meaning of T, [given the notion of 
meaning we are using,] is merely that it refers to whomever says 
it—[with the narrowing of that generic meaning to a particular 
individual settled by the particularities of the saying.] Similarly, 
the referent of a pronoun may be determined by the structure and 
circumstances of the conversation in which it is used. If I say “So-

                                                             
6The term “conceptual role” is associated with Harman; see Harman 
(1982), and Smith (1984) for a computational account treating both con-
tent and conceptual role simultaneously. 

7See Barwise & Perry (1983). 
c«That paragraph is extraordinarily dense; admit this, and maybe say some-
thing about what it means? A sidebar?» 

d«I.e., the ability to refer to the compositional contribution to meaning, 
content, and full significance of mereological impressions.» 
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lar tax credits have been extended for a year,” the year in question, 
and the temporal constraints I place on it by using the past tense, 
emerge from the time of my utterance, not from anything explicit 
in the [meaning of the] words. And, to take perhaps the ultimate 
example, whether what I say is true—which is, after all, part of its 
significance—is determined by the world, not (at least typically) 
by anything about the sentence itself. 

Similarly, as the Carroll paradoxes show,e the fundamental 
rules of inference cannot themselves emerge in virtue of being ex-
plicitly represented, because further or deeper rules of inference 
would be required in order to use them. Nor do even the so-called 
“eternal” sentences of mathematics and logic carry all of their sig-
nificance on their sleeve. [While relevant to their semantical con-
tribution, the syntactic category of lexical items in logical formulae 
is not explicitly represented:] that a predicate letter is a predicate 
letter is true in, but is not represented by, that formula. Similarly, 
Lisp’s being dynamically scoped is not explicitly represented in 
Lisp; [the same holds for the order of argument evaluation—left-
to-right or right-to-lefte]. Or take the inheritance example sug-
gested above: suppose you implement a representation system 
where a (representation of a) property attached to a node in a 
taxonomic lattice is taken to mean “an object of this type should be 
taken to have this property unless there is more specific evidence to 
the contrary.” Thus, to use the standard example, if an impression 
of FLIES(x) is attached to the BIRD node, then the system is wired to 
“believe” that a particular bird will fly so long as there is not an 
impression of ¬FLIES(x) attached in the lattice between the BIRD 
node and the individual node representing the bird in question. 
In such a system the content (not meaning!) of the “so long as 
there is not…” part of the impression’s meaning is architecturally 
determined: it is an implicit part of the overall system’s structure, 
not explicitly represented, and it depends on the surrounding cir-
cumstances that obtain throughout the rest of the system, not on 
anything local to the particular structure under consideration. 

This last example is intended to suggest why I am not distin-
                                                             
e«They should probably be explained: maybe with reference to the Alice in 
Wonderland case?» 

e‘«Maybe note that it is not even revealed by standard meta-circular inter-
preter code.» 
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guishing internal circumstance (whether there are other impres-
sions standing in certain relational properties with a given one, 
say) and external circumstance (who is talking, where the agent is 
located, etc.). An informal division between the two will be intro-
duced in section 3, but the similarities are more important than 
the differences, as evidenced in the similarities of mechanisms to 
cope with them. For one thing, since activity has to arise, ulti-
mately, from the local interaction of parts, it may not matter 
whether a part’s relational partner is somewhere across the system, 
or outside in the world; what will matter is that it is not right 
“here.” Perhaps more significantly, the internal/external distinc-
tion is far from clean: since agents are part of the world in which 
they are embedded, some properties cross the boundary. For ex-
ample, the passage of so-called “real time” is often as crucial for in-
ternal mechanism as for overall agent. 

 2c Efficiency 
Before trying to carve circumstantial relativity into some coherent 
substructure, it helps to understand why it is so pervasive. The an-
swer has to do with efficiency, in a broad sense of that term. Spe-
cifically, in order for a finite agent to survive in an indefinitely 
variable world, it is important that multiple uses of its parts or as-
pects have different consequences, each appropriate to how the 
world is at that particular moment. Partly this enables a system to 
avoid drowning in details: any facts that are persistent across its 
experience can be “designed out,” so to speak, and carried by the 
environment (as gravity carries the orientation argument for the 
human notion of to-the-right-of). But efficiency goes deeper, hav-
ing also to do with how to cope with genuinely different situa-
tions. 

The point is easiest to see in the case of action, where it is in fact 
so obvious as to be almost banal. Specifically, different occurrences 
of what we take to be the “same” action have different consequences, 
depending on the circumstances of the world in which they take 
place. So if I take a scoop with my backhoe, what I pick up in its 
shovel will depend not on my action as such, but on the ground 
behind my tractor. Thus l can perfectly coherently say things like 
“after doing the same thing over and over, l suddenly cut the tele-
phone cable.” I.e., one can imagine viewing an action (read: mean-
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ing) as a relation between a local flexing of the tractor’s append-
ages and the situation in which that flexing takes place. The con-
sequences of the action in a given situation (read: content) can be 
determined by applying the relation to the situation itself. 

Our conception of actions works in this way because any other 
way of “parsing” it would be devastatingly inefficient. Each day we 
want our actions to lead to different consequences (eating new 
meals, for example); it would be a terrible strain if we had to be 
structured differently for each one (to say nothing of: a terrible 
strain if we had to describe the way we were structured each day, 
in a manner that had to take explicitly into account the meta-
physical way in which the new day was different). As it is, we can 
have (or use) a finite and relatively stable structure, which can lo-
cally repeat doing the “same” things; the circumstantial relativity 
of perception and action will take care of providing the new conse-
quences. The result is an efficient solution to what Perry charac-
terises as a fundamental design problem:e 

“Imagine you want to populate the world with animals that 
will act effectively to meet their needs. 

There is one fundamental problem. Since these organisms 
will be scattered about in different locations, what they 
should do to meet their needs will depend on where they are 
and what things are like around them. This seems to present 
a problem. You can’t just make them all the same, for you 
don’t want them to do the same thing. You want those in 
front of nuts to lunge and gobble, and those who aren’t to 
wander around until they are. (I have Grice’s squarrels in 
mind.) 

You decide to make them each different…But then it 
strikes you that there is a more efficient way to do it. You can 
make them all the same, as long as you are a bit more abstract 
about it. You can make them all the same, [in the sense of 

                                                             
e«Note that this entire discussion—including Perry’s—only gestures, 
rather crudely, at the point, because it makes free use of such construc-
tions as “same” and “different,” both of which are defined with respect to 
types,  which already build in many of the points being made. To makes 
these points without some such presupposition is impossible; to say it as 
carefully as possible, while nevertheless acknowledging that ultimate limita-
tion, would take several pages of exceedingly complex metaphysics.» 
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having] their action controlling states depend on where they 
are. And you can do that, by giving them perception, as long 
as it is perception of the things about them. That is, you can 
make their internal states work in terms of what we have 
called subject relative conditions and abilities. You make them 
each go into state G when they are hungry and there are 
nuts in front of them, and each lunge forward and gobble 
when they are in state G. 

This way of solving a design problem, we call efficiency.”8 

Like eating, representation needs to be efficient, and for similar 
reasons. First, actions are required in order to use and profit from 
the internal impressions: what page a least-recently-used virtual 
memory system discards, for example, will depend on circum-
stances. Second, impressions can themselves be circumstantially 
relative (what Perry calls “subject-relative”) as both the pronoun 
and inheritance examples show. Finally, you would expect ground-
level representations—representations connected directly with ac-
tion and perception—to have the same (efficient) relativity as the 
actions and perceptions with which they are connected. Only in 
this way is there any hope of giving the connection between repre-
sentation and action the requisite integrity. It is plausible to imag-
ine a signal on the optic nerve directly engendering a rough im-
pression of THERE-IS-SOMETHING-TO-THE-RIGHT, but implausible 
to imagine its producing (and even this, of course, is still earth-
relative):f 

 RIGHT(SOMETHING, 38°N/120°W, 187°N, GRAVITY-NORMAL, 
 3-JAN-86/12:40:04) 

Similarly, the stomach must first create the grounded, impression 
“HUNGRY!”; it takes inference to turn this into “Won’t you have 
some more pie?” 

 2d The Role of the Self 
Circumstantial relativity is not something an agent should expect 

                                                             
8Perry (1983); second emphasis added. 
fThe arguments of location (38°N/120°W), orientation (187°N), vertical-
orientation (GRAVITY-NORMAL), and time (3-JAN-86/12:40:04) held of the 
author at the moment this paper was written. 
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to get over, but it [nevertheless] has a down side. First, it does not 
lend itself to communication, if the relevant circumstances of the 
two communicators differ. If some agent A were simply to give an-
other agent B a copy of one of its representational impressions, and 
B were to incorporate it bodily, the result might have completely 
different significance (and possibly even meaning) from the origi-
nal. Information would not have been conveyed.g If you are facing 
me, hear me say “There is a bear on the right!”, take the sentence as 
your own, and then leap to your left, you would land in trouble. 

Second, one of representation’s great virtues is that it can em-
power a system with respect to situations remote in space or time, 
outside the system’s own local circumstances.g However, in order 
to represent those situations using impressions connected to those 
it uses to control action, the system must at least represent its own 
relativity, in order to be able to mediate between those less self-
relative generalisations and more familiar implicit ones. I.e., to the 
extent that the content of its representational structures arise from 
implicit factors, it is impossible for a system to modify, discrimi-
nate with respect to, or make different use of any of the implicitly 
represented aspects of those representations’ contents. If 
“HUNGRY!”, without any argument, is the system’s only means of 
representing the property of hunger, then it will not be able to rep-
resent any generalisation involving anyone else (such as that the 
bear on the right is hungry), or anything generic, such as that 
hunger sharpens the mind. 

The third limit arising from circumstantial relativity depends 
on another fundamental fact about representation: its ability to 
represent situations in ways other than how they are. I will call 
this property of representation its partial disconnection (thus tree 
rings, under normal conditions of rainfall, do not quite qualify as 
representations, on this account, because they are so nomically 
locked in to what they purportedly represent that they cannot be 
wrong). A particular case of internal disconnection illustrates the 
third limit of circumstantial relativity. 

Typically, as long as some aspect of its internal architecture is 

                                                             
gOn the assumption that by ‘information’ we mean information content. 
g«Put in a pointer to the non-effective relations to the distal that occupy so 
much of my attention later on.» 
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not represented, a system will behave in the “standard” way with 
respect to that aspect. So to consider the inheritance example 
again, the default FLIES(x) will always be interpreted by the under-
lying architecture in the “so long as there is not…” way. Suppose, 
however, that you want a variant on this behaviour: say, that the 
default should be over-ridden not if any specific information to 
the contrary is represented, but only if that more specific contrary 
information has been obtained from a reliable external source. Be-
ing implicit, however, the default way of doing things is not avail-
able for this kind of modification. But if the internal dependence 
had been explicitly represented, then (as a consequence of the gen-
erative power of representation generally) the appropriate modifi-
cation of the default behaviour could likely be represented as well. 
[And then—assuming that representation of internal behaviour is 
causally linked with how and what internal behaviour actual 
comes about, the modification could take effect.g] In this way (un-
der some constraints we will get to in a moment) a system could 
alter its behaviour appropriately. 

In sum, explicit representation of circumstantial relativity paves 
the way for more flexible behaviour; without it, a system is locked 
into its primitive ways of doing things. 

Among other things, the representation of circumstantial relativ-
ity requires the representation of one’s self, because that self, [in 
both its generality and particularity, is almost invariably] the ul-
timate source of the relativity. There are of course different aspects 
of self, corresponding to different aspects of relativity: the self as a 
unity (useful in such cases as TO-THE-RIGHT-OF), the self as a 
complex organization (applicable to the inheritance example), the 
self as an agent (relevant to generalising about the consequences of 
hunger). 

Note that merely giving a system an impression that refers to it-
self does not automatically solve the problem of circumstantial 
relativity. To see this, imagine installing within a system, as if by 
surgery, some impressions less self-relative than usual. For exam-
ple, one might imagine giving a system: (i) a three-place represen-

                                                             
g«Say something about how this “causal connection” becomes a big issue 
later on—and cite §.» 
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tation of “to-the-right-of”—say, RIGHT3(x,y,z); and (ii) a distin-
guished token—say, $ME—to use as its own name. Chances are 
that the provision of such representations would be conceptually 
possible, in the sense of not being architecturally precluded. They 
might enable the system or agent to reason (rather like a theorem-
proving system) about some world. The problem would be that, 
without additional machinery, there would be no way for that 
system to act in that world, were it to find itself suddenly located 
there—i.e., no way for it to connect an occasioning of RIGHT3 with 
an occasioning of the grounded THERE’S-8OMETHING-TO-THE-
RIGHT!). The experience for the system might be a little like that of 
students who learn mathematics in a totally formal way (in the 
derogative sense), being able to manipulate formulae of various 
shapes around in prescribed ways, with no real sense of what they 
mean. Merely providing such explicitised representations, and ty-
ing them into the system’s general reasoning abilities, does not in 
and of itself make such representations matter to the system; they 
would not thereby be connected with the agent’s life [in the way in 
which the presumed interpretation would imply]. Furthermore, in 
a more realistic case where surgery is precluded (say, ours), there 
is no way to see how such representations could arise [either 
phylogenetically or ontogenetically], given that they would have 
no direct tie to action or perception. 

There is a problem, in other words: systems and agents must 
connect any explicit representations of their circumstantial relativ-
ity with their grounded, circumstantially relative representations, 
which in turn connect with action. I will call this the problem of 
appropriately connected detachment. Entirely disconnected de-
tachment, as the surgery example shows, is likely to be easy 
enough to obtain (at least in some architectural sense), but on its 
own would not be significant. Totally connected detachment, 
though somewhat of a contradiction in terms, one be imagined as 
an explicit representation so locked into the default circumstances 
that it provides no power above and beyond what the grounded 
default case provided in the first place (tree rings might be an ex-
ample—they are fully connected, at least for the live tree). 

What is wanted is a mechanism that will continually mediate 
between the two kinds of representation—that will enable a system 
to shift, smoothly and flexibly, between indexical and implicit rep-
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resentations that can engender action, and generic and more ex-
plicit representations that enable it to communicate with others 
and in general have a certain detachment from its own circum-
stances. The problem, that is, is to provide something like an abil-
ity to “translate” between the two kinds (or, rather, among elements 
arranged along a continuum, or even throughout a space—as we 
have started to see, this is no simple dichotomy), just often enough 
to maintain the appropriate causal connection between located 
action and detached reasoning, but not so often as to lock them to-
gether. The right degree of partially causally connected self-
reference, in other words, is our candidate for solving the problem 
of connected detachment. It enables a system to extricate itself from 
the limits of its own indexicality, and yet at the very same moment 
to remain causally connected to its own ability to act. 

There is one final thing to be said about self-reference mecha-
nisms in general, before turning to particular varieties. In any rep-
resentational system, [it is widely agreed], the task domain or sub-
ject matter must be represented in terms of what we might call a 
theory or conceptual scheme that identifies the salient objects, prop-
erties, relations, etc., in terms of which the terms and claims of the 
representation are stated [i.e., in terms of which that task domain 
or subject matter is found intelligible]. With the possible exception 
of some extreme limiting cases, that is, [it is safe to say that] repre-
sentation is theory-relative. By this I do not mean so much relative 
to an explicit account, in the sense of a theory viewed as a set of 
sentences, but relative to a way of carving the world up, a way of 
finding oneself coherent, a scheme of individuation.h 

Granting this theory-relativity, we can see that causally con-
nected self-reference requires the following three things: 

1. A theory of the self, in terms of which the system’s behav-
iour, structure, or significance can be found coherent. 
There is no particular aspect of the self that needs to be 
made explicit by this theory; we will see examples ranging 
from almost content-free sets of names, to complex accounts 
of internal properties and external relations. 

                                                             
hPoint forward to the discourse on registration that I introduce—in O3?» 
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2. An encoding of this theory within the system, so that 
representations or impressions formulated in its terms can 
play a causal role in guiding the behaviour of the system. 

3. A mechanism of appropriate causal connection that en-
ables smooth shifting back and forth between direct think-
ing about, and acting in, the world, and detached reason-
ing about one’s self and one’s embedding circumstances. 
The only example we have seen so far is a mechanism that 
mediates between k-ary and k+1-ary representations of n-
ary relations, as in the TO-THE-RIGHT-OF case; more com-
plex examples will emerge. 

The first two alone are not sufficient because they do not address 
the problem of causal connection. Thus the so-called “meta-
circular interpreters” of List, as presented for example in Steele & 
Sussman (1978), meet the first two requirements, but since there is 
no connection between such meta-circular interpreters and the 
underlying system they are disconnected models of, they fail to 
meet the third. As such, they fail to meet the criterion of being able 
to serve as appropriately causally connected self-reference. 

 3 The Structure of Circumstance 
I said earlier that particular mechanisms of self-reference can be 
understood as responses to different aspects of circumstantial 
relativity, which depend in turn on different aspects of circum-
stance itself. This means that, in order to understand these differ-
ent mechanisms, we need an account of how circumstance is struc-
tured. This is a problem, for several reasons. First, there is proba-
bly no more problematic area of semantics. Second, we need a gen-
eral account, since the whole point is to unify different proposals; 
nothing would be served by an account of how circumstance is 
treated by, say, semantic net impressions of a first-order language. 
Third, we especially cannot assume the circumstantial structure of 
traditional first-order logic, since the whole attempt to make logi-
cal and mathematical language “eternal” can be viewed as an at-
tempt to rid such systems of as much circumstantial relativity as 
possible. Although that goal has not entirely been met, as the 
Carroll paradoxes show, the formulae of logical systems certainly 
lack some of the important kinds of relativity that characterise em-
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bedded systems. 
Given these difficulties, my strategy will be to give a rough 

sketch of some of the possible structure of circumstance. All that I 
will ask is that what I provide support the demands of the next sec-
tion. Since my basic aim is to show how the structure of self-
reference reflects the structure of circumstantial relativity, any par-
ticular analysis of circumstance—including this one—can be 
taken as somewhat of an example. 

By the immediate aspects or properties of a representational 
structure or impression l will mean those properties that can play a 
direct causal role in engendering any computational regimen de-
fined over them. As such, they must not be relational—especially 
not to distal objects—but instead be locally and directly deter-
minable (at least local and determinable within the system as a 
single whole), in such a way that a process interacting with or us-
ing the representation can “read off” [the presence or absence of an 
instantiation of] the property without further ado (i.e., without in-
ference). Immediate aspects or properties, that is, must be immedi-
ately causally effective, in the sense that processes interacting with 
the structures can act differentially depending on their presence or 
absence—depending on whether or not they are occasioned. 

For example, the (type) identity of tokens of a representational 
code (i.e., whether or not a given structure is a token of the word 
‘elaborate’), how many elements a composite structure has, etc., 
would on this account be counted as immediate. Non-immediate 
properties would include truth, being my favourite representation, 
and whether there is another type-identical representation else-
where in a larger composite structure or system of which this par-
ticular representational structure is a part. This last example sug-
gests that immediacy, which otherwise sounds like Fodor’s notion 
of a formal property, is more locally restrictive, since all “internal” 
properties of a computational system, it seems, count as formal to 
him.9 Positive existence will count as immediate, but negative exis-
tence not, since there is nothing for the latter property to be an im-
mediate property of. 

                                                             
9Immediacy can also be less restrictive than formality, however, since I will 
countenance some semantic properties as immediate, such as the refer-
ence of direct quotations, small arithmetic properties exemplified by im-
mediate structures, etc. See Fodor (1980) and Smith «forthcoming (a)». 
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Although it is tempting to compare the notion of an immediate 
property with apparently more familiar notions, such as of a syn-
tactic, intrinsic, or non-relational property, such comparisons would 
involve us in more complexity than they are worth. The important 
point is merely that, with the notion of immediacy, I mean to get at 
those aspects of a representational structure that [are available to] 
affect or engender processes that use it; just what such potentially 
effective properties are, especially in any given case, is less impor-
tant.i 

In the last section I distinguished a system as a whole, its ingredi-
ent structures, and those structure’s aspects or parts. With (i) that 
set of distinctions, (ii) our semantic notions of meaning, content, 
and significance, and (iii) the current notion of immediacy, we 
have in hand everything we are going to need to lay out the ac-
count of self-reference. 

Specifically, I will say that something is explicitly represented 
by a structure or impression if it is represented by an immediate 
aspect of that structure. In contrast, something is implicit (with 
respect to an action or representation) if it is part of the circum-
stances that determine the content or significance of the represen-
tation or action, but is not explicitly represented. For example, I am 
explicitly represented by the sentence “I am now writing section 3 
of this paper,” since ‘I’ is a grammatical constituent of that sen-
tence, and constituent identity is immediate. On the other hand, if 
I continue by saying “but I should stop because it is after mid-
night,” and the word ‘midnight’ represents the time in the Pacific 
Time Zone, then the Pacific Time Zone is an implicit part of the 
relevant circumstances (even though it is not part of the reference 
of ‘midnight’—i.e., of the metaphysical moment thereby referred 
to). Similarly, if I say “There is a bear to the right,” I am implicitly 
involved, but not explicitly represented. 

                                                             
iTo put this on the verge of pedantically, one could say that immediacy is a 
relational higher-order property, since it has to do with the ability of (a to-
kening or occasioning of) another property to cause an effect; whereas syn-
tactic, intrinsic, formal, etc., could at least be argued to be non-relational 
higher-order properties, if one felt that whether a property was or was not 
a syntactic property depending solely on, as it were, ‘local’ or intrinsic facts 
about that property itself. 



 5 · Varieties of Self-Reference 

 303 

There are shades of a use/mention distinction in the way I am 
characterising the implicit/explicit distinction: things are explic-
itly represented (nothing, yet, is explicit on its own) only if they 
are out there in the content, so to speak—part of the described 
situation, or referents. Something is explicitly represented, that is, 
only if it is mentioned,j whereas something can be implicit either if 
it is used, or if it plays a middle role, not part of the sign itself, nor 
of the content or significance, but of the surrounding circum-
stances that mediate between the two. Thus the words of an utter-
ance, on this view, are an implicit part of the circumstances that 
determine that utterance’s content, since they are not themselves 
explicitly represented by the utterance (i.e., I am explicitly repre-
sented by the sentence “I am writing,” but in that sentence the word 
‘I’ plays only an implicit role). Where it will not cause confusion, 
however, I will also talk about explicit or implicit representations of 
things, as shorthand for “representations that represent those 
things explicitly or implicitly.” 

Finally, by extension, I will say that something is explicit (sim-
pliciter) only if it meets two criteria: (i) it is explicitly represented, 
and (ii) it plays the role it plays in virtue of that explicit represen-
tation. So someone would be said to be an explicit part of a conver-
sation only if they were explicitly referred to, and had whatever in-
fluence they had in virtue of that explicit representation. From this 
definition it follows that to make something explicit is to repre-
sent it explicitly in a causally connected way. Being implicit and 
explicit thus end up rather on a par, in the sense that both have to 
do with playing a role: to be implicit is to play a role directly; to be 
explicit is to play a role in virtue of being explicitly represented—
which is to say, being represented by an immediate property. 

We need to define one further notion, and then we are done. I 

                                                             
jHere and elsewhere throughout my writings, it is my habit to generalise the 
familiar notions of ‘use’ and ‘mention’ by extending ‘mention’ to apply to 
those objects referred to or named by uses of ground-level terms. Thus I 
would not only say (i) that, in the sentence “The word ‘Nile’ contains four 
letters,” the six-character expression ‘Nile’ is used, whereas the four-letter 
expression Nile is thereby mentioned (using italics in these last two 
phrases as a mentioning device!); but also (ii) that in the sentence “The Nile 
is more than four thousand miles long,” the four-letter expression Nile is 
mentioned, and a very long river is mentioned. 
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have already called representational structures self-relative if dif-
ferent occurrences of them (or things of which those occurrences 
are a part) are part of the circumstances that determine their con-
tent. As pointed out above, however, there is more than one notion 
of part: part of the whole, and part of part of the whole. Rather 
than proliferating a raft of different mereological notions of self-
relativity, it will be convenient merely to separate the facts and 
situations of the overall circumstances into three broad categories: 
external circumstances, having to do with parts of the world in 
which the overall system is not a participant; indexical circum-
stances, including those situations in the world at large in which 
the system is a constituent, and internal circumstances, includ-
ing both the ingredient impressions, processes defined over them, 
relations among them, etc. Thus who is President, at the time of 
any given utterance or act of reasoning, and whether Shakespeare 
wrote the sonnet discovered in the Bodleian Library, would be 
paradigmatically external. Where a person or reasoning agent 
was, and whom it was talking to, would be (for it) indexical. In-
ternal circumstances would include whether a represented for-
mula’s negation is also represented; what inference rules can be, or 
are being, applied; how often this impression has been used since 
the system’s last cup of coffee; etc. Finally, representations will de-
rivatively be called external, indexical, or internal (or a mixture) 
depending on whether their content depends on the correspond-
ing kind of circumstance. 

This typology allows us to say all sorts of natural things: that 
the agent plays an implicit role in the significance of THERE-IS-
SOMETHING-TO-THE-RIGHT!; that ‘I’ is an explicit, indexical repre-
sentation of an agent; that a truly unique identifier would be an 
explicit, non-indexical name; etc. Note also that a formula in a 
system of first order logic, at least in terms of its standard model-
theoretic interpretation, has no implicit relativity to external or in-
dexical circumstance (other than to the described situation itself), 
and no relativity to internal circumstance “outside” the formula, 
but aspects of it are nonetheless relative to the (implicit) internal 
structure of the formula itself. Whether an occurrence of variable 
is free, for example, or what quantifier binds it, is implicitly deter-
mined by the structure of the expression containing it. Prolog im-
pressions, however, are implicitly relative to internal circumstances 
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of the beyond-formula variety (because of such operations as CUT, 
etc.), and are often used indexically. For example, the Prolog term 
RIGHT(JOHN,MARY), if it meant that Mary was to the right of John 
from the system’s perspective, would be counted as indexical. 

 4 Varieties of Self-Reference 
We are now finally in a position to show how various mecha-
nisms of self-reference facilitate various forms of connected de-
tachment. 

 4a. Autonymy 
I will call a system autonymic just in case it is capable of using a 
name for itself in an appropriately causally connected way. Just 
using a name that refers to itself does not make a system 
autonymic, even if that use affects the system in some way. What 
matters is that the name connect up, for the system, with its under-
lying, grounded, indexical architecture. To see this, imagine an 
expert system designed to diagnose possible hardware faults based 
on statistical analyses of reports of recoverable errors. Such a sys-
tem might be given the data on its own recoverable errors, filed 
under a name known by its users to refer to it. The system’s run-
ning this particular data set, furthermore, might eventually affect 
its very own existence (leading to board replacement, say). Even so, 
the system’s behaviour in this case would not be any different from 
its behaviour in any other; it would yield up its conclusions en-
tirely unaffected by the self-referential character of this externally 
provided name. When systems or agents respond differentially, 
however as for example do most electronic mail systems, which 
recognise and deal specially with messages addressed to their own 
users, forwarding other messages along to neighbouring ma-
chines—they will merit the autonymical label. 

As we have already seen, two ingredients are required for 
autonymy. The first is a mechanism to convert between k-ary and 
k+1-ary impressions of n-ary relations.10 For example, from the 0-

                                                             
10For reasons that will be obvious, I do not think there is ever any reason—
or need—to presume there is a final “fact of the matter” regarding how 
many arguments relations really have (or even that relations, as opposed to 
representations of them. have an “arity”). What is needed (for example in a 
scientific account) is a representation that makes explicit enough of the ar-
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ary HUNGRY! and unary RIGHT(SOMEONE), we need to produce 
HUNGRY(__), and RIGHT(SOMEONE,__). Second, we need a term or 
name to use so that the new, more explicit, version has the same 
content as the prior, implicit version. This is required because, on 
the story we are telling, it is this particular explicit version that, in 
virtue of being connected, through the processes of causal connec-
tion, to the implicit perceptual and action-engendering version, 
gives any more general explicit versions their semantic integrity. 

As the mail example suggests, something like a unique identi-
fier can play this role. This is common in computational cases: de-
signers of autonymic systems typically provide a way in which 
each system, though initially cast from the same mold, can be in-
dividually modified to react to its own unique name before being 
brought into service (a chore the system operators would do in 
“initializing” the system). As Perry suggests, however, this is not 
efficient: it requires that each system be structured somewhat dif-
ferently. What is distinctive about the pronoun ‘I’, in contrast, is 
that it gives exactly (type-)identical systems a way of explicitly re-
ferring to themselves. ‘I’, in other words, is an indexical term al-
lowing explicit but self-relative (hence efficient) self-reference. On 
its own it does not help a system escape from its indexicality, but, 
because it makes that indexicality explicit, it is the minimal step 
away from fully implicit indexicality. 

Causal connections to implement autonymy are so simple as to 
seem trivial, but their importance outstrips their simple structure. 
The mail systems provide a good example: that each mail host rec-
ognise its own name, and attach its own name to messages headed 
out into the external world, is a simple enough task, but absolutely 
crucial to the functioning of the electronic mail community. 

 4b Introspection 
In virtue of the inherent simplicity of names, purely autonymic 
mechanisms are almost completely theory-neutral. By introspec-

                                                                                                                                                  
guments so as to be able to convey, as widely as possible, insight, under-
standing, truth, whatever. If the universe were in fact an ordered progres-
sion of big bangs, numbered 1–…, with k spatial dimensions and forces 
proportional to l/rk-1 in each case (i.e., we are currently in the third round), 
all the relations of physics would turn out to have another parameter. That 
would be OK. 
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tive systems, in contrast, I will refer to systems with causally con-
nected self-referential mechanisms that render explicit, in some 
substantial way, some of their otherwise implicit internal struc-
ture. Since most of the self-referential mechanisms that have actu-
ally been proposed fall in this class, this variety of self-reference 
will occupy most of our remaining attention. 

The first step, in analysing introspective systems, is to distin-
guish our own theoretical commitments from the theoretical com-
mitments we attribute to the agents we study. The difference can 
be seen by comparing Levesque’s logic of “explicit” and “implicit” 
belief11 (his terms, not ours, though the meanings are similar) 
with Fagin & Halpern’s logics of belief and awareness.12 
Levesque’s use of the predicates B and L for explicit and implicit 
belief are predicates of the theorist: nothing in his account—as he 
himself notes—commits him to the view that the agents he de-
scribes parse the world in terms of anything like the belief predi-
cate (i.e., in Fagin & Halpern’s phrase, they need not be “aware” of 
the belief predicate). Fagin and Halpern, on the other hand, when 
they use such axioms as Bf ⇒ BBf, thereby commit the agents to an 
awareness of the same belief predicate they themselves use, I.e., for 
us to say “A believes f” is for us to adopt the notion of belief; for us 
to say “A believes that it believes f” commits A to the notion of belief 
as well. Iterated epistemic axioms such as Bf ⇒ BBf can therefore 
be substantially misleading, since any inner (non-initial) B’s 
must represents the agents’ notion; the outer ones will be only the 
theorists’. 

In the self-referential models typical of the autoepistemic tradi-
tion, the correspondence between explicit representation and belief 
is so close that this identification of agent’s and theorist’s com-
mitment seems harmless, but when we deal with more complex in-
trospective theories we will have to allocate theoretical commit-
ments more carefully. For example, some theories that are straight-
forward, from a theorist’s point of view, may be difficult or impos-
sible for introspective systems to use, if they assume a perspective 
necessarily external to the agents they are theories of. Further-
more, different introspective theories require different primitive 

                                                             
11Levesque (1984). 
12Fagin & Halpern (1985)  
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(“wired-in”) support, whereas we, as external theorists, can use 
any theory we like, without fear of architectural consequence. For 
example, it is only a small move for a theorist to change from a the-
ory of a programming language that objectifies only the environ-
ment, to one that also objectifies the continuation. On the other 
hand, programming systems that can introspect using continua-
tions are an order of magnitude more subtle than ones that intro-
spect solely in terms of environments (we will see why this is so in 
a moment). 

Keeping these cautions in mind, consider, as a first introspec-
tive example, an almost trivial autoepistemic computational agent 
comprising a set of base level representations, whose content, 
though perhaps self-relative, has primarily to do with facts about 
the world external to the system. As is usual in such cases, we will 
presume that the representation of each fact, within the system, en-
genders the system’s belief in that fact—that is, we will adopt the 
Knowledge Representation Hypothesis laid out in Smith (1985)—
so for familiarity we will call these representations beliefs rather 
than impressions. Ignore reasoning entirely, for the moment, and 
assume that the agent believes only what has somehow been stored 
in its memory. For introspective capability, augment the base set of 
beliefs with a set of sentences formulated in terms of what Levesque 
calls an explicit belief predicate. So, for example, as well as contain-
ing the “belief” MARRIED(JOHN), imagine the system also being able 
to represent B(MARNLED(JOHN)).13 I will call the whole system S, 
and its simple introspective representations B-sentences. (Note: In 
this and subsequent discussion [ am representing impressions 
within S, not giving theoretical statements in an external logic 
about S, so sentences of the form f represent beliefs S already has, 
and B-sentences represent introspective beliefs. All occurrences of 
B, in other words, represent theoretical commitments on S’s part.) 

S’s B-sentences, though introspective, are still implicit and in-
dexical, in several ways. First, the agent doing the believing—i.e., S 
itself—remains implicitly (and efficiently) determined by internal 
circumstance, as does the current belief set with respect to which 

                                                             
13Or, if you prefer, B(‘MARRIED(JOHN)’). For purposes of this paper I do 
not need to take a stand on the question of the semantic or syntactic na-
ture of believe objects—which is fortunate, because I no longer think it is a 
well-formed question. See «Smith forthcoming (b)». 
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the B-sentence derives its truth conditions. I.e., B(a) is true just in 
case a is one of the base-level sentences, meaning that it is explicitly 
represented in S’s general internal store, which will presumably 
change over time. Furthermore, by hypothesis, any implicitness or 
indexicality of S’s base-level beliefs is inherited by the B-sentences: 
B(RIGHT(x)) is no more explicit about RIGHT’s other three argu-
ments than is the simpler RIGHT(x). 

Given that S is so simple, do the B-sentences do any useful 
work? Since we have claimed that introspective representations 
render explicit what was otherwise implicit, it is natural to wonder 
what otherwise implicit aspect of S’s base-level beliefs these B-
sentences represent. The answer requires a simple typology of “re-
lations of structured correspondence”. In particular, I will call a 
representation iconic (what is sometimes called analogue) if it rep-
resents each object, property, and relation in the represented do-
main with a corresponding object, property, and relation in the 
representation (iconic representations are thus fully explicit). 
Similarly, I will say that a representation objectifies any property 
or relation that it represents with an object.k Thus for example the 
sentence MARRIEO(JOHN,MARY) objectifies marriage, since it uses 
(an instance of) the object ‘MARRIED’ to signify (an instance of) the 
relation of marriage that connects John and Mary. A representa-
tion absorbs any object, property, or relation that it represents 
with itself (thus the grammar rule EXP ⇒ OP(EXP,EXP) absorbs left-
to-right adjacency). Finally, I will say that a representation is po-
lar just in case it represents an absence with a presence, or vice 
versa (positive polarity in the first case, negative in the second). For 
example, the absence of a key in a hotel mail slot is often taken to 
signify the presence of the tenant in the hotel, making mail slots a 
negatively polar iconic representation of occupancy.l 

If all B-sentences were positive, then S’s introspective represen-
tations would be a partial, non-polar, iconic representation of its 
base level beliefs (partial because we are not necessarily assuming 
B(a) for all a). Since such representations objectify nothing, and 
therefore do not increase the explicitness of the base level, they are 

                                                             
k«These notions of iconicity, objectification, absorption, and polarity are 
taken from “The Correspondence Continuum,”, q.v.» 

lNeedless to say, an example from the 1980s. 
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not of much use on their own. Causal connection for them is also 
relatively trivial. Negative B-sentences, however, of the form ¬B(a), 
make the introspective representations positively polar, thereby ob-
jectifying an otherwise implicit property of base level representa-
tions: namely, the property of negative existence (we have already 
seen that negative existence is not immediate, which forces it to be 
implicit, unless explicitly represented, as in this case). Thus ¬B(a) 
makes explicit one of the simplest imaginable implicit properties of 
a set of internal representations. No slight on importance is sug-
gested, but it is noteworthy how close the correspondence between 
introspective impression and baseqevel impression remains: the 
objects of the introspective level correspond one-to-one with the ob-
jects of the base level: only a single, unary property is objectified 
(no relations); etc. Nonetheless, as logicians are not the only ones 
who know, that one act of “rendering something explicit” can have 
substantial computational consequences, because—once appro-
priate causal connection is provided—it makes immediate what 
was not otherwise immediate, with the effect that computational 
consequence can depend directly on the absence of a belief, which 
it could not (at least not easily) do in the non-introspective ver-
sion. 

Causal connection, even with the positive polarity, is still rela-
tively simple. B(a) will be true just in case a is an element of the set 
of representational impressions, and although negative existence 
is not an immediate property of the belief set, constituent identity 
in a finite set is, so that negative existence can be “computed” with 
only a moderate amount of inference—just a membership check 
on the base level belief set. Thus returning ‘yes’ or ‘no’ upon being 
asked “B(a)?” is relatively straightforward. It is less clear what 
should happen if ¬B(a) were to be asserted, although one can eas-
ily imagine a system in which this would either trigger a com-
plaint, if a were already in the base set of impressions, or else per-
haps cause its removal. 

This example illustrates what will become an increasingly 
common theme: whether causal connection is typically easy or 
hard depending on two things: 

1. The explicitness of the introspective representation (that is, 
the closeness of correspondence between the immediate 
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properties of the introspective representation and its con-
tent); and 

2. The immediacy of the aspects of self thereby explicitly rep-
resented.m 

An explicit representation of immediate properties of base-level be-
liefs, that is (such as their “syntactic” properties, their presence or 
absence, which we have in this case, etc.), sustains relatively 
straightforward causal connection.14 This equation—immediacy 
on both ends, simply connected—is hardly surprising, since im-
mediacy is what engenders computational effect, and computa-
tional effect is required at both ends of causal connection. To the 
extent that either (i) immediacy on either end is lessened, or (ii) 
the connection between them becomes more complex, causal con-
nection typically becomes that much more difficult. 

Examples of such difficulty are not hard to come by. They arise 
as soon as we complicate the example and consider introspective 
impressions that represent more complex internal properties—
particularly relational ones. Curiously, in these more realistic 
cases introspective relativity itself tends to rise, as well as the non-
immediacy of what is represented. Thus consider Moore’s (1983) 
interpretation of M(a) as “a is consistent.” This introspective repre-
sentation is locally indexical because it is relative to the entire 
base-level set of representations, which is not explicitly represented 
with its own parameter. Moore himself points out this relativity: 

“The operator M changes its meaning with context just as do 
indexical words in natural language, such as ‘I’, ‘here’, and 
‘now’…Whereas default reasoning is nonmonotonic because 
it is defeasible, autoepistemic reasoning is nonmonotonic be-
cause it is indexical. “15 

As it happens, however, this indexicality is not what makes the 
causal connectivity of consistency difficult; rather, the problem 

                                                             
m«Check this out—is this really right? In particular, isn’t it correspondence 
between immediacy and immediacy? Is that what explicitness comes to? 

14This is really the point made in Konolige (1985). 
15Moore (1983) pp. 6–7. By ‘meaning’ Moore means what we are here call-
ing content, and by ‘indexical’ he means what we mean by ‘internally rela-
tive,’ but his point of course is valid. 
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stems from the fact that property of consistency is not itself imme-
diate, but a (computationally expensive) relational property of the 
entire base-level set. Similarly, when interpreted as “implied (or 
entailed) by the base level set,” as in both Konolige and Fagin & 
Halpern,16 B becomes a relational, not immediate property 
(though again it is circumstantially relative), and causal connec-
tion consequently grows problematic. 

The environment and continuation aspects of the control struc-
ture of Lisp programs, made explicit in the introspective 3Lisp,17 
are also implicit, but not relational, and therefore more computa-
tionally tractable than consistency. 3Lisp is so designed that 
causal connection is supported in both directions (see below); as 
well as obtaining a representation of what the continuation was, 
you can also cause the continuation to be as represented. So in 
3Lisp you can assert the introspective representation (it is not clear 
what that would mean under the consistency reading of M(a), for 
example). Similarly, various different aspects of the Prolog proof 
procedure—goal set, control strategy, output—are made intro-
spectively explicit in Bowen & Kowalski’s amalgamated logic pro-
gramming proposals.18 Again, the consistent assumption sets in a 
truth-maintenance system, typically implicit, are made explicit in 
deKleer’s assumption-based truth maintenance system ATMS.19 

Since it would be hopeless to delve into these or other introspec-
tive proposals in depth, I will devote the remainder of this section 
to three broad problems they all must deal with. Before doing so, 
however, it is important to note that the introspective models that 
typify the autoepistemic tradition represent an extremely con-
strained conception of introspective possibility. Admittedly, that 
tradition does not limit introspective beliefs to B(a) or ¬B(a), with 
B meaning “is immediately represented in the base level set,” as our 
initial example suggests; the consistency reading of M, as Moore’s 
example shows, and readings of B (or L) as “is implied by the rest 
of the belief set” are much more complex, as the discussion of 
causal connection makes clear. Nonetheless, such accounts can 
still largely be viewed as positively polar, iconic representations of 

                                                             
16«ibid, ibid» 
17«Ref» 
18«Ref» 
19deKleer (1986).  
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derivable extensions of the base set. There is no inherent reason, 
however, to limit introspective deliberations to such one- or two-
predicate vocabularies: one can easily imagine systems with intro-
spective access to proof mechanisms and the state of proof proce-
dures (as is typical in proposals from the control camp), or theo-
ries of self that deal with whether ground-level beliefs are chau-
vinist, creative, or largely derived from children’s books. The kinds 
of meta-level reasoning that prompted Artificial Intelligence’s 
original interest in self, cited for example in Collins (1975), are 
not limited to knowing what one believes, but having some under-
standing of it. The potential subject matter of introspection, in 
other words, should be understand to be at least as broad as nec-
essary to include clinical psychology and psychiatry, and perhaps 
sociology as well. In sum, whereas one can agree with Konolige’s 
(1985) opening statement that “introspection is a general term cov-
ering the ability of an agent to reflect upon the workings of his 
own cognitive functions,” there is no reason to limit those reflec-
tions as drastically as he does in constraining his “ideal introspec-
tive agents” to think nothing more interesting than “do I or don’t I 
believe a?” 

 4.b.i Introspective Integrity 
The three issues that must be faced by any model of introspection 
are largely independent of basic cognitive architecture or theory of 
self. The first l call introspective integrity: it includes all ques-
tions of whether introspective representations are true, but extends 
as well to questions of whether any other significant properties 
they have (truth is only one) mesh appropriately with their con-
tent. In S,’s case integrity is relatively simple: B(a) should be repre-
sented just in case a is, and ¬B(a) just in case a is not. This simplic-
ity depends partly on the simplicity of the introspective representa-
tional language, but also on another property of S we have not yet 
mentioned: the truth of S’s introspective structures depends only 
on facts about the base-level representations, independent of intro-
spective commentary. For an example where this does not hold, 
imagine a system where any impression (base-level or otherwise) 
is believed unless there is introspective annotation stating otherwise. 
Such a system would probably profit from an explicit representa-
tion of the truth and belief predicates, so that statements like “I 
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should probably believe this, even though Mary doubts it,” and 
“This cannot be true, because it conflicts with something else I be-
lieve” could be straightforwardly represented (truth-maintenance 
systems are not unlike this). In such a case it would be natural to 
ask of any given base-level impression whether it is believed, but 
this cannot be settled by inspecting only the base-level impres-
sions. It would depend both on the state of the base level memory 
and on implications of the introspective commentary, and might 
therefore be arbitrarily difficult to decide. The truth-functional 
integrity of such a system would thus be inextricably relational. 

Integrity is not offered as a property an introspective system 
must achieve, but rather as a notion with which to categorise and 
understand particular introspective axioms and mechanisms. For 
example, all of Konolige’s notions of ”ideality,” “faithfulness,” and 
“fulfillment” can be viewed as proposals for kinds of partial integ-
rity. Similarly, Fagin and Halpern’s Aif ⇒ AiAif axiom for self-
reflective systems is an axiom that ensures introspective integrity 
for their notion of awareness. In a particular case even outright in-
trospective falsehoods could be licensed. 

Truth is not the only significant property, and therefore is not 
the only aspect of integrity that matters, as we can see by looking at 
Bowen and Kowalski’s DEMO predicate.20 According to the stan-
dard story, logic programs have both a declarative reading, under 
which clauses can be taken as formulae in a first-order language, 
and a procedural reading, under which they (implicitly) specify a 
particular control sequence, which implements a particular in-
stance of the proof (derivability) relation. It follows that the de-
clarative reading of DEMO should signify an abstraction over the 
(implicit) procedural regimen (i.e., [[DEMO]] = £, to be a little cava-
lier about notation). But this is not all that is required, if DEMO is 
to play the role that Bowen and Kowalski imagine; it must also be 
the case that the procedural reading of DEMO—i.e., the control se-
quence engendered by an instance of DEMO(PROG,GOALS)—must 
also lead to GOALS’ being (actively) derived from PROG. Similarly, 
in 3Lisp, where ‘f’ was used in the external theory to signify con-
tent (i.e., roughly [[…]]), and ‘c” to signify procedural consequence 
(roughly, £), and where the internal (impression) designing pro-

                                                             
20«Ref» 
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cedural consequence was called NORMALISE was the internal im-
pression representing procedural consequence,21 it was necessary 
to show not only that f(NORMALISE)=c, but also, very roughly (ig-
noring some use/mention issues) that c(NORMALISE)≈c. The gen-
eral point is the following: suppose you have an impression A of 
some aspect P of the internal state (i.e., such that [[A]]=P). In order 
for this to count as having rendered P explicit (rather than just as 
representing P explicitly!), a use of this representation A of P must 
also engender P (remember, we said that something is rendered 
explicit only if it subsequently participates in the circumstances in 
virtue of that representation). 

Intuitively, what this all comes to is something like the following. 
In order to count as having introspective access to some aspect of 
your self, not only must you be able to represent that aspect; you 
must also be able to use that representation—to step through it, so 
to speak, in what we informally call “problem-solving mode”—in 
such a way that this introspective deliberations can serve as one 
way of doing what is being introspected about. At this level of gener-
ality, the characterisation should not be contentious—though in 
some cases it might seem like a luxury, since after all there are 
things we can think about (such as how we ride a bicycle) that we 
cannot simulate in virtue of reasoning with those thoughts. But 
one of the advertised powers of introspection is its ability to enable 
us to do things differently from how our underlying architecture 
would have done them, had we not introspected. Moreover, cogni-
tive introspection is thinking about thinking, two instances of the 
same type of activity—as opposed to thinking about bicycling, 
where the thinking and the bicycling are at least in some sense 
rather different.22 And if a system cannot at least think or reason 
(introspectively) in the same way (modulo timing) that it would 
have had it not done so introspectively, there seems little chance 
that it will ever be able to move beyond its base level capabilities. 
This is part of what causal connection demands. Thus, according 

                                                             
21I.e., c=NORMALISE, as it were, in which the term on the left is in the 
theorist’s external analytic language, and the term on the right is in 3Lisp’s 
internal language. 

22Which is not to deny that bicycling “without thinking” may well land one 
in danger. 
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to our account, although I can think about how I ride a bicycle, 
since I cannot ride a bicycle by thinking about it, my bicycle-
riding thoughts do not qualify for the label causally-connected in-
trospection. 

 4.b.ii Introspective Force 
The second major issue, once again having to do with causal con-
nection, is what I call introspective force. It has to do not with 
the causal efficacy of the introspective structures themselves, but 
with the causal connection between those structures and the as-
pects of self they represent. This is the problem addressed by what 
in the literature have been called linking rules, reflection principles, 
semantic attachment, level-shifting, etc.,23 although simple quotation 
and disquotation operators are even simpler examples—e.g., In-
terlisp ’s KWOTE and (some of its uses of) EVAL; 3Lisp’s ↑ and ↓, 
etc. In the discussion so far, I have characterised causal connec-
tion rather symmetrically, as a relation between representations 
and actual aspects of self. As the sophistication of introspection 
increases, however, the relation between self and self-
representation not only grows more complex, but the two direc-
tions of connection—from self to representation (I will call this 
“upwards”), and from representation to self (“downwards”)—take 
on rather different properties. The differences are at least analo-
gous to (what current ideology takes as) the distinction between 
beliefs and goals. 

Imagine, to borrow an example from Smith (1984), paddling a 
canoe through whitewater, exiting an eddy leaning upstream (the 
wrong thing to do), and taking a dunking. If, sitting on the bank a 
few moments later, you were to think about how to do better, you 
would first have to obtain an explicit representation of what you 
were doing just a moment earlier (this is the “belief” case: how do 
you go from a fact to a true belief about it?). It is no good to think 
“Ah, yes, the second millennium is drawing to a close,” as it was 
when you fell in; you want to represent the very local situation 
that led you to fall into the river, represented in the appropriate 

                                                             
23‘Linking rule’ is used in Bowen & Kowalski (1982), ‘semantic attachment’ 
in Weyhrauch (1980), ‘level-shifting’ in des Rivi6res and Smith (1984), and 
‘reflection principles’ in Weyhrauch (1980) and some of the meta-logical 
tradition. 
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way. This is the connection from reality (i.e., self) to representa-
tion. But similarly, after analysing the affair, and concluding that 
things would have gone better if you had leaned the other way, 
you do not want merely to sit on the bank, fatuously contemplat-
ing an improved self: the idea is to get back in the water and do 
better. That is, you need a connection from representation to real-
ity (more like the situation when you have a goal or even inten-
tion): you have a representation, and you want the facts to fit it). 
Both kinds of connection are germane even for as simple a self-
referential representation as ¬B(a); the system might need to know 
whether ¬B(a) is true, or it might want to make it true. On S’s 
reading of B as “is explicitly represented” neither direction is too 
hard: if B means “consistent,” the story, as we have already noted, 
would be very different. 

As McDermott and Doyle (1980) discovered, it is easy to moti-
vate perfectly determinate readings for introspective predicates 
where the causal connection is not computable, even upwards.x In 
the downwards case, moreover, if the property represented is a re-
lational one, there may be no unique determinate solution (lots of 
things, typically, could make ¬M(a) true). It is thus a substantial 
problem, in actually designing an effective introspective architec-
ture, to put in place sufficient mechanism to mediate between gen-
eral introspectively represented goals and the specific actions on 
the self that have the dual properties of being causally connected 
(so that they can be put into effect) and satisfying the goal in ques-
tion. 

Since this problem is simply a particular case of the general is-
sue of designing and planning action, however, and not specific to 
the introspective case, it need not concern us more here. 

 4.b.iii Introspective Overlap 
The third issue that must be faced by introspective systems is what 
I will call the problem of introspective overlap, which arises 
when the implicit circumstances of introspective impression coin-
cide with, or include, what has been rendered explicit. The issue 
arises because the introspective representations are themselves part 
of what constitutes the agent. As such, any claims they make that 
involve, explicitly or implicitly, properties of the whole state of the 

                                                             
xTai!! Is this what I want to say? Is it what they said? 
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agent, will be claims that they are likely, in virtue of their own exis-
tence or treatment, to affect (but not effect!). Introspective represen-
tations of relational properties that obtain between a particular 
impression and the whole set are obvious candidates for this diffi-
culty. For example, if six beliefs were represented, one could not 
truthfully add the impression 

 TOTAL-NUMBER-OF-EXPLICITLY-REPRESENTED-BELIEFS(6) 

Instead, one would need to add 

 TOTAL--OF-EXPLICITLY-REPRESENTED-BELIEFS(7) 

This overlap between content and circumstance is what opens the 
way for the puzzles and paradoxes of narrow self-reference. It is a 
more general notion than strict “‘circularity,” since the problems 
can arise even if the representational structure itself is not part of 
its own content. An early but familiar example in computer science 
arose in the case of debugging systems for programming lan-
guages with substantial interpreter state, when written in the same 
language as the programs they were used to debug. These debug-
ging systems, introspective by our account, rendered explicit the 
otherwise implicit parts of the control state of some other fragment 
of the overall system. The problem was that they too engendered 
control state (used global variables, occupied stack space, etc.), 
thereby introducing a variety of confusions because of unwanted 
conflict. These confusions often occasioned extraordinarily intri-
cate code to sidestep the most serious problems, sometimes with 
only partial success. The fundamental problem, however, is easily 
described in our present terminology: overall, the implicit dimen-
sion or aspect of the system that was rendered explicit remained 
the implicit dimension or aspect of the explicit rendering. There 
was no circularity involved, but there was overlap, with concomi-
tant problems. 

Overlap is not necessarily a mistake: the indexicality that ‘I’ 
renders explicit is the same indexicality that implicitly gives the 
pronoun its content (similarly for ‘here’ and ‘now’). Problems 
seem to arise only when negatives or activity affect what would 
otherwise be the case. It is typically necessary, in such cases, to give 
an introspective mechanism an appropriate vantage point or lay-
ered set of implicit contexts, analogous to that provided by type hi-
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erarchies in logic, so that the introspective process can muck about 
with its subject matter without affecting the circumstances that 
give that subject matter its content. 

Overlap only arises when the introspective machinery makes 
explicit some implicit aspect of the internal circumstances; it is not 
a problem when what is implicit to the base-level is also implicit for 
the introspective machinery. Thus various systems, such as MRS 
and Soar,24 apparently do not make explicit any otherwise implicit 
state (everything that can be seen, self-referentially, is already ex-
plicit; what is implicit remains so), so the problem of overlap does 
not arise. In some other cases, such as in BROWN,25 overlap would 
occur, but the power of the introspective machinery is curtailed in 
advance to avoid contradiction. Handling overlap coherently was 
one of the problems that 3Lisp was designed to solve: its purpose 
was to demonstrate the compatibility, in a theory-relative intro-
spective procedural system, of detached vantage point, substantial 
implicit state, and complete causal connection.26 The continuation 
structures of 3Lisp, representing the dynamic state of the overlap-
ping processor, were what made it interesting. The other two as-
pects that were made explicit—structural identity, roughly, and 
lexical environment—did not overlap (this is why, as we said ear-
lier, an introspective variant of 3Lisp that only rendered these two 
aspects explicit would be essentially trivial). 

3Lisp’s particular solution to the problem of overlap was to pro-
vide what amounted to a type hierarchy for control, and in terms 
of that to provide, as a primitive part of the underlying architec-
ture, mechanisms that always maintained the integrity of the con-
nection between self-representation and facts thereby represented. 
Such a tight connection was made possible in 3Lisp—because, as 
stated, continuations are not relational—that its actual (and per-
fectly effective) behaviour could be demonstrated to be equivalent, 
in an important sense, to that that would have been manifested by 
the infinite idealisation in which all of its internal aspects (relative 
to its highly constrained theory) were always explicitly repre-

                                                             
24«Refs» 
25Friedman and Wand (1984) 
26At the time of its design I called 3Lisp ‘reflective,’ not ‘introspective,’ but I 
now think this was a mistake. Reflection—see below—was what I 
wanted, but introspection was what I succeeded in providing. 
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sented to itself. As a consequence, both external theorist and in-
ternal program could pretend, even with respect to recursively 
specified higher ranks of introspection, that it was indefinitely in-
trospective with perfect causal connection. This particular archi-
tecture, however, will clearly not generalise to more comprehensive 
introspective theories, such as those involving consistency. 

There is obviously no limit to the expressiveness of introspective 
representation, or intricacy of causal connection, although there 
are very real limits on the total combination of introspective ex-
pressiveness, integrity, and force. In the human case it seems clear 
that causal connection is the practical problem, especially in the 
“downwards” direction—from representation to fact: though it is 
not exactly easy to come by accurate psychological self-knowledge, 
it seems much harder, given such knowledge, to become the person 
you can so easily represent yourself to be. 

The real challenge to self-reference, however, stems not from the 
limits on introspection, where after all one has, at least in some 
sense, access to everything being theorised about, but from the dif-
ficulty of obtaining a non-indexical representation of one’s par-
ticipation in the external world. 

 4c. Reflection 
In the last section a point was made that we need to go back to, be-
cause within it lie the seeds of the limits of introspective self-
reference. In particular, it was pointed out, in connection with the 
move from the base-level RIGHT(x) to the introspective B(RIGHT(x)), 
that all of the implicitness of the former is inherited by the latter. 
The self-relativity of the single-argument RIGHT—the fact that 
three of its four arguments get filled in by the indexical circum-
stances of the agent—is left implicit even in the introspective ver-
sion. By a reflective system, in contrast, I will mean any system 
that is not only introspective, but that is also able to represent the 
external world, including its own self and circumstances, in such 
a way as to render explicit, among other things, the indexicality of 
its own embeddedness. This representational capacity, however, is 
(as usual) insufficient on its own; the system must at the same 
time retain causal connection between this detached representa-
tion, and its basic, indexical, non-explicit representations, which 
enable it to act in that external world. 



 5 · Varieties of Self-Reference 

 321 

Like substantial introspection, reflection is thus something we 
can only approximate; complete detachment is presumably impos-
sible, both because no one knows to what extent properties that 
seem universal are in fact local but just happen to hold throughout 
our limited experience, and because it is very likely, for reasons of 
efficiency, that we will not ever have represented them. Reflection is 
also hard to attain, because of the requirement of causal connec-
tion. Finally, in order to obtain a representation of oneself that is 
truly external—i.e., that would hold from an external agent’s per-
spective—one must first represent to oneself everything implicit 
about one’s internal structure and state that is not universally 
shared (or anyone shared by one’s peers). Without this kind of 
self-knowledge, what one takes to be a detached representation of 
the world will still be implicitly self-relative, in ways one presuma-
bly will not realise. Introspection is therefore a prerequisite for 
substantial reflection (self-knowledge is a precursor of detach-
ment, as history has repeatedly told us). Yet in spite of these diffi-
culties, reflection is necessary if one is to escape from the confines 
of self-relativity. 

What then can we say about reflection, if it is so important? No 
very much—at least yet. Of the three self-referential traditions we 
have been tracking, neither the autoepistemic nor the control has 
addressed relativity to the external world at all. In both cases the 
self-referential focus has remained internal, though for different 
reasons. In the autoepistemic case, the “language” typically used 
for external representation either has either been, or has been 
closely based on, mathematical logic—which, as Barwise and 
Perry have repeatedly emphasized, does not admit, in its founda-
tions, of external relativity to circumstance. Hence logic’s focus on 
sentences, rather than on statements, and its semantic models of 
mathematical structures, not situations in the world. In spite of all 
this, however, as pointed out earlier, even purely mathematical sys-
tems are permeated with internal implicitness: with questions of 
consistency, truth, etc. It is this internal relativity on which 
autoepistemic models of self-reference have therefore concentrated. 

The control tradition stems more directly from computer sci-
ence and programming language semantics, which have by and 
large trafficked in internal accounts. Its failure to deal with exter-
nal relativity is roughly the dual of the autoepistemic’s: whereas 
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the autoepistemic tradition has dealt with external content, but not 
with external relativity, computer science has focused on complex 
relativity, but not on the external world. Hence computer science’s 
self-referential tradition—the control camp—has also dealt only 
with internal introspection. Programs, in particular, are typically 
viewed as (procedural) specifications of how a system should be-
have; as a result their subject matter is taken to be the internal 
world of the resulting system: its structures, operations, behav-
iour.n Although one can (and I do) argue that the resulting com-
putational systems are themselves representational, and therefore 
bear a “content” relation to the world in which they are ultimately 
deployed, that system-world relation is not addressed by tradi-
tional programming language analyses. As a result, the implicit-
ness represented by such self-referential models as meta-circular 
interpreters, BROWN, MRS, etc.,27 is also primarily internal.28 

Thus there is somewhat of a gap between the self-referential 
mechanisms that have so far been proposed (which are primarily 
introspective), and the accounts of external relativity offered by the 
circumstantial camp. What we need are mechanisms for render-
ing that external implicitness explicit. As usual, causal connection 
will be the difficult problem—more difficult than for introspec-
tion, since internal circumstance, to the extent that it is causally ef-
fective at all, is always within the causal reach of the agent. The 
consistency of a set of first-order sentences may be difficult or im-
possible for a formal system to ascertain, but that is not because 

                                                             
n«Point (forwards?) towards the “ingredient” vs. “specificational” view. 
27See Steele & Sussman (1978), Friedman and Wand (1984), and Gene-
sereth et al. (1983), respectively. 

28Not realising this fully at the time, I did not initially describe 3Lisp (Smith 
1982, 1984) in a way that was very accessible to the programming language 
community. 3Lisp’s semantical model, in particular, was based on a con-
ception of computation where the subject matter of a program was taken 
to include not only the system whose behaviour was being engendered, but 
also the subject matter of the resulting system. I still believe that this is of-
ten how programming is understood, even if implicitly, by a large number of 
programmers: my analysis; however it would have been more accessible 
had this non-standard semantic conception been treated more explicitly. 
Ironically, however, in spite of this semantical orientation, the only “exter-
nal” world 3Lisp was able to deal with was that of pure (and simple) 
mathematics, so it did not really live up to its own semantical mandate. 
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there is crucial information somehow beyond the reach of that 
system, remote in time and space, to which other systems might 
have better access. Determining consistency is hard all by itself. 
The external circumstantial dependencies of ordinary language 
and thinking, however, are different: who is the right person to 
perform some particular function, for example, is something that 
only the world can ever know for sure. The best reflective agent 
will have direct causal access—and probably only partial access at 
that—to only one potential candidate. 

None of this means that serious reflection is impossible, how-
ever, partly because of our three-way, rather than two-way, catego-
risation of circumstance into external, indexical, and internal 
types. The truth of whether Shakespeare wrote the sonnet is exter-
nal; the implicitness motivated by efficiency, in contrast, is typi-
cally indexical, not external, and indexicality has to do with the 
circumstances in which the agent participates—which circum-
stances, some of which, at least, should be relatively nearby. If there 
is any locality in this world, there seems more hope of an agent’s 
knowing about local circumstances than about situations arbi-
trarily remote in space and time. What is enduringly difficult, of 
course, is that even those circumstances must be represented as if 
by another. 

 5 The Limits of Self-Reference 
Perfect self-knowledge is obviously impossible, for at least three 
reasons: (i) because of the complexity of the calculations involved, 
such as those illustrated by consistency; (ii) because of the theory-
relativity—no theory can render everything explicit; and (iii) be-
cause some circumstantial relativity—particularly indexical and 
external—remains beyond the causal reach of the agent. But there 
are other limits as well, An important one stems from the fact that 
the self being represented is ultimately the same self as the one do-
ing the representing, and as such certain possibilities are physi-
cally (if not metaphysically) excluded. The self can never be 
viewed in its entirety, because there is no place to stand—no van-
tage point from which to look. 

Another limit—more a danger than a constraint—was inti-
mated at the outset: although introspection (and self-knowledge) 
is a prerequisite to substantial reflection, it remains true that the 
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power of all of these mechanisms derives ultimately from their 
ability to support more general, more detached, more communica-
ble reasoning. It is a danger, however, that in climbing up out of its 
embedded position, a system will end up thinking solely about its 
self, rather than using its self to get outside itself. This would lead 
to a self-involved—ultimately autistic—sort of system, of no use 
whatsoever. 

These limits notwithstanding, self-reference and self-under-
standing are important. One can look out, see three people around 
the table, and represent the situation with “there are four people at 
this dinner party.” One may also notice, perhaps with only intro-
spective capability, that one is repeating oneself. But then one goes 
on to observe that, by doing so, one is acting inappropriately: that 
from the other three’s perspective one looks like a fool. And then—
here is where causal connection gets its bite—as soon as one has 
achieved this detached view of the situation, this representation 
from the outside, one scurries back into the introspective state, re-
places the designator of that fourth person with ‘I’, recognises its 
special self-referential role, collapses back down to the fully im-
plicit structures that engender talking, cuts them off, and thereby 
shuts up. 

That is almost as good as writing more briefly. 
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6 — The Limits of Correctness† 

   Abstract 
There is a formal technique in computer science, known as pro-
gram verification, which is used, in its own terms, to “prove pro-
grams correct”. From its name, someone might easily conclude 
that a program that had been proven correct would never make 
any mistakes, or that it would always follow its designers inten-
tions. In fact, however, what are called proofs of correctness are 
really proofs of the relative consistency between two formal specifica-
tions: one of the program, one of the model in terms of which the 
program is formulated. Part of assessing the correctness of a 
computer system, however, involves assessing the appropriateness 
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Rankin T. L. (eds.), Program Verification, Kluwer Academic Publishers, 
Dordrecht/Boston/London, 1993, pp. 275–93; and (iv) in Kling, R. (ed.), 
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of this model. Whereas standard semantical techniques are rele-
vant to the program-model relationship, we do not currently have 
any theories of the further relationship between the model and 
the world in which the program is embedded. 

In this paper I sketch the role of models in computer systems, 
comment on various properties of the model-world relationship, 
and suggest that the term ‘correctness’ (in the program verifica-
tion context) should be changed to ‘consistency.’ In addition I ar-
gue that, since models cannot in general capture all the infinite 
richness of real-world domains, complete correctness is inher-
ently unattainable, for people or for computers. 

 1 Introduction 
On October 5, 1960, the American Ballistic Missile Early Warn-
ing System station at Thule, Greenland, indicated a large contin-
gent of Soviet missiles headed towards the United States.1 Fortu-
nately, common sense prevailed at the informal threat-assessment 
conference that was immediately convened: international tensions 
were not particularly high at the time, the system had only re-
cently been installed—and perhaps most salient of all, Soviet 
Premier Khrushchev happened to be in New York. All in all, a 
massive Soviet attack at that particular moment seemed very un-
likely. And so no devastating counterattack was launched. 

What was the problem? The moon had risen, and was reflect-
ing radar signals back to earth. Needless to say, this lunar reflec-
tion had not been predicted by the system’s designers. 

Over the last few decades, the United States Defense Depart-
ment has spent many millions of dollars on a computer technol-
ogy known as “program verification”—a branch of computer 
science whose business, in its own terms, is to “prove programs 
correct”. Program verification has been studied in theoretical 
computer science departments since a few seminal papers in the 
1960s,2 but it was only in the late 1970s and 1980s that it started 

                                                             
1Edmund Berkeley, The Computer Revolution, Doubleday, 1962, pp. 175–
77, citing newspaper stories in the Manchester Guardian Weekly of Dec. 1, 
1960, a UPI dispatch published in the Boston Traveler of Dec. 13, 1960, 
and an AP dispatch published in the New York Times on Dec 23, 1960. 

2McCarthy, John, “A Basis for a Mathematical Theory of Computation,” 
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to gain in public visibility, and to be applied to real world prob-
lems. General Electric, to consider just one example, initiated 
verification projects in their own laboratories, hoping to prove 
that the programs used in their computer-controlled washing ma-
chines would not have any “bugs” (even a single serious one in a 
major product can destroy a corporation’s profit margin).3 

Although it used to be that only the simplest programs could 
be “proven correct”—programs to put simple lists into order, to 
compute simple arithmetic functions, etc.—slow but steady pro-
gress has been made in extending the range of verification tech-
niques. By the early 1980s papers began to report correctness 
proofs for somewhat more complex programs, including small 
operating systems, compilers, and other materiel of modern sys-
tem design.4 

What, we do well to ask, does this new technology mean? How 
good are we at it? For example, if the 1960 warning system had 
been proven correct (which it was not), could we the problem 
with the moon have been avoided? If it were possible to prove 
that programs written to control automatic launch-on-warning 
systems were correct, would that provide us with assurance that 
there will not—and could not—be a catastrophic accident? In 
systems currently being designed computers will make counterat-
tack launch decisions in a matter of seconds, with no time for any 
human intervention (let alone for musings about Khrushchev’s 
being in New York). Do the techniques of program verification 
hold enough promise that, if these new systems could all be 
proven correct, we could all sleep more easily at night? 

These are the questions I want to look at in this paper. And 
my answer, to give away the punch-line, is no. For fundamental 

                                                                                                                                                  
1963, in P. Braffort and D. Hirschberg, eds., Computer Programming and 
Formal Systems, Amsterdam: North-Holland, 1967, pp. 33–70. Floyd, 
Robert, “Assigning Meaning to Programs,” Proceedings of Symposia in Ap-
plied Mathematics 19, 1967 (also in F. T. Schwartz, ed., Mathematical As-
pects of Computer Science, Providence: American Mathematical Society, 
1967). Naur, P., “Proof of Algorithms by General Snapshots,” BIT Vol. 6 
No. 4, pp. 310–16, 1966. 

3Albert Stevens, BBN Technologies, Inc. (called “Bolt, Beranek and New-
man” at the time), personal communication. 

4See for example R. S. Boyer, and Moore, J S., eds., The Correctness Prob-
lem in Computer Science, London: Academic Press, 1981. 
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reasons—reasons that anyone can understand, and that no one 
can escape—there are inherent limitations to what can be proven 
about computers and computer programs. Although program 
verification is an important new technology—useful, like so many 
other things, in its particular time and place—it should definitely 
not be called verification. Just because a program is “proven cor-
rect”, in other words, you cannot be sure that it will do what you 
intend. 

First some background. 

 2 General Issues in Program Verification 
Computation has become the most important enabling technol-
ogy of nuclear weapons systems: it underlies virtually every aspect 
of the defense system, from the early warning systems, battle 
management and simulation systems, and systems for communi-
cation and control, to the intricate guidance systems that direct 
the missiles to their targets. It is difficult, in assessing the chances 
of an accidental nuclear war, to imagine a more important ques-
tion to ask than whether these pervasive computer systems will or 
do work correctly. 

Because the subject is so large, however, I want to focus on just 
one aspect of computers relevant to their correctness: the use of 
models in the construction, use, and analysis of computer sys-
tems. I have chosen to look at modelling because I think it exerts 
the most profound and, in the end, most important influence on 
the systems we build. But it is only one of an enormous number 
of important questions. First, therefore—in order to unsettle you 
a little—let me just hint at some of the equally important issues I 
will not address: 

1. Complexity: At the current state of the art, only very sim-
ple programs can be proven correct. Although it is terribly 
misleading to assume that either the complexity or power 
of a computer program is a linear function of length, some 
rough numbers are illustrative. The simplest possible 
arithmetic programs are measured in tens of lines; the cur-
rent state of the verification art extends only to programs 
of up to several hundred. It is estimated that the systems 
proposed in the Strategic Defense Initiative (Stars Wars), 
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in contrast, will require at least ten billion (10,000,000) 
lines of code.5 This is a difference of at least five decimal 
orders of magnitude. By analogy, compare the difference 
between resolving a two-person dispute and settling the 
political problems of the Middle East. There is no a priori 
reason to believe that strategies successful at one level will 
scale to the other. 

2. Human interaction: Not much can be “proven,” let alone 
specified formally, about actual human behaviour. The 
sorts of programs that have so far been proven correct, 
therefore, do not include much substantial human interac-
tion. As the moon-rise example indicates, on the other 
hand, it is often crucial, in the design of complex systems, 
to allow enough human intervention to enable people to 
override system mistakes and cope with unanticipated 
eventualities. System designers, therefore, are faced with a 
very real dilemma: (i) should they rule out substantive 
human intervention, in order to develop more confidence 
in how their systems will perform; or (ii) should they in-
clude it, so that costly errors can be avoided or at least re-
paired? The partial core meltdown at the Three Mile Is-
land generation plant in 1979 is a trenchant example of 
just how serious this tradeoff can get: the system design 
provided for considerable human intervention, but in the 
event the operators failed to act “appropriately.” Which 
strategy leads to the more important kind of correctness? 

A standard way out of this dilemma is to specify the be-
haviour of the system relative to the actions of its operators. 
But as we will see below, this strategy pressures the de-
signers to specify the system totally in terms of internal ac-
tions, not external effects. So the best that a proof can end 
up demonstrating is that the system will behave in the way 
that it will behave (i.e., it will raise this line level 3 volts), 
not that it will do what you want it to do (i.e., launch a mis-

                                                             
5Fletcher, James C., study chairman, and McMillan, Brockway, panel 
chairman, Report of the Study on Eliminating the Threat Posed by Nuclear 
Ballistic Missiles, Vol. 5, Battle Management, Communications. and Data 
Processing, U. S. Department of Defense, February 1984. 
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sile only if the attack is real). Unfortunately, the latter is 
clearly what is important. Systems comprising computers 
and people must function properly as integrated systems; 
nothing is gained by showing that one cog in a misshapen 
wheel is a very nice cog indeed. 

Furthermore, large computer systems are dynamic, con-
stantly changing, embedded in complex social settings. 
Another famous “mistake” in the American defense system 
occurred when a human operator mistakenly mounted a 
training tape, containing a “simulation” of a full-scale So-
viet attack, onto a computer that, just by chance, was 
automatically pulled into service when the primary ma-
chine ran into a problem. For some tense moments the 
simulation data were taken to be the real thing.6 What 
does it mean to install a “correct” module into a complex 
social flux? 

3. Levels of Failure: Complex computer systems must work 
at many different levels. It follows that they can fail at 
many different levels too. By analogy, consider the many 
different ways a hospital could fail. First, the beams used 
to frame it might collapse. Or they might perform flaw-
lessly, but the operating room door might be too small to 
let in a hospital bed (in which case you would blame the 
architects, not the lumber or steel company). Or the oper-
ating room might be fine, but the hospital might be located 
in the middle of the woods, where no one could get to it 
(in which case you would blame the planners). Or the 
hospital, in spite of having been “properly built”, might 
have been damaged by an unanticipated (and unanticipat-
able) earthquake. Or, to take a different example, consider 
how a letter could fail. It might be so torn or soiled that it 
could not be read. Or it might look beautiful, but be full of 
spelling mistakes. Or it might have perfect grammar, but 

                                                             
6See, for example, the Hart-Goldwater report to the Committee on Armed 
Services of the U.S. Senate: “Recent False Alerts from the Nation's Mis-
sile Attack Warning System” (Washington, D.C.: U.S. Government Print-
ing Office, Oct. 9, 1980); Physicians for Social Responsibility, Newsletter, 
“Accidental Nuclear War,” (Winter 1982), p. 1. 
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disastrous contents. 
Computer systems are the same: they can be “correct” at 

one level—say, in terms of hardware—but fail at another 
(i.e., the systems built on top of the hardware can do the 
wrong thing even if the chips are fine). Sometimes, when 
people talk about computers failing, they seem to think 
that it is only the hardware that needs to work properly. 
Sure enough, hardware does from time to time fail, caus-
ing machines to come to a halt, or yielding errant behav-
iour (as for example when a faulty chip in another Ameri-
can early warning system sputtered random digits into a 
signal interpreted as indicating how many Soviet missiles 
had been sighted, again causing a false alert7). And the 
connections between the computers and the world can 
break. On the day in which when the moonrise problem 
was recognized, an attempt to override it failed because an 
iceberg had accidentally cut an undersea telephone cable.8 

The more important point is that, in order to be reli-
able, a system must be correct, or anyway reliable, at every 
relevant level. The hardware is just the starting place—and 
by far the easiest, at that. Unfortunately, however, we do 
not even know what all the relevant levels are. So-called 
“fault-tolerant” computers, for example, are particularly 
good at coping with hardware failures, but the software 
that runs on them is not thereby improved.9 

4. Correctness and Intention: What does correct mean, 
anyway? Suppose the people want peace, and the President 
thinks that means having a strong defense, and the De-
fense department thinks that having a strong defense re-
quires maintaining an arsenal of nuclear weapons systems, 
and the weapons designers request control systems to 
monitor radar signals, resulting in computer companies 

                                                             
7Ibid. 
8Berkeley, op. cit. See also Daniel Ford’s two-part article “The Button,” 
New Yorker, April 1, 1985, p. 43, and April 8, 1985, p. 49, excerpted from 
Ford, Daniel, The Button, New York: Simon and Schuster, 1985. 

9Developing software for fault-tolerant systems is an extremely tricky 
business. 
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being asked to develop systems that respond to six particu-
lar kinds of radar pattern, and the engineers are told to 
build signal amplifiers with certain circuit characteristics, 
and the technician is told to write a program to respond to 
the difference between a two-volt and a four-volt signal on 
a particular incoming wire. If being correct means doing 
what was intended, whose intent matters? The technician’s? 
Or what, with twenty years of historical detachment, we 
would say should have been intended? 

With a little thought any of you could extend this list yourself. 
And none of these issues even touch on the intricate technical 
problems that arise in developing mathematical analyses of the 
software and systems used in the so-called “correctness” proofs. 
But, as I said, I want to focus on what I take to be the most im-
portant issue underlying all of these concerns: the pervasive use of 
task domain models. Models are ubiquitous not only in com-
puter science but also in human thinking and language; their very 
familiarity makes them hard to appreciate. So we will start sim-
ply, looking at modelling on its own, and come back to correct-
ness in a moment. 

 3 The Permeating Use of Models 
When you design and build a computer system, you first—
wittingly or unwittingly—formulate a model of the problem you 
want it to solve, and then construct the computer program in its 
terms. For example, if you were to design a medical system to 
administer drug therapy, you would need to model a variety of 
things: the patient, the drug, the absorption rate, the desired bal-
ance between therapy and toxicity, and so on and so forth. The 
absorption rate might be modelled as a number proportional to 
the patient’s weight, or proportional to body surface area, or as 
some more complex function of weight, age, and sex. 

Similarly, computers that control traffic lights are based on 
some model of traffic—of how long it takes to drive across the in-
tersection, of how much metal cars contain (the signal change 
mechanisms are triggered by wires buried under each street). Bi-
cyclists, as it happens, often have problems with automatic traffic 
lights, because bicycles do not exactly fit the model: they do not 
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contain enough iron to trigger the metal detectors. I also once saw 
a tractor get into trouble because it could not move as fast as the 
system “thought” it would: the light allowing cross-traffic to enter 
the intersection went green when the tractor was only half-way 
through. 

To build a model is to conceive of the world in a certain delim-
ited way. To some extent you must build models before building 
any artifact at all, including televisions and toasters, but comput-
ers have a special dependence on these models: to write a program 
is effectively to write down an explicit description of the model inside 
the computer, in the form of a set of rules or what are called repre-
sentations—essentially a set of linguistic formulae encoding, in the 
terms of the model, the facts and data thought to be relevant to 
the system’s behaviour. It is with respect to these representations 
that computer systems work. In fact that is really what computers 
are (and how they differ from other machines): they run by ma-
nipulating representations, and representations are always formu-
lated in terms of models. This can all be summarized in a slo-
gan:10 

No computation without representation. 

The models, on which the representations are based, come in all 
shapes and sizes. Balsa models of cars and airplanes, for example, 

                                                             
10Footnote added 2009: It is no longer considered necessary for programs 
to represent the structure of the task domains in which they work—
especially to represent it explicitly, in a set of language-like formulae or ex-
pressions. A great deal of “situated artificial intelligence,” the use of net-
work “models” in dynamic-systems based software, etc., the development 
of machine learning, etc., which has taken place over the twenty-five years 
since this paper was written, can be understood as various kinds of at-
tempt exactly to avoid such explicit task domain representation. However: 
(i) it remains overwhelmingly likely that any software system designed and 
built to control a major military system of the sort being discussed would 
still be built on top of an explicit model—if for no other reason than that 
this design strategy allows the model to be updated, if and as appropriate, 
when the systems involved change (e.g., the nature and number of mis-
siles, sensors, etc.), without having to build the entire code base over 
again; and (ii) even machine learning networks and connectionist systems 
and the like rely on models (some even develop their own)—it is just that 
the representation of the model in the system may be less explicit that was 
taken for granted twenty-five years ago. 
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are used to study air friction and lift. Blueprints can be viewed as 
models of buildings; musical scores as models of a symphony. But 
models can also be abstract. Mathematical models, in particular, 
are so widely used that it is hard to think of anything that they 
have not been used for: from whole social and economic systems, 
to personality traits in teenagers, to genetic structures, to the 
mass and charge of sub-atomic particles. These models, further-
more, permeate all discussion and communication. Every expres-
sion of language can be viewed as resting implicitly on some 
model of—some assumed conceptual structure or “take” on—the 
world. 

What is important for our purposes is that every model deals 
with its subject matter at some particular level of abstraction, paying 
attention to certain details, throwing away others, grouping to-
gether similar aspects into common categories, and so forth. So 
the drug model mentioned above would probably pay attention to 
the patients’ weights, but ignore their tastes in music. Mathe-
matical models of traffic typically ignore the idiosyncratic tem-
peraments of individual taxi drivers. Sometimes what is ignored is 
set aside because it is considered to be at too “low” a level to mat-
ter, for the system’s ultimate purpose; sometimes it is ignored be-
cause it is too “high”: it all depends on the purposes for which the 
model is being used. So a hospital blueprint would pay attention 
to the structure and connection of its beams, but not to the ar-
rangements of proteins in the wood the beams are made of (too 
low), nor to the efficacy of the resulting operating room (too 
high). 

Models must ignore things exactly because they view the world 
at a level of abstraction.11 And it is good that they do: otherwise 
they would drown in the infinite richness of the embedding 
world. Though this is not the place for metaphysics, it would not 
be too much to say that every act of conceptualization, analysis, 
categorization, does a certain amount of violence to its subject 
matter, in order to get at the underlying regularities that group 
things together. If you do not commit that act of violence—if you 
do not ignore some of what is going on—you would become so 

                                                             
11‘Abstraction’ derives from the Latin ‘abstrahere’—to pull or draw away. 
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hypersensitive and so overcome with complexity that, as a finite 
creature, you end up paralyzed, unable to act. 

To capture all this in a word, I will say that models are inher-
ently partial. All thinking, and all computation, are similarly par-
tial. Furthermore—and this is the important point—thinking 
and computation must be partial: that is how they are able to 
work. 

 4 Full-blooded Action 

Something that is not partial, in contrast, is action. When you 
reach out your hand and grasp a plow, it is the real field you are 
digging up, not your model of it. When you talk to someone of a 
different race or culture, what you say may be inexorably affected 
by your model of the person, their community, their social group, 
etc.—but your addressee is an actual person—not your or anyone 
else’s model of that person.12 

Models, in other words, may abstract (may “pull away”), and 
thinking may abstract, and some aspects of computation may ab-
stract—but action does not.13 To actually build a hospital, to 
clench the steering wheel and drive through the intersection, to 
inject a drug into a person’s body—to do any of these things is to 
act in the full-blooded world, not in a partial or distilled model of 
it. 

This difference between action and modelling is extraordinar-
ily important. To move from thought or intent to concrete action 
is to take leave of one’s model and participate in the whole, rich, 
infinitely variegated world. For this reason, among others, action 
plays a crucial role, especially in the human case, in grounding the 
more abstract processes of modelling or conceptualization. One 
form that grounding can take, which computer systems can al-
ready take advantage of, is to provide feedback on how well the 
modelling is going. For example, if an industrial robot develops an 
internal three-dimensional representation of a wheel assembly 

                                                             
12This is not to deny that we are affected by—perhaps even (partially) con-
stituted by—our own, our families’, and our society’s models of us. What it 
denies is that we are such models. 

13Even if what action it is is affected or determined by the actor’s model of 
the situation in which the action is undertaken. 
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passing by on a conveyor belt, and then guides its arm towards 
that object and tries to pick it up, it can use video systems or force 
sensors to see how well the model corresponded to what was ac-
tually the case. The world does not care about the model: the 
claws will settle on the wheel just in case the actualities mesh. 

Feedback is a special case of a very general phenomenon: you 
often learn, when you do act, just how good or bad your concep-
tual model was. You learn, that is, if you have adequate sensory 
apparatus, the capacity to assess the sensed experience, the inner 
resources to revise and reconceptualize, and the luxury of recover-
ing from minor mistakes and failures. 

 5 Computers and Models 
What does all this have to do with computers, and with correct-
ness? The point is that computers, like people, and unlike mathe-
matics, are engaged participants in the world. Like us, they 
participate in the real world: they take real actions; they cause ef-
fects, and are affected by causes. One of the most important facts 
about computers, to put this another way, is that they are con-
crete; they use energy; we plug them in. They are not, as some 
theoreticians seem to suppose, pure mathematical abstractions, 
living in a pure detached heaven—or detached simulacra or 
“models in themselves,” living a hermetically sealed life in a paral-
lel universe.  On the contrary, computers land real planes at real 
airports; administer real drugs; and—as we know only too well—
control real radars, missiles, and command systems. Like us, in 
other words, although they base their actions on models, they 
have consequence in a world that inevitably transcends the parti-
ality of their enabling models. Like us, in other words, and unlike 
the objects of mathematics, they are challenged by the inexorable 
conflict between partial but tractable models and actual but infi-
nite reality. 

And, to make the only too obvious point: we in general have 
no guarantee that the models are right—indeed we have no guar-
antee about much of anything about the relationship between 
model and world. As we will see, current notions of “correctness” 
do not even address this fundamental question. 

In philosophy and logic, as it happens, there is a very precise 
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mathematical theory called “model theory.” You might think that 
it would be a theory about what models are, what they are good 
for, how they correspond to the worlds they are models of, and so 
forth. You might even hope this was true, for the following rea-
son: a great deal of theoretical computer science, and all of the 
work in program verification and correctness, historically derives 
from this model-theoretic tradition, and depends on its tech-
niques. Unfortunately, however, model theory does not address 
the model-world relationship at all. Rather, what model theory 
does is to tell us how our descriptions, representations, and pro-
grams correspond to our models. 

The situation, in other words, is roughly as depicted in Figure 
1. You are to imagine a description, program, computer system 
(or even a thought—they are all similar in this regard) in the left 
hand box, and the very real world in the surrounding right. Medi-
ating between the two is the inevitable model, serving as an ideal-
ized or pre-conceptualized simulacrum of the world, in terms of 
which the description or program or whatever can be understood. 
One way to understand the model is as the glasses through which 
the program or computer looks at the world: it is the world, that 

 
 

Figure 1 — Computers, Models, and the Embedding World 



344 Indiscrete Affairs · I 

is, as the system sees it (though not, of course, as it necessarily is). 
The technical subject of ”model theory,” as I have already said, 

is a study of the relationship, labeled a, on the left. What about 
relationship b, on the right? The answer, and one of the main 
points I hope you will take away from this discussion, is that, at 
this point in intellectual history, we have no theory of this right-
hand side relationship—no theory of the relationship between models 
and the world. 

There are lots of reasons for this lack— some very complex. 
For one thing, most of our currently accepted formal techniques 
were developed during the first half of this century to deal with 
mathematics and physics. Mathematics is unique, with respect to 
models, because (at least to a first level of approximation) its sub-
ject matter is the world of models and abstract structures, and 
therefore the model-world relationship is relatively unproblem-
atic. The situation in physics is more complex, as is the relation-
ship between mathematics and physics. How apparently pure 
mathematical structures can be so successfully used to model the 
material substrate of the universe is a question that has exercised 
physical scientists for centuries.14 But the point is that, whether 
or not one believes that the best physical models do more justice 
and therefore less violence to the world than do models in so-
called “higher-level” disciplines like sociology or economics, for-
mal techniques do not themselves address the question of ade-
quacy. 

Another reason we do not have a theory of the right-hand side 
is that there is very little agreement on what such a theory would 
look like. In fact all kinds of question arise when one studies the 

                                                             
14Cf. Eugene Wigner’s “The unreasonable effectiveness of mathematics in 
the natural sciences,” Communications in Pure and Applied Mathematics, 
Vol. 13, No. I (February 1960). New York: John Wiley & Sons, Inc. 
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model-world relationship explicitly: about whether it ean be 
treated formally; whether it can be treated rigorously, even if not 
formally; what the relationship is between those two approaches, 
whether any theory will be more than usually infected with the 
prejudices and preconceptions of the theorist; and so forth. The 
investigation quickly leads to foundational questions in mathe-
matics, philosophy, and language, as. well as computer science. 
But none of what one learns in any way lessens its ultimate im-
portance. In the end, any adequate theory of action, and, conse-
quently, any adequate theory of correctness, will have to take the 
model-world relationship into account. 

 6 Correctness and Relative Consistency 
Let us get back, then, to computers, and to correctness. As I men-
tioned earlier, the word ‘correct’ is already problematic, especially 
as it relates to underlying intention. Is a program correct when it 
does what we have instructed it to do? or what we wanted it to do? 
or what history would dispassionately say it should have done? 
Analysing what correctness should mean is too complex a topic to 
take up directly. What I want to do, in the time remaining, is to 
describe what sorts of correctness we are presently capable of ana-
lysing. 

In order to understand this, we need to understand one more 
thing about building computer systems. I have already said, when 
you design a computer system, that you first develop a model of 
the world, as indicated in Figure 1. But in general, you never get 
to hold the model in your hand. Computer systems, in general, 
are based on models that are purely abstract. Rather, if you are 
interested in proving your program “correct,” you develop two 
concrete things, structured in terms of the abstract underlying 
model (although these are listed here in logical order, the pro-
gram is very often written first): 

1. A specification: a formal description in some standard 
formal language, specified in terms of the model, in which 
the desired behaviour is described; and 

2. The program: a set of instructions and representations, 
also formulated in the terms of the model, which the com-
puter uses as the basis for its actions. 
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How do these two differ? In various ways, of which one is par-
ticularly important. The program has to say how the behaviour is 
to be achieved, typically in a step-by-step fashion—often in excru-
ciating detail. The specification, however, is less constrained: all it 
has to do is to specify what proper behaviour would be, independ-
ent of how it is accomplished. 

A specification for a milk delivery system, for example, might 
simply be: “Make one milk delivery at each store, driving the 
shortest possible distance in total.” That is an adequate descrip-
tion of what has to happen. The program, on the other hand, 
would have the much more difficult job of saying how this was to 
be accomplished. It might be phrased as follows: “Drive four 
blocks north, turn right, stop at Gregory’s Grocery Store on the 
corner, drop off the milk, then drive 17 blocks north-east…”. 
Specifications, to use some of the jargon of the field, are essen-
tially declarative; they are like indicative sentences or claims. Pro-
grams, on the other hand, are procedural: they must contain in-
structions that lead to a determinate sequence of actions. 

What, then, is a proof of correctness? It is a proof that any sys-
tem that obeys the program will satisfy the specification. 

There are, as is probably quite evident, two kinds of problems 
here. The first, often acknowledged, is that the correctness proof 
is in reality only a proof that two characterizations of something 
are compatible. When the two differ—i.e., when you try to prove 
correctness and fail—there is no more reason to believe that the 
first (the specification) is any more correct than the second (the 
program). As a matter of technical practice, specifications tend to 
be extraordinarily complex formal descriptions, just as subject to 
bugs and design errors and so forth as programs. In fact they are 
very much like programs, as this introduction should suggest. So 
what almost always happens, when you write a specification and a 
program, and try to show that they are compatible, is that you 
have to adjust both of them in order to get them to converge. 

For example, suppose you write a program to factor a number 
C, producing two answers A and B. Your specification might be: 

 Given number C, produce numbers A and B such that A×B=C 

This is a specification, not a program, because it does not tell you 
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how to come up with A and B; all it say is what properties A and 
B should have. In particular, suppose I say: “OK, C is 
8,687,001,541; what are A and B? Staring at the specification just 
given will not help you to come up with an answer.15 Suppose, on 
the other hand, given this specification, that you then write a pro-
gram—say, by successively trying pairs of numbers until you find 
two that work. Suppose further that you then set out to prove 
that your program meets your specification. And, finally, suppose 
that this proof can be constructed (I will not go into details here; 
I trust you can imagine that such a proof could be constructed). 
With all three things in hand—program, specification, and 
proof—you might think you were done. 

In fact, however, things are rarely that simple, as even this sim-
ple example can show. In particular, suppose, after doing all this 
work, that you try your program out on some simple examples, 
confident that it must work because you have a proof of its cor-
rectness. You randomly give it 14 as an input, expecting 2 and 7. 
But in fact it gives you the answers A=1 and B=14. In fact, you 
realise upon further examination, it will always give back A=1 and 
B=C. It does this, even though you have a proof of its being correct, 
because you did not make your specification meet your inten-
tions. You wanted both A and B to be different from C (and also 
different from 1), but you forgot to say that. In this case you have 
to modify both the program and the specification. A plausible 
new version of the latter would be: 

 Given number C, produce numbers A and B such that A≠1 and 
B≠1 and A×B=C. 

We still are not done. If the next version of the program, given 
C=14, produces A=–1 and B=–14, you would once again have 
met your new specification, but still failed to meet your intention, 
leading you to propose something like: 

 Given number C, produce numbers A and B such that A≠1 and 
A≠–1 and B≠1 and B≠–1 and A×B=C. 

And so on. I take it that the point is obvious. Writing “good” 
specifications—which is to say, writing specifications that capture 

                                                             
15Probably what you had in mind were 84,719 and 102,539. 
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your intention—is hard. 

It should be apparent, nonetheless, that developing even straight-
forward proofs of “correctness” is nonetheless very useful. As il-
lustrated in this almost trivially simple example, doing so often 
forces you to delineate, very explicitly and completely, the model 
on which both program and specification are based—as well as to 
articulate, again very explicitly, your often tacit assumptions. A 
great many of the simple bugs that occur in programs, of which 
the problem of producing 1 and 14 was an example, arise from 
sloppiness and unclarity about the model. Such bugs are not 
identified, per se, by the proof, but they are often unearthed in the 
attempt to prove the equivalence. And of course there is nothing 
wrong with this practice; anything that helps to eradicate errors 
and increase confidence is to be applauded. The point, rather, is 
to show exactly what these proofs consist in. 

In particular, as the discussion has shown, when you show that 
a program meets its specifications, all you have done is to show 
that two formal descriptions, slightly different in character, are 
compatible. This is why I think it is somewhere between mislead-
ing and immoral for computer scientists to call this “correctness”. 
What is called a proof of correctness is really a proof of the com-
patibility or consistency between two formal objects of an ex-
tremely similar sort: program and specification. As a community, 
we computer scientists should call this relative consistency, and 
drop the word ‘correctness’ completely. 

Even if rightly renamed, proofs of relative consistency still ignore 
the second problem intimated earlier. Nothing in the so-called 
program verification process per se deals with the right-hand side 
relationship: the relationship between the model and the world. 
But, as is clear, inadequacies on the right hand side—
inadequacies, that is, in the models in terms of which the pro-
grams and specifications are written—remain common reasons 
for system failure. 

The problem with the moon-rise was a problem of this second 
sort. The difficulty was not that the program failed, in terms of 
the model. Rather, the problem was that the model was overly 
simplistic; it did not correspond to what was the case in the world. 
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Or, to put it more carefully, since all models fail to correspond to 
the world in indefinitely many ways, as we have already said, it 
did not correspond to what was the case in a crucial and relevant 
way. In other words, to answer one of our original questions, even 
if a formal specification had been written for the 1960 warning sys-
tem, and a proof of correctness generated, there is no reason to 
believe that potential difficulties with the moon would have 
emerged. 

You might think that the designers were sloppy; that they 
would have thought of the moon if they had been more careful. 
But it turns out to be extremely difficult to develop realistic mod-
els of any but the most artificial situations, and to assess how ade-
quate these models are. The example of factoring numbers 
brought some of this to the fore, but as another example, think 
back on the case of General Electric, and imagine writing appli-
ance specifications, this time for a refrigerator. To give the exam-
ple some force, imagine that you are contracting the manufacture 
of the refrigerator out to an independent supplier, and that you 
want to put a specification into the contract that is sufficiently 
precise to guarantee that you will be happy with anything that the 
supplier delivers that meets the contract. 

Your first version might be quite simple—say, that the requisi-
tioned device should maintain an internal temperature of between 
three and six degrees Centigrade; not use more than 200 watts of 
electricity; cost less than $100 to manufacture; have an internal 
volume of half a cubic meter; and so on and so forth. But of 
course there are hundreds of other properties that you implicitly 
rely on: it should, presumably, be structurally sound: you would 
not be happy with a deliciously cool plastic bag. It should not 
weigh more than a ton, or emit loud noises. It should not fling 
projectiles out at high speed when the door is opened. And so 
on—essentially ad infinitum. It is generally impossible, when 
writing specifications, to include everything that you want: legal 
contracts, and other humanly interpretable specifications, are al-
ways stated within a background of common sense, to cover the 
myriad unstated and unstatable assumptions assumed to hold in 
force. (Current computer, alas, have no common sense, as the car-
toonists know so well—so they cannot be asked to interpret their 
programs against such a reasonable background.) 
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So it is hard to make sure that everything that meets your 
specification will really be a refrigerator; it is also hard to make 
sure that your requirements do not rule out perfectly good refrig-
erators. Suppose for example a customer plugs a toaster in, puts it 
inside the refrigerator, and complains that the object they re-
ceived does not meet the temperature specification—and must 
therefore not be a refrigerator. Or suppose they try to run it up-
side down. Or complains that it does not work in outer space, 
even though you did not explicitly specify that it would only work 
within the earth’s atmosphere. Or suppose they install it in an ex-
pensive centrifuge running at 100,000 rpm and discover that at 
that speed all the air is pushed up against one wall, again causing 
it not to work. Or suppose they just unplug it. These cases are the 
dual of the former—the problem is not that what is claimed to be 
a refrigerator is not one, but that what is in fact a refrigerator is 
claimed not to be one. And in each one of them, you would say 
that the problem lies not with the refrigerator but with the use. 
But how is use to be specified? 

A constitutive part of modelling an artifact, in other words, in-
volves understanding the relevant part of the world in which it 
will be embedded, and the relevant ways it will be used. One 
could try to extend the notion of modeling to cover that, too—
i.e., to model all appropriate uses, though specifications do not or-
dinarily even try to identify all the relevant circumstantial factors. 
As well as there being a background set of constraints with re-
spect to which a model is formulated, there is also a background 
set of assumptions on which a specification is allowed at any 
point to rely. 

The ultimate conclusion is inescapable. The model of a refrigera-
tor as a device that always maintains an internal temperature of 
between three and six degrees is but the merest inchoate gesture 
towards what in full glory is probably impossible: a full specifica-
tion of refrigeratorhood, suitable to serve as the basis for air-tight 
proofs. 

 7 The Limits of Correctness 
It is time to summarize what we have said so far. The first chal-
lenge to developing a perfectly “correct” computer system stems 
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from the sheer complexity of real-world tasks. We mentioned at 
the outset various factors that contribute to this complexity: hu-
man interaction, unpredictable factors of setting, hardware prob-
lems, difficulties in identifying salient levels of abstraction, etc. 
Nor is this complexity of only theoretical concern. A December 
1984 report of the American Defense Science Board Task Force 
on “Military Applications of New-Generation Computing Tech-
nologies” identifies the following gap between current laboratory 
demonstrations and what will be required for successful military 
applications—applications they call “Real World; Life or Death.” 
In their estimation the mid-1980s military needs (and, so far as 
one can tell, expects to produce) an increase in the power of com-
puter systems of nine decimal orders of magnitude, accounting for 
both speed and amount of information to be processed. That is a 
one billion (1,000,000,000) fold increase over current research 
systems, equivalent to the difference between a full century of the 
entire New York metropolitan area, compared to one day in the 
life of a hamlet of one hundred people. And remember that even 
current systems are already several orders of magnitude more 
complex that those for which we can currently develop proofs of 
relative consistency. So, to put the point starkly, expected need 
outstrips current capability by a factor of approximately a trillion. 

But sheer complexity has not been our primary subject matter. 
The second and more serious challenge to computational cor-
rectness comes from the problem of formulating or specifying an 
appropriate model. And the point we have been making is that, 
except in the most highly artificial or constrained domains, mod-
elling an embedding situation is inherently an approximate, 
fraught, and compromised task—not a form or complete and per-
fectible endeavour. 

The situations in which modeling has the best hopes of even 
partial success are those that Winograd has called “systematic 
domains”:16 areas where the relevant stock of objects, properties, 
and relationships are most clearly and regularly predefined. Thus 
bacteria, or warehouse inventories, or even flight paths of air-
planes coming into airports, are relatively systematic domains, at 

                                                             
16«Ref: probably either in Bringing Design to Software or in Understanding 
Computers and Cognition : A New Foundation for Design» 
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least compared to conflict negotiations, any situations involving 
intentional human agency, learning and instruction, and so forth. 
The systems that land airplanes are hybrids—combinations of 
computers and people—exactly because the unforeseeable hap-
pens, because what happens is often the result of human action, 
and because what it is that has happened often requires human 
interpretation. Although it is impressive how well the phone 
companies can model telephone connections, lines, and even de-
velop statistical models of telephone use, at a certain level of ab-
straction, it would nevertheless be impossible to model the content 
of the telephone conversations themselves—what people actually 
say. 

Third, and finally, there is the question of what one does about 
these first two facts. It is because of the answer to this last ques-
tion that I have talked, so far, somewhat interchangeably about 
people and computers. With respect to the ultimate limits of 
models and conceptualization, both people and computers are re-
strained by the same truths. If the world is infinitely rich and varie-
gated—which I not only believe, but would also argue that expe-
rience has demonstrated to be pragmatically (if not metaphysi-
cally) evident—then no prior conceptualization of it, nor any ab-
straction, will ever do it full justice. That is OK—or at least we 
might as well say that it is OK, since that is the world we have got. 
What matters is that we never forget about that richness—that we 
never think, with misplaced optimism, that machines might 
magically have access to a kind of “correctness” to which people 
cannot even aspire. 

It is time, to put this another way, that we change the tradi-
tional terms of the debate. The question is not whether machines 
can do things, as if, in the background, lies the implicit assump-
tion that people are not only the object of comparison, but that the 
only choice in front of us is whether an assumed action should be 
taken by a person or by an automated system. The very idea of 
building an automated system capable, within a few short sec-
onds, of making a “decision” to annihilate Europe, say, should 
make you uneasy. Requiring a person to make the same decision, 
also in a matter of the same few seconds, should also make you un-
easy—and for very similar reasons. 

Fundamentally—to say what is obvious but somehow also ex-
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tremely worth saying—a decision to annihilate Europe should 
never be made within a few short seconds.17 It should never be made 
because there is no way that reasoning of any sort, be it human or 
machine, could possibly do justice to the inevitable complexity of 
the situation, because of fundamental metaphysical facts about 
how reasoning relates to the world. Because reasoning is based on 
partial models, it is an ultimate and inherent truth that reasoning 
can never be guaranteed to be correct in the sense of doing full 
justice to what is the case. 

Which means, to suggest just one possible strategy for action, 
that we might try, in our treaty negotiations, to find mechanisms 
to slow our weapons systems down. 

It is striking to realise, once the comparison between machines 
and people is raised explicitly, that we do not typically expect 
“correctness” for people in anything like the form that that we 
presume it for computers. In fact quite the opposite, and in a re-
vealing way. Imagine, in a by-gone era, sending a soldier off to 
war, and giving him (it would surely have been a “him,” then) his 
final instructions. “Obey your commander; help your fellow-
soldier,” you might say, “and above all do your country honour”. 
What is striking about the last clause is what it betrays: the rec-
ognition that it is considered not just a weakness, but a punish-
able weakness—a breach of morality—to obey instructions abso-
lutely blindly (in fact, and for relevant reasons, it is generally im-
possible to follow instructions blindly; they have to be interpreted 
to the situation at hand). Soldiers are subject to court martial, for 
example, if they violate fundamental moral principles, such as 
murdering women and children, even if following strict orders. 

In the human case, in other words, most our social and moral 
systems, even including the strict disciplinary institutions of the 
military, have built in into them an acceptance of the uncertain-
ties and limitations inherent in the model-world relationship (re-
lation b in figure 1). We know that the assumptions and precon-
ceptions built into instructions will sometimes fail, and we know 
that instructions are always incomplete. We exactly rely on judg-
ment, responsibility, consciousness, and so forth, to carry some-

                                                             
17If, of course, ever, and at all. 
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one through those situations where model and world part com-
pany—which is to say, through all situations, since model and 
world always part company, to a lesser or greater extent. 

Saliently, in fact, we never talk about people, in terms of their 
overall personality, being correct. It is only concrete individual ac-
tions, fully situated in particular settings, that are (or are not) cor-
rect —not people in general, or systems. Rather, when people are 
the subject matter, we speak of their being reliable—a much 
more substantial term. What leads to the highest number of cor-
rect human actions is a person’s being reliable, experienced, capa-
ble of good judgment, etc., so that, as often as possible, and to the 
greatest extent possible, based on partial, incomplete, and likely 
fallible information about stupefyingly complex real situations, 
they can aim as strenuously as possible towards doing the right 
thing. 

There are two possible morals here, for computers. The first has 
to do with the notion of experience. In point of fact, program 
verification is not the only, or even the most common, method of 
obtaining assurance that a computer system will do the right 
thing. In the real world, programs are usually judged acceptable, 
and are typically accepted into use, not because we prove them 
“correct,” but because they have shown themselves relatively reliable 
in their destined situations, for some substantial period of time. 
And, as part of this experience, we expect them to fail: there al-
ways has to be room for failure. Certainly no one would ever ac-
cept a program without such in situ testing: a proof of correctness 
is at best added insurance, not a replacement, for real life experi-
ence. Unfortunately, however, for the ten million lines of code 
that is proposed to control and coordinate the Star Wars Defense 
System, there will never, God willing, be an in situ test. 

One answer, of course, if genuine testing is impossible, is to 
run a simulation of the real situation. But even at its best, simula-
tion, as our diagram should make clear, can also test only the left-
hand side relationship. Simulations are defined in terms of models; 
that is what a simulation is: a concretization of a model. It is not an 
actual yet somehow not actual real world. As a result, simulations 
do not and cannot test relationships between models and world. 
That is exactly why simulations and tests can never replace real-
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world in situ testing—cannot replace embedding a program in the 
real world and seeing how it behaves. All the war games we hear 
about, and hypothetical military scenarios, and electronic battle-
field simulators, and so forth, are all based on exactly the kinds of 
models we have been talking about all along. In fact the subject of 
simulation, worthy of a whole analysis on its own, is really just 
our whole subject welling up all over again in what is only a su-
perficially different guise. 

I said earlier that there were two morals to be drawn, for the 
computer, from the fact that we ask people to be reliable, not to be 
correct. The second moral is for those who, when confronted with 
the fact that genuine or adequate experience cannot be had, 
would say “Well if that is true, let’s build responsibility and mo-
rality into computers. If people can have it, there is no reason why 
machines cannot have it too.” 

I will not argue that building responsibility and morality into 
artefacts is inherently impossible, in some metaphysical or ulti-
mate philosophical sense, but lest anyone be tempted in that di-
rection, a few short comments are in order. First, from the fact 
that humans sometimes are responsible, it does not follow that 
we know what responsibility is: from tacit skills no explicit model 
is necessarily forthcoming. We simply do not know what aspects 
of the human condition underlie the modest levels of responsibil-
ity to which we sometimes rise. Second, with respect to the goal 
of building computers with even human levels of full reliability 
and responsibility, I can state with surety that the present state of 
artificial intelligence is about as far from this as mosquitoes are 
from flying to the moon. Whether it will be 50 or 500 years be-
fore we have responsible machines around is a topic we could de-
bate, but no one currently alive need worry about what it will be 
like to live with them. 

But there are deeper morals even than these. The point is that 
even if we could make computers reliable, they still would not 
necessarily always do the correct thing. Remember: people are not 
always “correct”, either; correctness at that level is not something 
this world will ever provide. That is why we hope that people are, 
and educate them to be, responsible. And if civilization has 
learned anything over the past few millennia, it is surely that cor-



356 Indiscrete Affairs · I 

rectness and responsibility do not always coincide. Even if, in an-
other thousand years, someone were to devise a genuinely respon-
sible computer system, there is no reason to suppose that it would 
achieve “perfect correctness” either, in the sense of never doing 
anything wrong. This is not failure, in the sense of a performance 
limitation; it stems from the deeper metaphysical fact that models 
must be abstract, in order to be useful. This is the lesson to be 
learned from the violence inherent in the model-world relation-
ship: that there is an inherent conflict between the power of analy-
sis and conceptualization, on the one hand, and sensitivity to the 
infinite richness, on the other. 

But perhaps this is an overly abstract way to put it. Perhaps, 
instead, we should just remember that there will always be an-
other moon-rise. 
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7 — One Hundred Billion Lines of C++†  

The year is 2073. You have a job working for General Electric, de-
signing fuel cells. Martian have landed. One stands over your 
desk, demanding to see what you are working on. On the large 
CAD display surface forming your desk, you are sketching a com-
plex combustion chamber for a new eco-engine you and some col-
leagues are designing. Next to an input port, on the left side, is the 
word ‘oxygen,’ with an arrow pointing inwards. On the right is a 
similar port, with the word ‘hydrogen.’ “Amazing!,” says the Mar-
tian to a conspecific, later that day. “Earthlings build symbol com-
bustion machines! I saw some engineers designing one. They 
showed me how the word ‘oxygen’ would be combined with the 
word ‘hydrogen’ in a wondrous kind of symbol mixing chamber.” 

The Martian is confused. That was a diagram for a fuel cell, 
not a fuel cell itself. The word ‘oxygen’ was a label. Map is not ter-
ritory. What will be funneled into the input chamber—to bela-
bour the obvious—is oxygen gas, not (a token of) the word ‘oxy-
gen.’ Words entering chambers makes no sense. 

Far-fetched? Perhaps. But in this paper I argue that the debate 
that has been conducted, over the last decade or so, between sym-
bolists and connectionists founders over a troublingly similar er-
ror. Perhaps not quite as egregious—but a misunderstanding, 
nonetheless. Moreover, the confusion goes far beyond that par-
ticular debate, infecting (mis)understandings of the computa-
tional theory of mind throughout philosophy—including, to take 

                                                             
†Published in Cog Sci News, Lehigh University, 1997. Thanks to Irene Ap-
pelbaum and Güven Güzeldere for comments on an early draft. 
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just one example, the debate about Searle’s notorious Chinese 
Room. It is as if John Searle had wandered into a hacker’s office, 
looked over her shoulder at the program she was writing, seen lots 
of symbols arranged on the screen, and concluded that the result-
ing system must be symbolic. Searle’s inference, I claim, is no more 
valid than the Martian’s. 

For discussion, I will focus on the connectionist debate, but the 
points can easily be extended to other contexts. 

 1 Background 
A glimmer of trouble is evident in the way the connectionist debate 
is framed. Both positions consider only two kinds of architecture. 
On one side are traditional von Neumann architectures, of the 
sort imagined in “good old fashioned ai” (‘GOFAI,’ to use 
Haugeland’s term). These systems are assumed to be constructed 
out of a set of atomic symbols, combined in countless ways by rules 
of composition, in the way that is paradigmatically exemplified by 
the axioms of a first-order theorem prover. On the other side are 
connectionist (or dynamic) systems, composed instead of a web of 
interconnected nodes, each dynamically assigned a numerical 
weight. For purposes of this debate, it seems as if that is all there is. 
Some writers1 even take the first, symbolic, model, to be synony-
mous with computation tout court. So they frame the argument 
this way: that cognition is (should be understood as, will best suc-
cumb to analysis as, etc.) a dynamical system, not a computational 
system. 

What happens to real-world programming in this scheme—
the uncountably many network routers and video games and disk 
compression schemes and e-mail programs and operating systems 
and so on and so forth, that are the stock and trade of practicing 
programmers? Which side of the debate are they on? Most people, 
I take it, assume that they fall on the symbolic side. But is that so? 
And if so, why are such systems never mentioned? 

It cannot be that they are not mentioned because such programs 
are rare. In National Public Radio’s famous phrase, “let’s do the 

                                                             
1E.g. Port, Robert and van Gelder, Timothy (eds.), Mind as Motion, Cam-
bridge, Mass.: MIT Press (1995), or van Gelder, Timothy "Computation 
and Dynamics," Journal of Philosophy, … 
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numbers.”2 Sure enough, some combinatorial symbolic systems 
have been constructed, over the years, of just the sort envisaged 
(and defended) by Fodor, Pylyshyn, and others on the symbolic 
side of the debate.3 Logic-based programs, theorem provers, and 
knowledge representation systems were early examples. SOAR4 is a 
more modern instance, as is the CYC project of Lenat and Feigen-
baum. Perhaps the category should even be taken to include the 
bulk of expert systems, case-based reasoners, truth-maintenance 
systems, and diagnosis programs. What does this come to, over-
all? Perhaps somewhere between 1,000 and 10,000 programs? 
Suppose each comprises an average of 10,000 lines of code (a cou-
ple of hundred pages, in normal formatting). That would come to 
ten million lines of code, overall. 

But now consider the bulk of real-world programming. Think 
of e-mail clients, of network routers, of word processors and 
spreadsheets and calendar programs, of operating systems and 
just-in-time compilers, of Java applets and network agents, of em-
bedded programs that run the brakes in our cars, control traffic 
lights, and hand your cellular telephone call from one zone to the 
next, invisibly, as you drive down the interstate. Think, that is, of 
commercial software. Such programs constitute far and away the 
mainstay of computing. Again, it is impossible to make even much 
of a rough estimate, but it will not be too misleading if we assume 
that there are probably something on the order of 1011—i.e., one 
hundred billion—lines of C++ code in the world.5 And we are 
barely started. 

In sum: symbolic AI systems constitute approximately 0.01% of 

                                                             
2«Ref ‘Marketplace’» 
3See for example Pinker, Steve, and Mehler, Jacques (eds.), Connections and 
Symbols, Cambridge, Mass.: MIT Press, 1988. 

4‘«ref» 
5It is not even clear how one would individuate programs—or, for that 
matters, lines of code. When does one line turn into another one? How 
long does a line have to exist (e.g., in a rough-draft of a program, in a 
throw-away implementation) in order to count? What about multiple cop-
ies? Moreover, since C++ is already passé, what about Java? Or the language 
that will be invented after that? 

I have no clue as to how to answer such questions. Maybe this is a bet-
ter estimate: 109±(3±2). Whatever; the answers do not matter to any of the 
points being made in the text. 
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written software.  

By themselves, the numbers do not matter. What I want to do is to 
use these facts to support the following claims:  

1. Within the overall space of possible computational archi-
tectures, the vast majority of commercial software—which 
is to say, the vast majority of software, period—is neither 
“symbolic,” in the sense defended by Fodor and Pylyshyn, 
nor “connectionist,” in the sense defended by Smolensky, 
nor “dynamic,” in the sense advocated by van Gelder, but 
rather some fourth kind entirely; 

2. The only reason for thinking that commercial software is 
symbolic, as we will see, stems from a confusion between a 
program and the process or computation that it specifies 
(something of a use/mention error, not unlike that made 
by the Martian); and 

3. In order to understand how such a confusion could be so 
endemic in the literature (and have remain so unre-
marked), one needs to understand that the word “seman-
tics” is used differently in computer science from how it is 
used in logic, philosophy, and cognitive science—a re-
quirement that in turn will require us to understand some-
thing about the history of the technical vocabulary used in 
computer science. 

In a sense, the ultimate moral comes to this: the “design space” of 
possible representational/computational systems is enormous—
far larger than non-computer-scientists may realize. Both the tra-
ditional “symbolic” variety of system, as imagined in GOFAI, and 
the currently-popular connectionist and dynamic architectures, 
are just two tiny regions, of almost vanishingly small total extent, 
within this vast space. 

Within the hugely important project of exploring how human 
cognition works, it may be important, or anyway of moderate in-
terest, to ask whether and how much human cognition fits within 
these regions—to what extent, in what circumstances, with respect 
to what sorts of capacities, etc. But to assume that the two represent 
the entire space, or even a very large fraction of the space—even to 
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assume that they are especially important anchor points in terms 
of which to dimension the space—is a mistake. Our imaginations 
need to run much freer than that. 

And commercial software shows us the way. 

 2 Compositionality 
What it is that defines the symbolic model is itself a matter of de-
bate. But as Fodor and Pylyshyn make clear, there are several 
strands to the basic picture: 

1. It is assumed that there exist a relatively small (perhaps fi-
nite) stock of basic representational ingredients: something 
like words, atoms, or other entities we can call simplexes. 

2. There are grammatical formation rules, specifying how 
two or more representational structures can be put together 
to make complexes.6 

3. It is assumed that the simplexes have some meaning or 
semantic content: something in the world that they mean, 
denote, represent, or signify. 

4. Finally—and crucially—the meanings of the complexes 
are assumed to be built up, in a systematic way, from the 
meanings of the constituents. 

The picture is thus somewhat algebraic or molecular: you have a 
stock of ingredients of various basic types, which can be put to-
gether in an almost limitless variety of ways, in order to mean or 
represent whatever you please. This “compositional” structure7 

                                                             
6Words of English—or anyway their morphological stems—are good ex-
amples of simplexes; and sentences and other complex phrases of natural 
language are good examples of complexes. But words have various addi-
tional properties—such as having spellings, being formulable in a consen-
sual medium between and among people so as to serve as vehicles for 
communication, etc.—that are not taken to be essential to the symbolic 
paradigm. 

7Compositionality is a complex notion, but is typically understood to con-
sist of two aspects: first, a syntactic or structural aspect, consisting of a 
form of "composition" whereby representational symbols or vehicles are 
put together in a systematic way (according to what are often known as 
formation rules), and a semantic aspect, whereby the meaning or interpre-
tation or content of the resulting complex is systematically formed out of 
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underwrites two properties that Fodor identifies as critical aspects 
of human thinking: productivity (the fact that we can produce 
and understand an enormous variety of sentences, including ex-
amples that have never before occurred) and systematicity (the 
fact that the meaning of large complexes is systematically related 
to the meanings of their parts). Much the same structure is taken 
by such writers as Evans and Cussins8 to underlie what is called 
conceptual representation. The basic idea is that your concepts come 
in a variety of kinds: some for individual objects, some for proper-
ties or types, some for collections, etc.; and that they, too, can simi-
larly be rearranged and composed essentially at will. So a repre-
sentation with the content P(x) is said to be conceptual, for agent A, 
just in case: for every other object x’, x’’, etc. that A can represent, A 
can also represent P(x’), P(x’’), etc., and for every other property P’, 
P’’, etc. that A can represent, A can also represent P’(x), P’’(x), etc.9 

Thus suppose we can say (or entertain the thought) that a table 
is 29” high, and that a book is stolen. So too, it is claimed—given 
that thought at this level is conceptual—we can also say (or enter-
tain the thought that) the table is stolen and the book is 29” high 
(even if the latter does not make a whole lot of sense). This condi-
tion, called the “Generality Condition” by Evans, is taken to un-
derwrite the productive power of natural language and rational 
thought. It is also clearly a property taken to hold of the paradig-
matic instances of “symbolic” AI—i.e., of logical axiomatisations, 
knowledge representation systems, and the like. Whether being 
compositional and productive is considered to be a feature, as 
Fodor suggests, or a non-feature, as various defenders of non-
conceptual content suggest—i.e., whether it is viewed positively or 
negatively—there is widespread agreement that it is an important 
property of some representation schemes, and paradigmatically 

                                                                                                                                                  
the meanings or interpretations or contents of its constituents, in system-
atic way (in a way, furthermore, associated with the particular formation 
rule the complex instantiates). 

8Evans, Gareth, Varieties of Reference, Oxford: Clarendon Press (1982); 
Cussins, Adrian, "On the Connectionist Construction of Concepts," in 
Boden, Margaret. (ed.), The Philosophy of Artificial Intelligence, New York: 
Oxford University Press (1990). 

9Evans says ‘entertain the judgment’ that a is F, that b is G, etc., rather than 
‘represent’; I use the representational phrasing here since the subject mat-
ter is symbolic computation. 
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exemplified by ordinary logic. Indeed, the converse, while too 
strong, is not far from the truth: some people believe that 
connectionist, “subsymbolic,” “non-symbolic” and other forms of 
dynamical system are recommended exactly in virtue of being 
non-compositional or non-conceptual. 

 3 Programs 
What about those billions of lines of C++ code? Are they concep-
tual, in this compositional sense? 

We need a distinction. Sure enough, the programming lan-
guage C++ is a perfect example of a symbolic system. An indefinite 
stock of atomic symbols is made available, called identifiers, some 
of which are primitive, others of which can be defined. There are 
(rather complex) syntactic formation rules, which show how to 
make complex structures, such as conditionals, assignment state-
ments, procedure definitions, etc., out of simpler ones. Any ar-
rangement of identifiers and keywords that matches the formation 
rules is considered to be a well-formed C++ program—and will 
thus, one can presume, be compiled and run. By far the majority of 
the resulting programs will do nothing of interest, of course—just 
as by far the majority of syntactically legal arrangements of Eng-
lish words make no sense. But it is important that these possible 
combinations are all legal. That is exactly what makes program-
ming languages so powerful. 

But—and this matters—it does not follow that most commer-
cial software is symbolic. For consider the language used in that 
last paragraph. What is compositional—and hence is symbolic—
is the programming language, taken as a whole, not any specific pro-
gram that one writes in that language. It follows that the activity of 
programming is a symbolic process—i.e., the activity engaged in by 
people, for which they are often well paid. That may be an impor-
tant fact, for a variety of reasons: it might be usable as an early in-
dicator of what children will grow up to be good programmers, or 
represent an insight into or limitation on how we construct com-
puters. But it is irrelevant to the computational theory of mind, 
since it is not programming that mentation is supposed to be like, 
according cognitivism’s fundamental thesis.10 Rather, the claim of 

                                                             
10It is by no means clear that programming is a computational activity. 
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the computational theory of mind is that thought or cognition or 
mentation is like (or even: is) the running of a (single) program. 

Thus if you write a network control program, and I write a hy-
perbolic browser, and a friend writes a just-in-time compiler, all in 
C++, each of us uses the compositional power of the C++ program-
ming language to specify a particular computational program or 
process or architecture. There is no reason to suppose—good rea-
son not to suppose, in fact—that those programs, those resulting 
specific, concrete active loci of behavior, will retain the compositional 
power of the language we used to specify them. To think so is, like 
the Martian, to make something of a use/mention mistake. 

To make this precise, we need to be more careful with our lan-
guage. As is entirely standard, I will call C++ and its ilk (Fortran, 
Basic, Java, JavaScript, etc.) programming languages. As stated 
above, I admit that programming languages are compositional 
representational systems—and hence symbolic. They are used, by 
people, to specify or construct individual programs. Programs are 
static, or at least passive, roughly textual, entities, of the sort that 
you read, edit, print out, etc.—i.e., of the sort that exists in your 
EMACS buffer.11 

What programs are for is to produce behavior. That is why we 
write them. Behavior is derived from programs by executing or 
running them. Programs can be executed directly in one of two 
ways: (i) they can be executed by the underlying hardware of the 
machine, if they are written in the lowest level language (called 
‘machine language’), in which case the term ‘execution’ is the most 
common one used; or (ii) they can be executed by another compu-
tational process, which itself results (directly or indirectly) form 
the execution of a machine language program, in which case the 
execution of the (higher-level) program is typically called inter-

                                                                                                                                                  
Chances are, programming will turn out to be to be computational if and 
only if cognitivism is true. 

11Technically, a distinction needs to be made between the program at the 
level of abstraction (and internal implementation) that a compiler can 
see—the one that gets "written" on a computer's hard disk, etc.—and the 
strictly “print representation” in ASCII letters, that people can read. For 
purposes of this paper, however, this distinction, too, does not matter. As 
is common parlance, therefore, I will refer to both, interchangeable, as “the 
program.” 
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pretation, and the process that does the execution, the inter-
preter.12 Of the two, the notion of interpretation is more general; 
and since most machines, these days, are micro-coded, even (so-
called’ machine language programs are typically interpreted, but a 
process resulting from a still-further lower level program, written 
in what is called ‘microcode,’ which in turn is directly executed by 
the microcode hardware. 

Commonly, however, programs are not directly executed. In-
stead, they are first translated, by a process called compilation, into 
another language more appropriate for direct execution by a ma-
chine. That is, if program P1 is written in C++, instead of being run 
or executed directly, by a C++ interpreter, it will instead be trans-
lated into another program P2, perhaps in machine language, 
such that the execution of P2 results in the “same” behaviour as 
would have resulted by the direct execution of P1 by a C++ inter-
preter. 

However it comes into existence, the ultimately resulting behav-
ior—the whole point of the exercise—is what I will call a process. 
When (in the computer scientist’s sense of that term) a program is 
interpreted, therefore, to put this all simply, what results is behavior 
or a process. But when a program is compiled, what results is not 
behavior, but another program, in a different language (typically: 
machine language). When that machine language program is 
executed, however, once again a process (or behavior) will result. 

For our purposes, having to do with what is and is not sym-
bolic, what matters is that once a program is created, its structure is 
fixed. Except in esoteric cases of reflective and self-modifying be-
havior—which is to say, except in a vanishingly small fraction of 
those 1011 lines of code—the entire productive, systematic, compo-
sitional power of the programming language is set aside when the 
program is complete. The process that results from running that 
program is...well, whatever the program specifies. But, at least to a 
first order of approximation, the compositional power of the pro-
gramming language is as irrelevant to the resulting process as the 
compositional and productive power of a computer-aided design 
system (CAD) is irrelevant to the thereby-specified fuel cell. 

                                                             
12Why this is called interpretation will be discussed in the next section. 
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Consider an example. Suppose we are writing a driver for a print 
server, and need to represent the information as to whether the 
printer we are currently servicing is powered up. It would be ordi-
nary programming practice to define a variable called current-
printer11 to represent whatever printer is currently being serviced, 
and a predicate called PoweredUp? to be the Boolean test. This 
would support the following sort of code:13 
 if PoweredUp?(current-printer) 
 then … print out the file … 
 else TellUser (“Printer not powered on. Sorry.”) 

But now consider what happens when this program is compiled. 
Since the question of whether or not a printer is powered up is a 
Boolean matter, the compiler is free to allocate a single bit in the 
machine (per printer) to represent it. That will work so long as the 
hardware is arranged to ensure that whenever the printer is pow-
ered up, the bit is set (say) to ‘1’; otherwise, it should be set to ‘0’. 
Instances of calls to PoweredUp? can then be translated into simple 
and direct accesses of that single bit. In the code fragment above, 
for example, if that bit is 1, the file will be printed; if it is a 0, the 
user will be given an error message. And so all the compiler needs 
to produce is a machine whose behavior is functionally dependent 
on the state of that bit in some way or other.  

This is all straightforward—even elementary. But think of its 
significance. In particular Consider Evans’ Generality Condition, 
described above. In order for a system to be compositional in the 
requisite way, what was required, was the following: that the sys-
tem be able to “entertain” a thought—construct a representation, 
say—whose content is that any property it knows about hold of 
any object it knows about. Suppose, for argument, that we say that 
the print driver “knows about” the current printer, and also “knows 
about” the user—the person who has requested the print job, to 
whom the potential error message will be directed. Suppose, fur-
ther, that we say that the driver, as written, can “entertain the 
thought” that the printer is powered up. Does that imply that it can 
entertain a thought (or construct a representation) whose content 
is that the user is powered up? 

Of course not. In fact the print driver process cannot entertain a 
                                                             
13By design, this code fragment is ridiculously skeletal. 
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single “thought” that does not occur in the program. That shows 
that it is not really “entertaining” the thought at all. For the issue 
of whether the printer is powered up is not a proposition that can 
figure, arbitrarily, in the print driver’s deliberations. In a sense, 
the print driver doesn’t “deliberate” at all. It is a machine, designed 
for a single purpose. And that is why the representation of 
whether a given printer is powered up can be reduced to a single 
bit. It can be reduced to a single bit because the program has abso-
lutely no flexibility in using it. Sure, given that C++ is incontestably 
symbolic, productive, and so forth, the original programmer could 
have written any of an unlimited set of other programs, rather 
than the program they wrote. But given that they wrote the particu-
lar one that they did, that extrinsic flexibility is essentially irrele-
vant. 

From one point if view, in fact, that is exactly why we compile 
programs: to get rid of the overhead that is required in the original 
programming language to keep open (for the programmer) the vast 
combinatoric space of possible programs. Once a particular pro-
gram is written, this space of other possibilities is no longer of in-
terest. In fact it is in the way. It is part of the compiler’s task to 
wash away as many traces of that original flexibility as possible, in 
order to produce a sleeker, more efficient machine. 

Another numerical point will help drive the point home. Pro-
grams to control high-end networked printers are several million 
lines long. Operating systems are 100s of millions of lines of 
code.14 It is not unreasonable to suppose that such programs con-
tain a new identifier every four or five lines. That suggests that the 
number of identifiers used in a printer control program can ap-
proach a million, and that Windows NT will contain as many as 7 
million identifiers. Suppose a person’s conceptual repertoire is ap-
proximately the same size as their linguistic vocabulary. Educated 
people typically know something like 40,000 to 80,000 words. 
Suppose we therefore assume that people have on the order of 
100,000 concepts. Is it possible—as seems to be entailed by the 
symbolists’ position—that a Xerox printer has a conceptual reper-

                                                             
14Microsoft Windows NT 5.0, the release of which was thought to be im-
minent at the point when this paper was first written, was rumoured to 
contain 35 million lines of code. (It was eventually released on February 17, 
2000.) 
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toire ten times larger than you do, or a Microsoft operating system, 
seventy times larger? 

I think not.15 

 4 Processes 
A way to understand what is going on is given in figure 1. The 
box at the top left is (a label for!) the program: the passive textual 
entity selected out of the vast space of possible programs implicitly 
provided by the background programming language. The cloud 
at the middle right is intended to signify the process or behavior 
that results from run-
ning the program.16 
The scene at the bot-
tom is a picture of the 
program’s task domain 
or subject matter. For 
example in this case the 
process might be an ar-
chitectural system 
dealing with house de-
sign. 

Given these three 
entities, two relations 
are most important: 
that labelled a, from 
program to process, 
and that labelled b, 
from resulting process 
to task domain. Moreover, what is perhaps the single most confus-
ing fact in cognitive science’s use of computation is this: the word 
‘semantics’ is used by different people for both of these relations. In 

                                                             
15Indeed, no program—at least none we currently know how to build—
could possibly cope with millions of differently-signifying identifiers, if all 
those identifiers could be mixed and matched, in a compositional way, as 
envisaged in the symbolists' imagination. 

16Whether the cloud represents a single run (execution) of the process, or 
a more general abstract type, of which individual runs are instances, is an 
orthogonal issue—important in general, but immaterial to the current ar-
gument. 

 
 

Figure 1 — Program and Process 
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computer science, the phrase “the semantics of a program” refers to 
the program-behavior (process) relation a, whereas the relation 
considered semantic in the philosophy of mind is the process-
world relation b. For discussion, in order not to confuse them, I 
will refer to a as program semantics, and to b as process seman-
tics. It is essential to realize that they are not the same.17 Not only 
do they relate different things, but they are subject to vastly differ-
ent constraints—and are of distinct metaphysical kinds. 

All sorts of confusion can be cleared up with just this one distinc-
tion. But a cautionary note is needed first. Given that processes 
and behaviours are computer science’s primary subject matter, you 
might think that there would be a standard way to describe them. 
Curiously enough, however, that is not so. Rather, professional 
practice instead models processes in various ways: 

… In the final version it will probably be helpful to devote more than a sen-
tence to each of these; perhaps even worth constructing a target program P 
that does something (a bit more complex than the printer example above), and 
then actually presenting the five different models of the processes that result. … 

1. The most common way to talk about processes is to model 
them with (mathematical) functions mapping their inputs 
onto their outputs. 

2. A second way is to treat the computer as a state machine, 
and then to view the process or behaviour as a sequence of 
state changes. 

3. A third is to have the process produce a linear record of eve-
rything that it does (called a “dribble” or “log” file), and to 
model the process in its terms. 

                                                             
17Many years ago, at Stanford's Center for the Study of Language and In-
formation (CLSI), I, with a background in AI and philosophy of mind, tried 
in vain to communicate about semantics with Gordon Plotkin, one of the 
most preëminent theoretical semanticists in all of computer science. Fi-
nally, a glimmer of genuine communication transpired when I came to un-
derstand the picture sketched in figure 1, and realised that we were using 
the term 'semantics' differently. "What I am studying," I said, trying to put 
it in his language, "is the semantics of the semantics of programs." 

Plotkin smiled. 
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4. A fourth (called “operational semantics”) is to model the 
process in terms of a different program in a different lan-
guage that would, if run, generate the same behavior as the 
original. 

5. A fifth and particularly important one—called denota-
tional semantics—models the concrete activity that the 
program actually produces (i.e., the behaviour Q) with vari-
ous abstract mathematical structures (such as lattices), 
rather in the way that physicists model concrete reality 
with similarly abstract mathematical structures (tensors, 
vector fields, etc.). 

Especially because of the common use of mathematical models in 
several of these approaches (#s 1 and 5 especially, though they can 
all be mathematized), outsiders are sometimes tempted to think 
that computer science’s notion of semantics is similar or equivalent 
to that used in logic and model theory. But that assumption is 
misleading. Although the relation is studied in a familiar way, 
what relation it is that is so studied may differ substantially from 
what is supposed. 

 5 Discussion 
Once these modelling issues are sorted out, we can use these basic 
distinctions they are defined in terms of to make the following 
points: 

… This section has not really been written; the six points identified below 
should be amplified enough to communicate the essential moral, in each case, to 
someone who does not “already know it,” as it were—in particular, enough de-
tail both to motivate and to convey it to a philosophical reader, even one with-
out computational experience … 

1. (Discussed above) It is programs, not processes, that, in 
standard computational practice, are symbolic (composi-
tional, productive, etc.). 

2. It is again programs, not processes, that computer scientists 
take to be syntactic. It strikes the ear of a computer scientist 
oddly to say that a process or behavior is syntactic. But 
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when Fodor talks about the language of thought, and ar-
gues that thinking is formal, what he means, of course, is 
that human thought processes are syntactic. 

3. Searle’s analogy of the mind to a program is misleading.18 
What is analogous to mind, if anything (i.e., if the compu-
tational theory of mind is true) is process. 

4. Not only is there no reason to suppose, but in fact I know of 
no one who ever has proposed, that there should be a pro-
gram for the human mind, in the sense we are using here: a 
syntactic, static entity, which specifies, out of a vast combi-
natoric realm of possibilities provided for by the program-
ming language, the one particular architecture that the 
mind in fact instantiates. Perhaps cognitive scientists will 
ultimately devise such a program. But it seems relatively 
unimaginable that evolution constructed us by writing 
one.19 

5. For simple engineering reasons, the program-process rela-
tion (a in the figure) must be constrained to being effective 
(how else would the program run?). There is no reason to 
suppose that the process-world relation b need be effective, 
however—unless for some reason one were metaphysically 
committed to such a world view. 

6. It is because computational semanticists study the pro-
gram-process relation a, not the process-world relation b, 
that theoretical computer science makes such heavy use of 
intuitionistic logic (type theory, Girard’s linear logic, etc.) 
and constructive mathematics. 

 6 Conclusion 

… Once §5 is properly written, this § will deserve a rewrite … 

                                                             
18Searle, John, Minds, Brains, and Science, Cambridge: Harvard University 
Press (1984). 

19Of course one could call DNA a programming language in this 
sense…«talk about how it is subject to some of the same efficacy con-
straints» 
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What, in sum, can we say about the cognitive case? Two things, 
one negative, one positive. On the negative side, it must be recog-
nized that it is a mistake to assume that modern commercial pro-
gramming gives rise to processes that satisfy anything like the de-
fining characteristics of the “symbolic” paradigm. Perhaps some-
one could argue that most—even all—of present-day computa-
tional processes are symbolic on some much more generalized no-
tion of symbol.20 But the more focused moral remains: the vast 
majority of extant computer systems are not symbolic in the sense 
of “symbol” that figures in the “symbolic vs. connectionist” or “com-
putational vs. dynamic” debates. 

What are the computer systems we use, then? Are they 
connectionist? No, of course not. Rather—this is the positive 
moral—they spread out across a extraordinarily wide space of 
possibilities. With respect to the full range of computational pos-
sibility, moreover, present practice may not amount to much. Com-
putation is still in its infancy; we have presumably explored only a 
tiny subset of the space—perhaps not even a very theoretically in-
teresting subset, at that. But this much we can know, already; the 
space that has already been explored is far wider than debates in 
the cognitive sciences have so far recognized. 

                                                             
20If it were enough, in order to be a symbol, to be discrete and to carry in-
formation, then (at least arguably) most modern computational processes 
would count as symbolic. Or at least that would be true if computation 
were discrete—another myth, I believe (see chapter ■■). But the symbolic 
vs. connectionist and/or dynamicist debate is not simply a debate about 
discrete vs. continuous systems. 
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8 — The Semantics of Clocks† 

 The inexorable ticking of the clock may have had 
more to do with the weakening of God’s supremacy 
than all the treatises produced by the philosophers of 
the Enlightenment . . . Perhaps Moses should have 
included another Commandment: Thou shalt not 
make mechanical representations of time. 

 —Neil Postman1 

 1 Introduction 
Clocks? 

Yes, because they participate in their subject matter, and par-
ticipation—at least so I will argue—is an important semantical 
phenomenon. 

To start with, clocks are about time; they represent it.2 Not 
only that, clocks themselves are temporal, as anyone knows who, 
wondering whether a watch is still working, has paused for a sec-
ond or two, to see whether the second hand moves. In some sense 
everything is temporal, from the price of gold to the most passive 
rock, manifesting such properties as fluctuating wildly or being 

                                                             
 † Slightly revised version of a paper that appeared in James H. Fetzer (ed.), 

Aspects of Artificial Intelligence, Kluwer 1998, pp. 3–31. 
 1 Postman (1985), pp.11–12. 
 2 Clocks represent time for us, as it happens, not for themselves—but that 

will count as representation, at least here. I am sympathetic to such dis-
tinctions as between original and derivative semantics, and between 
authentic and derived; in fact I am interested in participation in part for 
just such reasons. However I am against relativizing representation to an 
observer at the outset, especially to a human observer (cf. Winograd and 
Flores, 1986), since to do that would be to abandon any hope of explaining 
how the human mind might itself be representational. See (Smith, forth-
coming). 
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inert. But the temporal nature of clocks is essential to their se-
mantic interpretation, more than for other representations of 
time, such as calendars. The point is just the obvious one. As time 
goes by, we require a certain strict coordination The time that a 
clock represents, at any given moment, is supposed to be the time 
that it is, at that moment. A clock should indicate 12 o’clock just 
in case it is 12 o’clock. 

But that is not all. The time that a clock represents, at a given 
moment, is also a function of that moment, the very moment it is 
meant to represent. I.e., suppose that a clock does indicate 12 
o’clock at noon. The time that it indicates a moment later will dif-
fer by an amount that is not only proportional to, but also de-
pendent on, the intervening passage of time. It does not take God 
or angels to keep the clock coordinated; so long as the mechanism 
is set up properly, it does it on its own. This is where participa-
tion takes hold. 

2010 Perspectiveα1 

…………    to be written    ………… 

Things to be talked about: 

… How the paper emerged in part out of a desire to combine derivatives and 
semantic brackets, as part of the unification project (based on another bar 
conversation about using the states of dynamical systems as “representa-
tionally significant” syntactic states). 

… The (huge) long-term importance of the comment about “state-change,”  
… How, in teaching, I use clocks as a first example of a mechanical system de-

signed to honour a non-effective semantical norm (rather than logic, be-
cause people get so confused by the notation—as well as the intrusion of 
mathematics). 

… Go over the notes from the phil-comp course where I talk about clocks, and 
put into these perspective comments anything there that is not covered in 
the  paper (Jun’s feeling is that those notes are easier and more important, 
for students). 

Notes 
 α1 Sidebars and footnotes with text in sans-serif font, as in this case, contain comments and 

reflections added in 2010, rather than material that appeared in the original paper. 
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As well as representing the current time, clocks have to iden-
tify its “location” in the complex but familiar cycle of hours, min-
utes, etc. They have to measure it, that is, in terms of a predeter-
mined set of temporal units, and they measure it by participating 
in it. And yet the connection between their participation and 
their content is not absolute—clocks, after all, can be wrong. 
How it is that clocks can participate and still be wrong is some-
thing we will have to explain. 

For clocks, participation involves being dynamic: constantly 
changing state, in virtue of internal temporal properties, in order 
to maintain the right semantic stance. This dynamic aspect is a 
substantial, additional, constraint. A passive disk inscribed with 
‘NOW!’ would have both temporal properties mentioned above 
(being about time, and having the time of interpretation relevant 
to content) and would even maintain perfect coordination. A ren-
dering of this word in blinking lights, mounted on a chrome 
pedestal, might even deserves a place on California’s Venice 
Boardwalk. But even though it would be the first time piece in 
history to be absolutely accurate, such a contraption would not 
count as a genuine chronometer. 

We humans participate in the subject matter of our thoughts, 
too, when we think about where to look for our glasses, notice 
that we are repeating ourselves, or pause to ask why a conversant 
is reacting strangely. Why? What is this participation? It is hard 
to say exactly, especially because we cannot get outside it, but a 
sidelong glance suggests a thick and constant interaction between 
the contents of our thoughts, on the one hand, and both prior 
and subsequent non-representational activity, on the other, such 
as walking around, shutting up, or pouring a drink. 

Take the glasses example. Suppose, after first noticing their 
absence, I get up and look on my dresser, asking myself “Are they 
here?” My asking the question will be a consequence of my won-
der, but so will my (non-representational) standing in front of the 
dresser. Furthermore, the two are related; the word ‘here’ will de-
pend for its interpretation on where I am standing. And who 
knows, to drive the example backwards in time, what caused the 
initial wonder—eye strain, perhaps, or maybe an explicit com-
ment. The point is that the representational and non representa-
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tional states of participatory systems are inexorably inter-
twined—they even rest on the same physical substrate. We can 
put it even more strongly: the physical states that realise our 
thoughts are caused by non-representational conditions, and en-
gender non-representational consequences, in ways that must be 
coordinated with the contents of the very representational states 
they realise. Participation is something like that. 

Artificial intelligence (AI) and general computational systems 
also participate—more and more, in fact, as they emerge from the 
laboratory and take up residence with us in life itself: landing air-
planes, teaching children, launching nuclear weapons. Far from 
being abstract, computers are part of the world, use energy, affect 
the social fabric. This participation makes them quite a lot like us, 
quite unlike the abstract mathematical expression types on which 
more familiar semantical techniques have been developed. 

My real reason for studying clocks, therefore, can be spelled 
out as follows. First, issues of semantics, and of the relationship 
between semantics and mechanism, are crucial for AI and cogni-
tive science (this much I take for granted). Second, it is terrifically 
important to recognise that computational systems participate in 
the world along with us. That is why they are useful. Third, as I 
hope this paper will show, participation has major consequences 
for semantical analysis: it forces us to develop new notions and 
new vocabulary in terms of which to understand interpretation 
and behaviour. Clocks are an extremely simple case, with very 
modest participation. Nonetheless, their simplicity makes them a 
good foil in terms of which to start the new development 

So they are really not such an unlikely subject matter, after all. 

 2 Inference and Time-keeping 
Let’s start by reviewing the current state of the semantical art. 
Consider a familiar, paradigmatic case: a theorem-prover built ac-
cording to the dictates of traditional mathematical logic. As sug-
gested in figure 1, two relatively independent aspects will be co-
ordinated in such a system First, there is activity or behaviour—
what the system does—indicated as ψ (for psychology). All sys-
tems, from car engines to biological mechanisms of photosynthe-
sis, of course do something; what distinguishes theorem provers 
is the fact that their ψ implements (some subset of) the proof-
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theoretic inference relation (⊢). Second, there is the denotation or 
interpretation relation, indicated φ (for philosophy), which maps 

sentences or formulae onto 
model-theoretic structures of 
some sort, in terms of which the 
truth-values of the formulae are 
determined. In a computer sys-
tem designed to prove theorems 
in abstract algebra, for example, 
the interpretation function 
would map states of the machine 
(or states of its language) onto 
groups, rings, or numbers—the 
subject matter of the algebraic 

axioms. 

Four things about this situation are important. 
First, although proof theory’s putative formality suggests that 

ψ must be definable independent of φ you could not claim to have 
a proof-theoretic or inference relation except with reference to 
some underlying notion of semantic interpretation. Conceptually, 
at the very least, ψ and φ are inextricably linked (salesmen for in-
ference systems without semantics should be reported to the Bet-
ter Business Bureau). Furthermore, the two relations are coordi-
nated in the well-known way, using notions of soundness and 
completeness: inferences (ψ) should lead from one set of sen-
tences to another only if the latter are true just in case the former 
are true (⊢ should honour ⊨). And truth, as we’ve already said , is 
defined as in terms of φ: the semantic relation to the world. 

Second, even though the proof-theoretic derivability relation 
(⊢) can be modeled as an abstract set-theoretic relation among 
sentences, I will view inference itself (ψ) as fundamentally tempo-
ral—as an activity. ‘Inference’ is a derived noun; ‘infer’ is first and 
foremost a verb, with an inherent asymmetry corresponding di-
rectly to the asymmetry of time itself. It might be possible to real-
ise the provability relation non-temporally, for example by writ-
ing consequences of sentences down on a page, but you could 
hardly claim that the resulting piece of paper was doing inference. 

Third, when its dynamic nature is recognised, inference is 

 
 

Figure 1 — Activity and semantics 
for a theorem prover 
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(quite properly) viewed as a temporal relation between sentences 
or states of the machine’s memory, not as a function from times 
onto those corresponding sentences or states. Mathematically this 
may not seem like much of a difference, but conceptually it mat-
ters a lot. Thus, taking σ to range over interpretable states of the 
system, and t over times, ψ is of type σ → σ, not t → σ. Of course 
it will be possible to define a temporal state function of the latter 
type, which I will call Σ; the point is that it is ψ, not Σ, that war-
rants the name inference. Details will come later, but the relation 
between the two is roughly as follows: if t’ is one temporal unit 
past t, and Σ(t) = σ, then Σ(t’) = ψ(σ). Inference, that is, has 
more to do with changes in state than with states themselves. To 
study inference is to study the dynamics of representational sys-
tems. 

Fourth, of all of the relations in figure 1, only ψ need be effec-
tive. Neither φ nor Σ can be directly implemented or realised, in the 
strong sense that there cannot be a procedure that uses these 
functions’ inputs as a way of producing their outputs (the real 
reason to distinguish ψ and Σ) This claim is obviously true for φ. 
If I use the name ‘Beantown’ to refer to Boston, then the relation 
between my utterance and the town itself is established by all 
sorts of conventional and structural facts about me, about Eng-
lish, about the situation of my utterance, and so forth. The town 
itself, however, is not the output of any mechanisable procedure 
realised in me, in you, or in anyone else (fortunately—as it would 
be awfully heavy). It might require inference to understand my 
utterance, but that would only put you in some state σ the same 
referent as my utterance, or state. In particular, you do not “com-
pute” the referent of an utterance you hear, in the sense of pro-
ducing that referent as an output of a procedure.x Nor is the ref-

                                                             
 x While this point is philosophically obvious to the point of banality, there is 

substantial ambiguity about the word compute. In English we have no dif-
ficulty is distinguishing, for example, between ‘utter’ and ‘describe,’ in the 
sense (as I have said elsewhere) one describes a refrigerator, and in that act 
utters a sentence (but does not utter a refrigerator). Perhaps because so 
much of computational theory has been developed to deal with mathe-
matical examples, and also because so much computational practice has to 
do not only with the construction but the representation of computation-
internal structures (programs, data structures, etc.), there is no such clarity 
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erence relation effectively mediated by the physical substrate of the 
world, at least on any understanding of ‘effective’ remotely con-
nected to the idea that computation has to do with the capcities 
of effective mechanisms. Not even the National Security Agency 
could fabricate a sensor, to be deployed on route 128, that could 
detect Boston’s participation as a referent in a reference act.3 

                                                                                                                                                  
regarding the word ‘compute.’ People are happy to talk about computing 
numbers, rather than numerals—suggesting it be interpreted as analogous 
to ‘describe’—but also about “computing the header” of a file, in which 
case it is assumed that the header is actually produced, rather than merely 
being represented.  

 3 In computer science the claim that reference is not computed is viewed 
suspiciously—for an very interesting reason. To see it, consider why the 
claim is true. Suppose in a room of one hundred people we label as A the 
person among them who is the average height. Then suppose a new 
(101st) person enters the room. Suddenly—and without any computa-
tion—a different person B will have become the person of the average 
height. No work needs to be done to “lift” the property of being the aver-
age height off of person A, and settling it on B; no energy need be ex-
pended; no symbols massaged. The new state just comes to be, automati-
cally, in virtue of the maze of conditions and constraints that hold. Refer-
ence, I take it, is something like that; conditions and constraints hold so 
that, when a word is uttered or a thought entertained, some object “be-
comes” the referent. (Nor is it possible to reply, in the average-height-
person case, “Well, the room computed it”. On that recourse everything 
that happens would be computed, which would evacuate the word ‘com-
pute’ of substance.) 

How could computer scientists object to this? For the following reason. 
Note that the way that B becomes the person of average height is by par-
ticipating in the situation at hand: he or she enters the room. Participation, 
in other words, is what enables relationship to exist. Computers, on the 
other hand, are traditionally viewed in purely abstract terms—and ab-
stractions, whatever they are, and whatever else may be true of them, are 
presumably metaphysically banned from participation. The closest an ab-
straction comes to the property of average height—or indeed to anything 
at all—is by designating it. And so, because of this abstract conception of 
computers, one gets lulled into thinking that everything must to come into 
being in this disconnected, putatively “computational” way. 

Needless to say, I do not believe the abstract conception of computers is 
right. More strongly, I want to argue that participation—virtually the op-
posite of abstraction—is exactly what allows you to connect to the world 
in other ways than through explicit symbol manipulation. See section 8, 
and (Smith, forthcoming). 
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That Σ is not computed is equally obvious, once you see what 
it means. The point is a strong metaphysical one: times them-
selves—metaphysical moments, slices through the flux quo—are 
not causally efficacious constituents of activity; per se, they lack 
causal powers. If they were causally efficacious, clocks would not 
have been so hard to develop.4 As it is, mechanisms, like all physi-
cal entities, manifest whatever temporal behaviour they do in vir-
tue of momentum, forces acting on them, energy expended, etc., 
all of which operate in time, but do not convert time, compare it 
to anything else, or react with it. The only thing that is available, 
as a determiner of how a system is going to be, is how it was a 
moment before, plus any forces impinging on it (this is physic’s 
vaunted locality). That, fundamentally, is why inference is of type 
σ → σ, not t → σ. It could not be otherwise. The inertness of gold, 
and the indifference of a neutrino, are nothing as compared with 
the imperturbability of a passing moment 

Given these properties of theorem provers, what can we say 
about clocks? Well, to start with, their situation certainly resem-
bles that of figure 1. As in the inference case, a clock’s being in 
some state σ represents (φ) it’s being noon, or 7:15, or whatever; 
the interpretation function is what matters. Similarly, clocks, like 
theorem provers, change state (ψ) in a simple but important way. 
Not only that, state change is what the clock designer has to work 
with; no mortal machinist. unfortunately, could build a device 
that would directly implement Σ. Furthermore, as in the case of 
the theorem prover, the change in state of the clock face is impor-
tant only because of its relation to its content. Forget the Better 
Business Bureau; no one would buy a clock without a clue as to 
how its state represented time.(without, that is, understanding 
how it was a clock). Once again, systematic coordination between 
activity and interpretation is what matters. 

But despite these similarities, there is a difference between 
clocks and theorem provers—suggested by the fact that many 
people (including me)would be reluctant to say that a clock was 

                                                             
 4 For accurately measuring distances on roads, one attaches a “fifth wheel” 

to a car and reads off the passing miles. Maybe, if time had been causally 
efficacious, we could have built clocks the same way, running a wheel 
against time and reading off the passing seconds. 
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doing inference. To get at the difference, note that I have not yet 
said what inference’s coordinated pattern of events is for (on the 
face of it, transitioning from truths to truths sounds a little bor-
ing). But the answer is not hard to find: given a set of sentences or 
axioms that stand in (or enable you to stand in) a given semanti-
cal or informational relation to a subject matter, proofs or infer-
ence lead you to a new informational relation to the same, un-
changed subject matter. For example, the famous puzzle of Mr. S 
and Mr. P5 focuses your attention on a pair of numbers under a 
peculiar description; a considerable amount of inference is re-
quired in order to give you semantical access to those same num-
bers under a more traditional description (or give you access to 
other more familiar properties of numbers—there are many ways 
to discharge the ontological facts). The numbers themselves, 
however, and their possession of all the relevant properties, are 
expected to stay put during the inferential process. None of this 
implies, of course, that the subject matter of inference cannot it-
self be temporal, as illustrated by the situation calculus, temporal 
logics, and numerous other formal systems. The point is only that 
the temporality of the inference process and the temporality of 
the subject domain are not expected to interact. 

The situation for clocks, on the other hand, is almost exactly 
the opposite. What changes, across the time slice mediated by ψ, 
is not the stance or attitude or property structure that clocks get 

                                                             
 5 There are two numbers between 1 and 100. Mr. P knows their product; 

Mr. S, their sum. The following conversation ensues: 
Mr. P: I don’t know the numbers. 
Mr. S: I knew you didn’t. Neither do I. 
Mr. P: Now I do 
Mr. S: Now I do too. 

What are the numbers? 
The earliest publication of this problem I am aware of is by H. 

Freudenthal in the Dutch periodical Nieuw Archief Voor Wiskunde, series 
3, 17, 1969, p. 152 (a solution by J. Boersma appears in the same series, 18, 
1970, pp. 102–106). It was subsequently submitted by David J. Sprows to 
Mathematics Magazine 49(2), March 1976, p. 96 (solution in 50(5) Nov. 
1977, p. 268). Perhaps the most widely read version appears in Martin 
Gardner’s “Mathematical Games” in Scientific American 241(6), Dec 1979, 
pp. 22–30, with subsequent discussions and slight variations in 1980: 
242(3), March, p. 38; 242(5), May, pp. 24-28; and 242(6), June, p. 32. 



382 Indiscrete Affairs · I 

  

at. What changes, rather, is the subject matter itself. Clocks never 
have a moment’s rest; no sooner have they achieved the desired 
relationship to the current time than time slips out from under 
their fingers—as if God were constantly saying “It’s later than 
you think!” Clocks should perhaps be viewed as the world’s first 
truth maintenance systems: they do what they do merely in order 
to retain the validity of their single semantic claim. Like any other 
meter or measuring instrument, they must track the world. 

We can summarise: 

 At least as traditionally construed, inference is a technique 
that enables a system to change its relation to a fixed subject 
matter. Clocks are almost exact duals: they maintain a fixed 
relation to a changing subject matter. 

If reconstructing time-pieces were really my subject matter, rather 
than simply being a foil, I might stop here. But my real interest is 
in developing a single semantical framework so that we can not 
only handle both of these cases (mathematical inference and real-
time clocks), but also locate everything in between. So let’s spend 
a minute to see how clocks fit into the general case. 

 3 Semantically Coherent Activity 
I will use the term ‘representational system’ to coyer anything 
whose behaviour fits within the broad space of semantically con-
strained activity. To be a representational system, in other words, 
is to be an element of the natural order that acts in a semantically 
coherent way. Of all possible kinds of representational activity, 
inference will be analysed as a particular type. The representa-
tional space is large, of course, and certainly includes all of com-
putation (more about that in a moment), but it is still a substan-
tive notion: not everything is in it. Planets, for example, are ex-
cluded,x because planets do not represent their orbits; they just 
have them. Clocks, on the other hand, do represent the time, just 
as I can represent to myself how the sunrise looked this morning, 
as I drove down from the mountains. 

Clocks do however fall outside most traditional models of 
                                                             

 x Unless accorded semantical significance, which is not usual practice (except 
perhaps of astrologists).  
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computation, including the “formal symbol manipulation” model 
so familiar in cognitive science.6 First, clocks (their faces, and the 
clockworks that run them) are fully concrete, physical objects, 
part of the natural order; nothing abstract here. Furthermore, 
this concreteness is crucial to our understanding of them; for 
some purposes one might treat clocks at a level of description that 
abstracted away from their physical being, including their tempo-
ral being, but since our purpose is to show how participation in 
their subject matter influences their design, to do so would be to 
miss what matters most. Second, at least some clocks (especially 
electrical ones operating on alternating current) are analog, even 
though more and more recent on are “digital.”x Third, to the ex-
tent that clocks have representational ingredients, there is no ob-
vious decoupling to be made between (i) a set of structures that 
represent, and (ii) an independent process that inspects and ma-
nipulates them according to the shapes it sees. In other words, 
whereas Fodor’s characterisation of a computer’s “standing in re-
lation” to representational ingredients suggests a modular division 
between symbols and processor, no such division is to be found in 
the chronological case. Fourth, there is another separation that 
cannot be maintained in the case of clocks: that between “inter-
nal” and “external” properties. Rather like neutrinos, times per-
meates everything equally—being as much an influence on inter-
nal workings as it is on surrounding context. And of course it is 
one and the same time, inside and out—clock design depends on 
this. Fifth, clocks, especially analog clocks, are not usually “pro-
grammed” in any sense; they are designed, but they are not uni-
versal computers specialised by physical encodings of time-
keeping instructions. Like so many other properties of clocks, this 
is important, and leads to the sixth salient difference. Even on the 
view that Turing machines are concrete, physical objects (of 

                                                             
 6 The two other primary models, conceptually distinct from the formal 

symbol manipulation idea, are the automata-theoretic notion of a digital or 
discrete system, and the related idea of a machine whose behaviour is 
equivalent to that of some Turing machine. Although the formal symbol 
manipulation view seems to go virtually unchallenged in cognitive science, 
the other two have much more currency in modern computer science. See 
«Smit, forthcoming». 

 x Whatever that means. See «…».  
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which abstract mathematical quadruples are merely set-theoretic 
models), there is still no guarantee, given a particular universal 
one, that any set of instructions could make it be, or eνen simulate, an 
accurate time keeper—because there need be no consistency or 
regularity as to how long its state changes take. Turing machines, 
qua Turing machines, do not really participate. 

I have come to believe, however, that not one of these proper-
ties is essential to the notion of computation on which the econ-
omy of Silicon Valley is based, or to the notion that underlies AI’s 
hunch that the mind is computational: (i) being abstract, (ii) be-
ing digital, (iii) exhibiting a process/structure dichotomy, (iv) 
having a clear boundary between inside and outside, (v) being 
programmable, or (vi) being necessarily equivalent to any Turing 
machine. Quite the contrary. In (Smith, forthcoming)x I argue for 
a much stronger conclusion: that the only regularity essential to 
computation has to do with computation’s being a physically em-
bodied representational process—an active system or process whose 
behaviour represents some part or aspect of the embedding world 
in which it participates. Needless to say, this has the conse-
quences of defining computation squarely in terms of undis-
charged semantical predicates. My position on theoretical cartog-
raphy is therefore the inverse of Newell’s (1980): whereas he 
thinks that computer science has answered the question of what it 
is to be a symbol, I believe in contrast that the integrity of compu-
tation as a notion rests full-square on semantics: it requires a no-
tion of symbol in order to have any foundation. So we have lots of 
homework to do, but it is homework for another day. 

In the meantime, clocks are a good test case for comprehensive 
semantical frameworks. They lack many important properties of 
more general computers: they do not act, for example, or have 
sensors. But since every semantical property they do exhibit is 
one that computers exhibit too—including participation—they 
are a useful design study. 

                                                             
 x Though this paper was written in 1997, this was a reference to AOS «ref».  
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 4 Three Points on Two Factors 
In the previous section I distinguished two aspects or factors of 
any representational system: its behaviour, activity, or causal con-
nection with the world (which I will call the first factor) and its 
interpretation, content, or relation to its subject matter (the sec-
ond factor). I have previously used this two-factor framework to 
reconstruct the semantics of Lisp, the programming lingua franca 
of AI, and argued for its general utility in analysing knowledge 
representation systems.7 And I will use it here, to analyse clocks. 
But three points must be made clear. 

First, the ordering of the two factors may seem odd. There is no 
doubt that having interpretation or content—standing in seman-
tic relation to a subject matter—is what particularly distinguishes 
the systems we are interested in. Given this pride of place, it 
might seem that content should be called first. But for present 
purposes this would be a mistake. We theoreticians typically treat 
semantics as primary when we analysing both natural and artifac-
tual languages (such as the predicate calculus). We typically de-
fine semantics over rather abstract entities—sentence types, for 
example—and then understandably define the other dimensions 
(proof theory, inference) over the same domain. But especially in 
conjunction with the formal-symbol manipulation view of com-
putation, this overall strategy lends a very abstract feel to infer-
ence—leading such people as Searle to wonder how, or even 
whether, such a system could ever possess genume semantical 
powers. In contrast, by calling activity the first factor here I want 
to recognise that computational systems are first and foremost, 
systems in the world. Everything has what I am calling a first fac-
tor; that is what gives a system the ability to participate. The sec-
ond factor—of representation or content—which enables a sys-
tem (a thinker, a clock) to stand in relation to what is not imme-
diately accessible or discriminable, is a subsequent, more sophisti-
cated capacity. It is the second factor, furthermore, that distin-
guishes the representational or interpretable systems from other 
natural systems, but it distinguishes them as a sub-type, not as a 

                                                             
 7 Smith (1982, 1984, 1986). 
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distinct class. First factor participation in the world (“being 
there,” roughly) is always available—which is fortunate, since it is 
only with respect to the first factor that second factor content can 
ever be grounded. 

In sum, recognising the metaphysical primacy of the first factor 
is an important ingredient in the defense of naturalism. 

Second, there is a natural (almost algebraic) tendency to think 
that, in accepting a two-factor stance, one is committed to think-
ing that the two factors, in any given system, will in some impor-
tant sense be independent. This tendency is amplified by the fact 
that in standard first-order logic an almost total independence of 
factors is achieved—this is one of the many meanings of the am-
biguous claim that first-order logic is formal. Truth, content, and 
interpretation in logic are thought to be relatively independent of 
proof-theoretic role, and provability or inferential manipulation 
analogously independent of content or interpretation. In fact it is 
only because of this conceptual independence that proofs of 
soundness and completeness, even the very notions of soundness 
and completeness, are conceptually coherent. In computer sys-
tems, however—and minds, and clocks—there is no reason to 
expect this total degree of disconnection or independence. We 
should expect something more like the relationship between the 
mass and velocity of a physical object, on the one hand, and the 
center of gravity or resonance of the system of which it is a part, 
on the other: a web of constraints and conditions tying the two 
factors together—piece-wise, incrementally—thereby giving rise 
to a comprehensive whole. The situation of a cmplete proof sys-
tem defined on an abstract set of mathematical expression types is 
extreme: a global but locally unmediated coherence, with no part 
of the proof or inferential system touching the semantic interpre-
tation or content, except in the final analysis, when an outside 
theorist’s proof grandly ties the whole thing together. For com-
puters, and for us, it seems much more plausible to take a step or 
two apart from our subject matter, and then check in with it, to 
stay in “synch”—by taking a look, for example, or (following 
AT&T’s recommendation) by “reaching out and touching it.” Par-
ticipation is a resource, not a complication 

Third, as both the first two points make clear, it is a little hard 
to justify calling the two factors semantical, especially when the 
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first is shared with every other participant in the natural order. It 
is not just that the first should be viewed as syntax, the second as 
semantics (as application of this more general framework to the 
predicate calculus would suggest). Rather, it is not clear what, if 
anything, the terms ‘syntax’ and ‘semantics’ should mean in a con-
text where the coupling between factors is so much richer and 
more complex than in the traditional idealised case—if indeed 
they mean anything at all. Clockworks are mechanisms that en-
able first-factor behaviour—that much seems innocuous enough; 
calling the momentum of a clock’s pendulum semantic is more dif-

ficult. First and second 
factors are not distinct 
objects that somehow co-
operate in engendering 
semantical activity; rather, 
one and the same causal 
constituents of a semantic 
system play both first and 
second factor roles. 

This whole question is 
complicated by the use of 
the word ‘semantics’ (es-
pecially in AI) to describe 
inferential and structural 

relations among ingredients within a computational system. In 
(Smith, 1986)x I attempt to resolve some of these issues, but in-
stead of reconstructing that argument here I will simply use the 
two-factor terminology without prejudice as to what does and 
does not have legitimate claim to the overloaded term. 

 5 Theoretic Machinery and Assumptions 
Look, then, at how clocks represent time, starting with some ba-
sic assumptions. As suggested in figure 2, qua theorists we need 
accounts of four things: 

1. States of the clock itself, including the face (σ); 
2. The time or passage of time that the clock represents (τ); 

                                                             
 x «Explain where that is done in this volume.»  

 
 

Figure 2 — The typology of clock semantics 
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3. The first factor movement or state change between clock 
states (ψ); and 

4. The second factor representation relation (φ) between 
clock states and times. 

All four of these are shared with standard semantical analysis: the 
first two would be the syntactic and semantic domain; the third, 
inference or proof theory; the fourth, semantics or interpretation. 

I will adopt what I will call a direct rather than model-theoretic 
approach to these analytic tasks. Typically, when doing seman-
tics, instead of talking directly about clock faces, orientations of 
hands. etc., one models them. For example, the state of a three-
hand analog clock might be modelled as a triple, consisting of the 
orientations of the hour-hand, minute-hand, and second-hand, 
respectively, measured clock-wise from the vertical, in degrees. 
Thus the clock face shown in figure 2 would be modelled as fol-
lows: 

 Mσ: <128.3166…, 99.8, 228> (S1) 

The problem with this technique, however, as suggested in figure 
3, is that a model M of a situation S is itself a representation of S, 
since modelling is a particular species of representation (Mσ, for 
example, represents the clock face; it is not the clock face, since for 

example it has a length of 
three). The general character 
and complexity of the model–
clock relation Mσ–σ, therefore, 
is the same as that between the 
clock and the time it represents 
(σ–t). It is therefore very hard 
to know whether what is crucial 
about σ–τ will be revealed or 
hidden if its analysis is con-
ducted purely in a Mσ–Mτ 
form. For example, using simple 
numbers to represent the orien-
tations of hands presumes an 
absolute accuracy on the clock 
face, counter to fact. When 

 
 

Figure 3 — The model-theoretic approach 
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studying something like natural language, which makes use of a 
much more complex representation relation than a model, the 
problems of indiscriminate theoretic modelling may be minor, or 
(more likely) go unnoticed. In our case, however, the representa-
tion relation under investigation—between clock faces and peri-
odic time—is essentially an isomorphism. In this situation indis-
criminate modelling would be theoretically distracting. 

The direct semantical stance will have consequences, of two 
main sorts. First, we will need some machinery for talking pre-
cisely about the world without modelling it; for this I will use an 
informal “pocket situation theory,” based unapologetically on 
Barwise and Perry.8 Second, in the analog case it will be tempting 
to use some elementary calculus, which if I was going to do any-
thing complex would be problematic, since a situation-theoretic 
reconstruction of continuity has not been yet been developed. On 
the other hand, since the continuities underlying the integrity of 
the calculus presumably derive, ultimately, from the fundamental 
continuity of the physical phenomena that the mathematics of 
the calculus was developed to describe, and since it is exactly such 
continuous phenomena that will be the subject matter here, I will 
take the liberty of applying its insights anyway. Since I will effec-
tively merely be using mathematical notation, rather than actually 
doing any mathematics, this approach will not get us into trouble. 

The direct semantical stance also highlights a question: how as 
theorists are we going to describe or registerx the phenomena we 
are going to study—i.e., in terms of what concepts, categories, 
and constraints are we going to explicate its regularity? When giv-
ing semantical analyses of linguistic or syntactic objects (sen-
tences, expression types, etc.), tradition provides standard regis-
trations in terms of constituent terms, predicate letters, etc. Simi-
larly, purely abstract objects are typically categorised in ad-
vance—in terms of a defining set of properties or relations. 
Clocks, on the other hand, are neither traditional nor abstract, so 
we have to address the question de novo, as it were. 

My metaphysical bias is to treat the world as infinitely rich, 

                                                             
 8 Barwise and Perry 1983; Barwise, 1986a. 

 x «Ref “Rehabilitating Representation” for a discussion of registration.»  
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not only in the sense of taking there to exist more to everything 
than we can say, but also in assuming that there is both more uni-
formity and structure, and more heterogeneity and individual dif-
ference, than theory or language can ever encompass. I will there-
fore assume that clock faces, being actual, are sufficiently struc-
tured that one can be wrong about them, but still do not come la-
belled in advance by God, like plant slips at a nursery, identified 
with a white plastic tag with the name printed on them. Since 
every clock face, furthermore, exemplifies an infinite number of 
properties and relations (such as the property of being the subject 
matter of this paragraph), even after settling on a basic registra-
tion scheme, we have considerable latitude in making a specific 
choice. 

None of this is intended to be either problematic or new; it is 
worth mentioning only because we need to make room for there 
being a difference between how we theorists do it, and how clocks 
do it, for themselves or (more likely, in the case of clocks) for 
their users. The problem is particularly acute for time itself, espe-
cially the periodic cycle of hours, minutes and seconds to which I 
keep referring without explanation. If this were a paper on the 
semantics of time, not just on the semantics of clocks, or even on 
the nature of time itself, not only would such an explication have 
to be given, but the incestuous fact addressed that clocks them-
selves are surely in part responsible for the temporal registration 
(hours, minutes, seconds, etc.) of the times they represent, as ar-
gued for example by Mumford (1934). In this paper, however, I 
will merely adopt the periodic cycle without analysis, taking its 
explanation as a debt that needs to be paid here. 

Given these preliminaries, I summarise the ontological type struc-
ture that I will adopt in figure 4. Variables ranging over objects 
will be indicated with lower-case italic letters; over properties and 
relations, in lower-case Greek; over functions, in upper-case 
Greek. Thus c and c’ will range over clocks; t, t’, etc., over full-
blooded times, which are taken to be instantaneous slices through 
the metaphysical flux. Times are meant to include the time Ken-
nedy was shot, the referent of ‘now’ (on any occasion of its use), 
the point when the ship passed out of sight behind the island—
that sort of thing. Intervals—intuitively, temporal durations be-
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tween times—will be indicated by ∆t, ∆t’, etc. I will extend the 
use of ‘+’ to allow adding intervals to times (i.e., will “overloading 
‘+’,” as computer scientists would put it); thus t+∆t’ will be taken 
to be of the same type as t. 

As opposed to times themselves being periodic (we will be 
more Heraclitean about them), I will assume that times are “lo-
cated” on the periodic cycle by what I will call the o’clock prop-
erties—such as that of “being 4:01:23,” “being midnight,” etc. 
The idea is not so much to license a continuum of distinct prop-
erties, but rather to assume that these properties arise out of a 
continuous relation between times and the abstract locations on 
the periodic time cycle to which they are taken to correspond 
(“4:00,” etc.). Various explanations of this relation are possible, 
but since the e intent of this paper is not to present an independ-
ently justified metaphysical account of time, but only to relate 
clocks to such a thing, I will employ a notation that simply picks 
up o’clock properties, whatever they are, from times that have 
them. Thus I will use τt to refer to the particular o’clock property 

Objects and Properties 

c, c’, … — clocks 
t, t’, … — times (instantaneous moments) 
∆t, ∆t’, … — temporal intervals 
τ, τ’, … — o’clock properties (being midnight, being 4:01:23, … 
  τt — the o’clock property that holds of time t 
σ, σ’, … — states of clock faces (both hands point upwards, …) 
  σt,c — the state of clock c at time t 

Primary Theoretic Functions 

ψ: σ, ∆t → σ — clockworks (clocks states × intervals → clock states) 
Σ: c, t → σ — state function (clocks × times → clock states) 
[[…]]: σ → τ — semantic content (clock states → o’clock properties) 

Overloaded Addition 

t+∆t: t — times plus intervals are times 
τ+∆t: τ — o’clock properties + intervals are o’clock properties 

 
Figure 4 — Theoretic type structure 



392 Indiscrete Affairs · I 

  

that actually holds of time t. Also, I will take differences between 
o’clock properties to be intervals (e.g., the difference between 5:00 
and 3:00 will be two hours). Thus the sentence τt(t’) says of time t’ 
that o’clock property τt(t)—i.e., that it has whatever o’clock prop-
erty t has. τt(t) is analytically true, therefore; as is τt(t+24:00:00). 
The term τt–τt’ denotes an interval, of type ∆t.9 

In an analogous way, σ, σ’, etc. will range over a (continuous, 
in the analog case) set of states of clock faces. For traditional cir-
cular analog clocks, a σ representation 4:30 might be “having the 
hour hand at 135º, the minute hand at 180º, and the second hand 
at 0º, all measured clockwise from the ‘XII.’ 

Given this framework, we can type the various semantical func-
tions already encountered. As suggested in the previous section, Σ 
will be a (non-computed!) function of type t → σ, from times 
onto clock states; ψ, a function of type σ × ∆t → σ from clock 
states and temporal intervals onto clocks states; and φ, a function 
of type σ → τ, from clock states onto o’clock properties. The im-
portant typological point for general semantic analysis is that 
both factors (ψ and φ) are defined as functions between the states 
that objects can be in, not between the objects that are in them. 
This is as you would expect for scientific laws. 

Two more theoretical points, before we take up the analysis it-
self First, as just mentioned, I claimed in section 2 that times t 
were not causal agents—that they could not be in the domain of a 
strongly effective realisable function. It is probably more impor-
tant to the life of clock designers that the o’clock properties (τ) 
are equally impotent. Even if it is 4:00 all around you, there is 
nothing that it’s being 4:00 can cause to happen—such as serving 
tea and crumpets. With respect to engendering behaviour, a mo-
ment’s being midnight is more like Boston’s being a referent than 
it is like ice-cream’s being sticky: it just is not the sort of thing 
that a sensor can or could detect. So functions of the form τ → x 

                                                             
 9 A more detached theoretic viewpoint should point out that o’clock proper-

ties τ are in fact two-place relations between times and places (a time that 
is midnight in London will be 7:00 p.m. in New York). More generally, 
whereas I assume throughout that activity (ψ) and interpretation (φ) are 
functions, they should properly be viewed as more complex relations be-
tween agents and their embedding circumstances. 
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are as non-realisable (in the strong sense discussed earlier) as 
those of type t → x, for arbitrary x. Such is life. 

Second, I mentioned earlier that using numbers to represent 
the orientations of the hands of clocks presumes an accuracy that 
outstrips physical plausibility. Even if quantum physics would 
theoretically support there being a fact of the matter as to where a 
hand points within ±10-50 degrees, say (which it will not), there 
are also pragmatic realities of producing a macroscopically ob-
servable clock subject to the forces of gravity, anomalies of manu-
facture, etc. Furthermore, if the hour-hand were anything like 
this accurate, then at least for theoretical purposes the minute 
and second hands would be redundant: a perfect observer could 
gaze at a clock and read off a time of, say, 4:15:38:17.10 One might 
object, of course, that human users would not be able to register 
the hour-hand more accurately than, say, ±1º or ±2º, and there-
fore, even with internal calculation, would not be able to deter-
mine the time on a single-handed clock more accurately than to 
within about 5 minutes, no matter how much more accurately 
than that the time was actually signified. In fact casual observa-
tion suggests that, in reality, hour hands on modern analog clocks 
are caused, by the internal mechanism (clockworks) to be much 
more accurately positioned than is necessary merely to determine 
which hour the minute hand signifies time with respect to. 

These issues again raise the question of the relation between 
how we as theorists register clock faces and the times they repre-
sent, and how clock faces themselves register those represented 
times.11 But I will not answer this question here, since I will pri-
marily be dealing with semantic constraints on clock and time 
registrations, rather than with individual registrations themselves. 

 6 Temporal Representation: The Second Factor 
Given these premises and caveats, I turn to look at how times are 
represented. Intuitively, we are aiming for something like the fol-

                                                             
 10 “Third, n…5. The sixtieth part of a second of time or arc.”—Webster’s 

New International Dictionary, Second Edition. New York: G. & C. Mer-
riam, Co. 1934. 

 11 Clock faces, and representations in general, do not need to register them-
selves, in order to represent. 
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lowing 

 [[ ]] = the property of being 4:16 (S2) 

To do this, we start with φ, of type σ → τ from (representing) 
states of clock faces onto (represented) states of time—i.e., onto 
o’clock properties. Instead of the name ‘φ’, however, I will use so-
called “semantic brackets” (‘[[…]]’) in the following way: [[σc,t]] 
will be the o’clock property signified by the state σc,t, where σc,t is 
in turn taken to be the state σ of clock c at time t. For example, 
the sentence [[σc,t’]](t) claims of time t that it has the o’clock prop-
erty that clock c indicates at time t’. Similarly, [[ψ(σc,t’,∆t)]](t) 
claims of time t that has the o’clock property that clock c would 
(or did) indicate ∆t later than time t’, since ψ(σc,t’,∆t) indicates 
the state that it would be (or would have been) in then. 

Using this terminology, we can say that clock c is chronologi-
cally correct at time t just in case t is of the type that the clock 
then indicates: 
 Correct(c,t) ≡df [[σc,t]](t) (S3) 

So far, of course, this is a constraint on possible interpretation 
functions [[…]], since I have not yet defined any specific instances. 
Longer-term notions of correctness (over extended intervals, for 
example) could be defined by quantifying over times; similarly, 
approximate degrees of correctness could be characterised in 
terms of the difference between what time it actually was and 
what time was indicated. 

 7 Clockwork: The First Factor 
With respect to operation, the basic point is this: if at time t a 
clock is so-and-so (σ), then at some point ∆t later it will be such-
and-such (σ’), where σ’ = ψ(σ, ∆t). The function ψ, which takes 
a clock into the future in this way, must be realised by the under-
lying physical machine—must be implemented, that is, by the 
clockworks. The important constraint on this relation, which I 
will call the realisability constraint, is that ψ(σ, ∆t) can depend 
on σ and on ∆t, but not on the time t that is “happening” when 
the clock is in state σ. 

In symbol manipulation or semantical contexts, where time 
and symbols are both digital, we often view ψ as a state-transition 
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function (such as for a Turing machine controller). In such cases 
∆t drops out, being assumed to be a single temporal “click.” For 
example, suppose S is a (discrete) function from states to states 
(σ → σ). The equation for a single state change, of the sort one 
would expect in a digital world, would be something like 
σ’ = S(σ)—or, if generalized to ∆t’s of n ticks duration, 
σ’ = Sn(σ). In the continuous world of physical mechanics, on the 
other hand, ψ is merely “what the world does,” explained in terms 
of velocities, accelerations, etc. From this perspective, the calculus 
can be viewed as a theoretical vehicle with which to explain first 
factor futures for continuous systems, where the state σ of some 
system in an amount of time ∆t after it is in a starting state σ0,  
assumed. to depend on the continuity of the underlying phenom-
ena, can be expressed in the familiar equation  

  (S4) 

My aim is not to contrast the discrete and continuous case (I 
want to develop results applicable to both analog and digital 
clocks), but rather to highlight the common focus on state 
change, represented computationally by state transition func-
tions, and physically by temporal derivatives. There is, however, 
this apparent difference: the theoretic notions employed in phys-
ics (force, acceleration, etc.) are essentially “relative”; they describe 
how the new state will differ from the old one. The real identity 
of the new state—what state the system will actually arrive in—is 
obtained, as if it were conceptually subsidiary, by altering the pre-
vious state in the prescribed manner. State transition tables, in 
contrast, are typically “absolute.” They still describe state change, 
of course—they are not temporal state functions like Σ. The 
point rather is that the new state is specific “de novo,” so to speak, 
not as a modification of the old one, though of course the extent 
to which the new state differs from the old can be calculated as a 
difference between the two. 

This difference in theoretic stance, however, is superficial, 
since in actual use (in describing programs, operations on mem-
ory, etc.) state transition functions in computer science are almost 
always defined with explicit reference to how the new state differs 
from the old. In giving environment transition functions, for ex-
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ample, showing the consequence of binding a variable, the requi-
site function from total environments onto total environments is 
defined as modifying the value of the given variable in question, 
and otherwise being just like the prior one.x Practice suggests, in other 
words, that in the computational case, as in the physical case, 
state change is conceptually prior, new total state conceptually or 
ontically dependent. In both arenas, therefore—physics and 
computing—there is thus general support for my specific focus 
here on ψ. 

Intuitively, a proper ψ for a clock will specify that it runs at the 
right speed. It is easy enough to calculate, in the case of circular 
analog clocks, that this amounts to having the hour hand, minute 
hand, and second hand rotate at 0.008333…º/sec, 0.1º/sec, and 
6º/sec, respectively. But to characterise correctness this way is ex-
actly like characterising the correctness of a proof procedure by 
pointing to the syntactic inference rules. It may indeed be true 
that, if this condition is is met, the clock will be running at the 
correct speed, but that does not mean that this condition ex-
presses what it is to be running correctly. Rather, we want to say 
that if at time t (say, 12:00) a clock designates o’clock property τt’ 
(say, 3:11), then at time t+∆t, (12:01, if ∆t = one minute) it 
should indicate the o’clock property that would hold ∆t later (i.e., 
3:12). We can indicate this as follows: 

 Right-speed(c,t,∆t) ≡df [[σc,t+Δ∆t]] = [[σc,t]]+∆t (S5) 

which has the consequence, given the definition of ψ, that 

 [[ψ(σc,t+Δ∆t)]] = [[σc,t]]+∆t (S6) 

Properly, it would probably be more pragmatically useful to state 
something stronger: that a clock runs correctly throughout the in-
terval from t to t+∆t if and only if it advances at the right speed 
for the whole time (note that the following is neutral as to 
whether this is a continuous or discrete interval—i.e., as to 

                                                             
 x «Put in an explanation—maybe a sidebar?—on the “E/x→x’” notational 

abbreviation practice (even though the underlying formalism “requires” a 
total state designating function). This is a very curious—and telling—
practice.»  



 8 · Semantics of Clocks 
 
 

 397 

whether ∀ is a discrete or continuous quantifier: 

 Right-speed(c,t,∆t) ≡df  (S7) 
  ∀∆t’ | 0≤t’≤t [[σc,t+Δ∆t]] = [[σc,t]]+∆t 

again directly yielding 

 ∀∆t’ | 0≤t’≤t  [[ψ(σc,t+Δ∆t)]] = [[σc,t]]+∆t (S8) 

These equations involve property identity, but I defer any ques-
tions on that issue to situation theory. Note also that in each ver-
sion the two instances of  ‘+’ are of different types: the first takes 
a time and an interval onto a time; the second, an o’clock property 
and an interval onto a o’clock property. No problem. 

Given (S3) and (S7), we can prove the temporal analogues of 
soundness and completeness: that if a clock is correct at time t, 
and runs at the right speed during the interval from t to t’, then it 
will be correct during that interval, and conversely if it is correct 
throughout the interval it must be running at the right speed. But 
it is more fun to do this in the continuous case, so let’s turn to 
that. 

Very simply, we want to talk of an analog clock’s running at the 
right speed instantaneously, which means, intuitively, that we 
should differentiate the temporal state function Σ—or equiva-
lently, take the limit of Σ as ∆t approaches 0, in the standard way: 

  (S9) 

Since, as we have already said, differences between o’clock prop-
erties are intervals, the left side of this reduces to 
limitΔ∆t→0(∆t/∆t), which is identically 1, yielding: 

  (S10) 

The right hand side, however, is merely the derivative, with re-
spect to time, o the interpretation of the state. We cannot differ-
entiate σ directly, its not being a function of time (in fact it is not 
a function at all), but we can rewrite (S10) in terms of Σ: 
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  (S11) 

This enables us to take the limit (Σ is continuous by assumption), 
since the right hand side is the derivative of a function that is es-
sentially the composition of the second and first factors (φ º ψ, or 
equivalently and more applicably here, [[…]] º ψ).12 I will abbrevi-
ate this as [[Σ]], giving us: 

 Right-speedanalog(c,t) ≡df    (S12) 

If the derivative (with respect to time) of a function is unity, of 
course, it follows that the function is of the form λt . t+k for some 
constant k—or rather, in our case, λt . τt+k, as dictated by our 
type constraints, where k in this case is a constant of type ∆t. This 
is exactly what we would expect; the constant represents the error 
in the clock’s setting—the difference between the actual and indi-
cated times . Predictably, the equation says if a clock is running at 
the right speed the error (the amount that it is “off”) will remain 
(instantaneously) constant. Furthermore, since (S3) implies that 

 Correct(c, t) iff [[Σ(c, t)]](t) (S13) 

it follows that the constant would be 0 for a correctly set clock, as 
expected. 

We can summarise these results as follows: 

 Correct(c,t) ≡df [[Σ(c, t)]](t) (S14) 

 Right-speed(c,t,∆t) ≡df   (S15) 
  ∀∆t’ | 0≤t’≤t [[σc,t+Δ∆t]] = [[σc,t]]+∆t 
implying that ∀∆t’ | 0≤t’≤t  [[ψ(σc,t+Δ∆t)]] = [[σc,t]]+∆t 
implying that ∀∆t’ | 0≤t’≤t  [Σ(c,t+∆t)] = [Σ(c,t)]+∆t 

 Right-speedanalog(c,t) ≡df    (S16) 

and in their terms define what it is for a clock to be “working 
properly” from time t to t+∆t” 

Working(c,t,∆t) ≡df Correct(c,t) ⋀ Right-speed(c,t,∆t)  (S17) 
                                                             

 12 Strictly speaking this is not quite accurate, since both [[…]] and Σ should 
depend on c and t: the function we are differentiating should really be 
λc,t . [[Σ(c,t)]]. But being strict would add only complexity, not insight. 
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Workinganalog(c,t) ≡df Correct(c,t) ⋀ Right-speedanalog(c,t)  (S18) 

For either version, the constraint can be shown to be satisfied 
(over the interval, or instantaneously, depending) in exactly the 
following condition: 

 [[Σ(c,t)]] = λt . τt (S19) 

Given the abbreviation adopted above, we can state this even 
more simply: 
 [[Σ]] = λt . τt (S20) 

I would be the first to admit that (S20) is obvious—at least retro-
actively, in the scnse that, once stated, it is hard to imagine think-
ing anything else.  In English, it says that the state function and 

the interpretation function should be 
proportional inverses: given a clock 
that (so to speak) maps time onto 
some sort of compelx motion, the ap-
propriate interpretation function is 
merely that unction that maps that 
motion back on the o’clock properties 
of the linear progression of time that 
was started with. So the putative clock 
of figure 5, for example—with a mil-
lion-mile pendulum and a 24-hour 
period—would have a pointer position 
(σ) proportional to sin(t), and an in-

terpretation function analogously proportional to sin-1(σ).13 
Still, (S20) is not trivial, for a reason that shows exactly why 

clocks were hard to build. It says that working clocks map all 

                                                             
 13 This clock would be even harder to build than you might suppose. At first 

blush, it might seem as if the equation of motion for a pendulum would 
imply that a very large bob, swinging in an arc at the surface of the earth 
(an arc, say, 100 feet in length), whose mass completely dominated the 
mass of a long string by which it was suspended from an (energetically-
maintained!) geosynchronous point 1,150,000 miles above the surface of 
the earth, would have a period of twenty-four hours. Unfortunately, how-
ever, such a device would have a period of slightly less than an hour and a 
half. Why this is so, and how to modify the design appropriately, are left 
as an exercise for the reader (hint: the result would be difficult to read). 

 
 

Figure 5 — The million-mile clock 
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times onto their o’clock properties. The problem for clockmakers is 
that Σ is not directly computable, since—to repeat—neither 
times nor o’clock properties enter into causally efficacious behav-
iour. What can be implemented is ψ, not Σ—and ψ is essentially 
the temporal derivative of Σ. 

And that, in turn, leads us to the most compact characterisa-
tion of the function of clockworks: 

 The function of clockworks: to integrate the derivative of 
time. To set the hands on the clock’s face is to supply the inte-
gration constant. 

 8 Morals and Conclusions 
What have we learned? Four things, other than some fun facts to 
tell our friends 

The first has to do with the interaction among notions of par-
ticipation, realisation, and formality. Clocks’ participation in their 
subject matter (being temporal, as a way of measuring time), 
which depends on their physical realisation, might seem to violate 
the formality constraint that is claimed to hold of computational 
systems more generally. In fact, however, clocks’ temporality does 
not relieve them of much of the structure that characterises more 
traditional systems: separable ψ  and φ, the possibility of being 
wrong, etc. This similarity of clocks to symbol manipulation sys-
tems arises from the fact that the particular aspect of time that 
clocks represent—the o’clock properties—are not within im-
medate causal reach of a clockwork mechanism (or of much else, 
for that matter). In (Smith, forthcoming) I argue that this is a 
manifestation of a deep truth: 

 The limitations of causal reach are the real constraints on repre-
sentational systems. 

Formality, as a notion, is merely a cloudy and approximate pro-
jection of these limitations into a particular construal of the sym-
bolic realm. 

The second moral has to do with the impact, for theoretical 
analysis, of the relations between ψ  and φ. The function ψ, real-
ised in clockwork, is what the engineers must implement; without 
an (explicit or tacit) understanding of it, functioning clocks could 
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not be designed. The foregoing characterization of what it is for a 
clock to work properly, for example, had to reach beond the im-
mediate or causally accessible aspects of the underlying clockwork 
mechanism. Whatever one might think about more complex 
cases, methodological solipsism does not work in this particular 
instance. 

Third, the similarity between the state transition functions of 
computer science and the temporal derivatives of mechanics, both 
of which focus not on time itself but on temporal change, suggest 
the possibility of a more unified treatment of representational 
dynamics in general. So far most of what I have had to say has 
dealt with specific cases. So for example in section 2, I character-
ised inference as a particular species of representational activity 

having to do with 
changing content 
relations to a fixed 
subject matter, and 
contrasted it to a 
clock’s maintenance 
of a fixed content 
relation to a chang-
ing subject matter. 
Remembering what 
is perceived is yet a 
different sort of rep-
resentational behav-
iour: a form of re-
taining a fixed rela-
tion to a fixed sub-
ject matter, in ways 

that make it immune to changes in the agent’s circumstances. 
And surely complex navigation in a busy world involves a dy-
namically-changing representational stance to a constantly-
evolving situation. It does not seem impossible that a common 
framework could be uncovered 

Fourth and finally, by occupying a place very different from 
that of either Turing machines or traditional theorem provers, 
clocks help illuminate the fundamental constraints governing 
computers and representational systems in general. As suggested 

 
 

Figure 6 — C5: Coordinated Constraints 
on Content and Causal Connection 
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in figure 6, there are two basic kinds of constraint—causal rela-
tions and content relations—that a representational system must 
coordinate as it moves through the world 

Both kinds, in general, will be complex—much more so than 
we have seen in the case of clocks. Two aspects of content that I 
have not deal with here, for example, are its “situational” depend-
ence on surrounding circumstances, as discussed for example in 
(Barwise 1986b and Perry 1986), and the three-way semantic in-
teractions among language, mind, and world that arise in cases of 
communication. Causal connections are similarly complex, and 
can be broken down into three main groups: 

1. Internal activity of behaviour: the relation between a 
system at some time and the same system shortly thereaf-
ter, which we called ψ; 

2. External connection: Actions the system takes that affect 
the world, and effects on the system of the world around 
it—the results, that is, of sensors and effectors (clocks 
have none of this, but other systems are clearly not so lim-
ited); and 

3. Background dynamics: The progress or flow of the sur-
rounding situation—of which the passage of time would 
be counted as one instance, the behaviour of one’s conver-
sational partner, or a passing visual scene. 

In the traditional case of pure mathematical inference, there is no 
connection (action or sensation), and the background situation, 
as we saw, is presumed to stay fixed. Barwise’s particular con-
strual of “formal inference”14 strengthens this constraint by as-
suming that the content relation is also independent of surround-
ing situation. The clock examples give us a different point in the 
space: again no connection, an essentially unchanging (and rela-
tively situation-independent) content relation, but an evolving 
background situation, mirrored in the internal activity or behav-
iour. Finally, semantic theories of action, involving everything 
from intentionally eating supper to making a promise, must deal 
with cases where the connection aspect makes a contribution. 
They must therefore deal with situations where the surrounding 

                                                             
 14 ‘Formal’ as meaning “non-situated”; see Barwise (1986b), p. 331. 
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situation is affected not only by background dynamics, but as a 
result of internal activity on the part of the representational agent. 
But simpler systems will require an analysis of external connec-
tion as well: computerised (ABS) automotive brakes systems, for 
example, are directly connected (even vulnerable) to the content 
of their representations, in a way that seems to free them from 
the need to have their representational states externally inter-
preted. 

In the end, however, the similarity among these systems strikes 
me as far more important than the variance. I might put it this 
way. Causal participation in the world is ultimately a two-edged 
sword. On the one hand. it is absolutely enabling. Not only could 
a system not exist without it, but in a certain sense it is total: eve-
rything the system is and does arises out of Its causally supported 
existence. There are no angels. On the other hand, causal connec-
tion on its own—unless further structured—limits a system’s to-
tal participation in the world to those things within immediate 
causal reach. 

Representation, on this view, is a mechanism that honours the 
limits of causal participation, but at the same time stands a sys-
tem in a content relation to aspeccts of the world beyond its 
causal reach. The trick that the system must solve is to live within 
the limits—and to exploit the freedoms!—of the causal laws in 
just such a way as to preserve its representational stance to what 
is distal. This much is in common between an inference system 
and a clock. 
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9 — Linguistic & Computational Semantics† 

  Abstract 
I argue that because the very concept of computation rests on no-
tions of interpretation, the semantics of natural languages and the 
semantics of computational formalisms are in the deepest sense 
the same subject. The attempt to use computational formalisms 
in aid of an explanation of natural language semantics, therefore, 
is an enterprise that must be undertaken with particular care. I 
describe a framework for semantical analysis that I have used in 
the computational realm, and suggest that it may serve to under-
write computationally-oriented linguistic semantics as well. The 
major feature of this framework is the explicit recognition of both 
the declarative and the procedural import of meaningful expres-
sions; I argue that whereas these two viewpoints have tradition-
ally been taken as alternative, any comprehensive semantical the-
ory must account for how both aspects of an expression contrib-
ute to its overall significance. 

————————— 

I have argued elsewhere1 that the distinguishing mark of those 
objects and processes we call computational has to do with attrib-
uted semantics: we humans find computational processes coherent 

                                                             
 † Slightly revised version of a paper that appeared in the Proceedings of the 

20th Annual Meeting of the Association for Computational Linguistics, To-
ronto, Ontario, June 1982, pp. 9–15. 

I am grateful to Barbara Grosz and Hector Levesque for their com-
ments on an earlier draft of this short paper, and to Jane Robinson for her 
original suggestion that it be written. 

 1 Smith (1982b). 
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exactly because we attach semantical significance to their behav-
iour. ingredients, and so forth. Put another way. computers, on 
this view. are those devices that we understand by deploying our 
linguistic facilities. For example. the reason that a calculator is a 
computer, but a car is not, is that we take the ingredients of the 
calculator to be symbolic (standing. in this particular case, for 
numbers and functions and so forth), and understand the interac-
tions and organisation of the calculator in terms of that interpre-
tation (this part divides, this part represents the sum, and so on). 
Even though by and large we are able to produce an explanation 
of the behaviour that does not rest on external semantic attribu-
tion (this is the formality condition mentioned by Fodor, Hauge-
land, and others2), we nonetheless speak, when we use computa-
tional terms, in terms of this semantics. These semantical con-
cepts rest at the foundations of the discipline: the particular or-
ganisations that computers have—their computational raison 
d’être—emerge not only from their mechanical structure but also 
from their semantic interpretability. Similarly. the terms of art 
employed in computer science—program, compiler. implementa-
tion, interpreter, and so forth—will ultimately be definable only 
with reference to this attributed semantics; they will not, in my 
view, ever be found reducible to non-semantical predicates.3 

This is a ramifying and problematic position, which I cannot 
defend here.4 I may simply note, however, the overwhelming evi-
dence in favour of a semantical approach manifested by everyday 
computational language. Even the simple view of computer sci-
ence as the study of symbol manipulation5 reveals this bias. Equally 
telling is the fact that programming languages are called languages. 

                                                             
 2 Fodor (1978), Fodor (1980), Haugeland (forthcoming) 
 3 At least until the day arrives—if ever—when a successful psychology of 

language is presented wherein all of human semanticity is explained in 
non-semantical terms. 

 4 Problematic because it defines computation in a manner that is derivative 
on mind (in that language is fundamentally a mental phenomenon), thus 
dashing the hope that computational psychology will offer a release from 
the semantic irreducibility of previous accounts of human cognition. Al-
though I state this position and explore some of its consequences in Smith 
(1982b), a considerably fuller treatment will be provided in Smith (forth-
coming). 

 5 See for example Newell (1980). 
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In addition, language-derived concepts like name and reference 
and semantics permeate computational jargon (to say nothing of 
interpreter, value, variable, memory, expression, identifier and so 
on)—a fact that would be hard to explain if semantics were not 
crucially involved. It is not just that in discussing computation we 
use language; rather, in discussing computation we use words that 
suggest that we are also talking about linguistic phenomena. 

The question I will focus on in this paper, very briefly, is this: if 
computational artefacts are fundamentally linguistic, and if, 
therefore. it is appropriate to analyse them in terms of formal 
theories of semantics (it is apparent that this is a widely held 
view), then what is the proper relationship between the so-called 
computational semantics that results, and more standard linguistic 
semantics (the discipline that studies people and their natural 
languages: how we mean, and what we are talking about. and all 
of. that good stuff)? And furthermore. what is it to use computa-
tional models to explain natural language semantics, if the compu-
tational models are themselves in need of semantical analysis? On 
the face of it, there would seem to be a certain complexity that 
should be sorted out. 

In answering these questions I will argue approximately as fol-
lows: in the limit computational semantics and linguistic seman-
tics will coincide, at least in underlying conception, if not in sur-
face detail (for example some issues, like ambiguity, may arise in 
one case and not in the other). Unfortunately, however, as pres-
ently used in computer science the term ‘semantics’ is given such 
an operational cast that it distracts attention from the human at-
tribution of significance to computational structures.6 In contrast, 
the most successful models of natural language semantics. em-
bodied for example in standard model theories and even in Mon-

                                                             
 6 The term “semantics” is only one of a large collection of terms, unfortu-

nately, that are technical terms in computer science and in the attendant 
cognitive disciplines (including logic, philosophy of language, linguistics, 
and psychology), with different meanings and different connotations. Ref-
erence, interpretation, memory, and value are just a few examples of the oth-
ers. It is our view that in spite of the fact that semantical vocabulary is used 
in different ways, the fields are both semantical in fundamentally the same 
ways: a unification of terminology would only be for the best. 
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tague’s program, have concentrated almost exclusively on referen-
tial or denotational aspects of declarative sentences. Judging only 
by surface use, in other words, computational semantics and lin-
guistic semantics appear almost orthogonal in concern, even 
though they are of course similar in style (for example they both 
use meta-theoretic mathematical techniques—functional compo-
sition, and so forth—to recursively specify the semantics of com-
plex expressions from a given set of primitive atoms and forma-

tion rules). It is strik-
ing, however, to ob-
serve two facts. First, 
computational seman-
tics is being pushed (by 
people and by need) 

more and more towards declarative or referential issues. Second, 
natural language semantics, particularly in computationally-based 
studies, is focusing more and more on pragmatic questions of use 
and psychological import. Since computational linguistics oper-
ates under the computational hypothesis of mind, psychological 
issues are assumed to be modelled by a field of computational 
structures and the state of a processor running over them; thus 
these linguistic concerns with ;’use” connect naturally with the 
“operational” flavour of standard programming language seman-
tics. It seems not implausible, therefore—I intend to betray cau-
tion with the double negative—that a unifying framework might 
be developed. 

It will be the intent of this paper to present a specific, if pre-
liminary, proposal for such a framework. First, however, some in-
troductory comments. In a general sense of the term, semantics 
may be taken as the study of the relationship between entities or 
phenomena in a syntactic domain S and corresponding entities in a 
semantic domain S, as pictured in figure 1. 

In accord with standard usage, I will call the function mapping 
elements from the first domain into elements of the second an in-
terpretation function (to be sharply distinguished7 from what in 
computer science is called an interpreter, which is a different beast 
altogether). Note that the question of whether an element is syn-

                                                             
 7 An example of the phenomenon noted in footnote ■■. 

 
 

Figure 1 — Traditional (simple) semantical model 
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tactic or semantic is a function of the point of view; the syntactic 
domain for one interpretation function can readily be the seman-
tic domain of another (and a semantic domain may of course in-
clude its own syntactic domain). 

Not all relationships, of course, count as semantical; the 
“grandmother” relationship fits into the picture just sketched, but 
stakes no claim on being semantical. Though it has often been 

discussed what con-
straints on such a rela-
tionship characterise 
genuinely semantical 
ones (compositional-
ity or recursive speci-
fiability, and a certain 
kind of formal charac-
ter to the syntactic 
domain, are among 
those typically men-

tioned), I will not pursue such questions here. Rather, we I will 
complicate our diagram as indicated in figure 2, so as to enable us 
to characterise a rather large class of computational and linguistic 
formalisms: 

N1 and N2 are intended to be notational or communicational ex-
pressions, in some externally observable and consensually estab-
lished medium of interaction, such as strings of characters, 
streams of words, or sequences of display images on a computer 
screen. The relationship θ is an interpretation function mapping 
notations into internal elements of some process over which the 
primary semantical and processing regimens are defined. In first- 
order logic, S1 and S2 would be something like abstract derivation 
tree types of first-order formulae; if the diagram were applied to 
the human mind, under the hypothesis of a formally encoded 
mentalese, S1 and S2 would be tokens of internal mentalese, and θ 
would be the function computed by the “linguistic” faculty (on a 
view such as that of Fodor8). In adopting these terms I mean to 
be speaking very generally; thus I mean to avoid, for example, any 
claim that tokens of English are internalized (a term I will use for 

                                                             
 8 Fodor (forthcoming) 

 
 

Figure 2 — Declarative & procedural semantical model 
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θ) into recognisable mentalese tokens. In particular. the proper 
account of θ for humans could well simply describe how the field 
of mentalese structures, in some configuration, is transformed 
into some other configuration, upon being presented with a par-
ticular English sentence; this would still count, on the view I am 
presenting, as a theory of θ. 

In contrast, φ is the interpretation function that makes explicit 
the standard denotational significance of linguistic terms, relating, 
we may presume, expressions in S to the world of discourse. The 
relationship between my mental token for T. S. Eliot, for exam-
ple, and the poet himself, would be formulated as part of φ. 
Again, I am speaking very broadly; φ is intended to manifest 
what, paradigmatically, expressions are about, however that might 
best be formulated (φ includes for example the interpretation 
functions of standard model theories). ψ, in contrast, relates some 
internal structures or states to others—one can imagine it specifi-
cally as the formally computed derivability relationship in a logic 
(⊢), as the function computed by the primitive language processor 
in a computational machine (i.e., as LISP’s EVAL), or more generally 
as the function that relates one configuration of a field of symbols 
to another, in terms of the modifications engendered by some in-
ternal processor computing over those states. (φ and ψ are 
named, for mnemonic convenience, by analogy with philosophy 
and psychology, since a study of φ is a study of the relationship be-
tween expressions and the world—since philosophy takes you 
“out of your mind,” so to speak—whereas a study of ψ is a study 
of the internal relationships between symbols, all of which, in 
contrast, are “within the head” of the person or machine.) 

Some simple comments. First, N1, N2, S1, S2, D1, and D2 need not 
all necessarily be distinct: in a case where S1 is a self-referential 
designator, for example, D1 would be the same as S1; similarly, in 
a case where ψ computed a function that was designation-
preserving, then D1 and D2 would be identical. Secondly, we need 
not take a stand on which of φ and ψ has a prior claim to being 
the semantics of S1. In standard logic, ψ (i.e., derivability: ⊢) is a 
relationship, but is far from a function, and there is little tendency 
to think of it as semantical; a study of ψ is called proof theory. In 
computational systems, on the other hand, ψ is typically much 
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more constrained, and is also. by and large, analysed mathemati-
cally in terms of functions and so forth, in a manner much more 
like standard model theories. Although in my own view it seems a 
little far-fetched to call the internal relationships (the “use” of a 
symbol) semantical, it is nonetheless true that we are interested in 
characterising both, and it is unnecessary to express an a priori 
preference. For discussion, therefore, I will refer to the φ-
semantics of a symbol or expression as its declarative import, and 
refer to its ψ-semantics as its procedural consequence. I have heard 
it said in other quarters that “procedural” and “declarative” theo-
ries of semantics are contenders;9 to the extent that I have been 
able to make sense of these notions, it appears that we need both. 

It is possible to use figure 2 to characterise a variety of standard 
formal systems. In the standard models of the λ-calculus. for ex-
ample, the designation function φ takes λ-expressions onto func-
tions; the procedural regimen ψ, usually consisting of α- and β-
reductions, can be shown to be φ-preserving. Similarly, if in a 
standard predicate logic we take φ to be (the inverse of the) satis-
faction relationship, with each element of S being a sentence or 
set of sentences, and elements of D being those possible worlds in 
which those sentences are true, and similarly take ψ as the deriv-
ability relationship, then soundness and completeness can be ex-
pressed as the equation ψ(S1, S2) ≡ [D1 ⊆ DS2]. As for all formal 
systems (these presumably subsume the computational ones), it is 
crucial that ψ be specifiable independent of φ. The λ-calculus and 
predicate logic systems, furthermore, have no notion of a proces-
sor with state; thus the appropriate ψ involves what we may call 
local procedural consequence, relating a simple symbol or set of 
symbols to another set. In a more complex computational cir-
cumstance, as I will show below, it is appropriate to characterise a 
more complex full procedural consequence involving not only 
simple expressions, but fuller encodings of the state of various as-
pects of the computational machine (for example. at least envi-
ronments and continuations in the typical computational case10). 

                                                             
 9 Woods (1981) 
 10 For a discussion of continuations see Gordon (1979), Steele and Sussman 

(1978), and Smith (1982a); the formal device is developed in Strachey & 
Wadsworth (1974). 
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An important consequence of the analysis illustrated in figure 2 is 
that it enables one to ask a question not typically asked ir com-
puter science, about the φ-semantic character of the function com-
puted by ψ. Note that questions about soundness and complete-
ness in logic are exactly questions of this type. In separate re-
search,11 I have shown, by subjecting them to this kind of analy-
sis, that computational formalisms can be usefully analysed in 
these terms as well. In particular, I demonstrated that the univer-
sally accepted LISP evaluation protocol is semantically confused, in 
the following sense: sometimes it preserves φ (i.e. φ(ψ(S))=φ(S)), 
and sometimes it embodies φ (thereby “de-referencing” its inputs: 
φ(S)=φ(S). The traditional LISP notion of evaluation. in other 
words, conflates simplification and reference relationships, to its 
peril (in that report I propose some LISP dialects in which these 
two notions are kept much more neatly and strictly separate). 
The current moral, however. is merely that our approach allows 
the question of the semantical import of ψ to be asked. 

As well as considering LISP, we can use our diagram to charac-
terise various linguistically oriented projects carried on under the 
banner of “semantics.” Model theories and formal theories of lan-
guage (I am including Tarski and Montague in one sweep) have 
concentrated primarily on φ. Natural language semantics in some 
quarters12 focuses on θ—i.e., on the “translation” of natural lan-
guage into an internal medium—although the question of what 
aspects of a given sentence must be preserved in such a translation 
are of course of concern (no translator could ignore the salient 
properties, semantical and otherwise, of the target language, be it 
mentalese or predicate logic, since the endeavour would otherwise 
be without constraint). Lewis (for one) has argued that the pro-
ject of articulating θ—an endeavour he calls “markerese seman-
tics”—cannot really be called semantics at all,13 since it is essen-
tially a translation relationship, although it is worth noting that θ 
in computational formalisms is not always trivial, and a case can 
at least be made that many superficial aspects of natural language 

                                                             
 11 Smith (1982a). 
 12 A classic example is Katz and Postal (1964), but much of the recent A.I. 

research in natural language in A.I. can be viewed in this light 
 13 Lewis (1972) 
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use, such as the resolution of indexicals, may be resolved at this 
stage (if for example you say “I am warm” then I may internalise 
your use of the first person pronoun into my internal name for 
you). 

Those artificial intelligence researchers working in knowledge 
representation, perhaps without too much distortion, can be di-
vided into two groups: (i) those whose primary semantical alle-
giance is to φ, and who—perhaps as a consequence—typically use 
an encoding of first-order logic as their representation language; 
and (ii) those who concern themselves primarily with ψ, and who 
therefore—legitimately enough—reject logic as even suggestive 
(ψ in logic—derivability—is a relatively unconstrained relation-
ship, for one thing; secondly, the relationship between the en-
tailment relationship (⊨), to which derivability is a hopeful ap-
proximation, and the proper ψ of rational belief revision, is at 
least a matter of debate.14 

Programming language semantics, for reasons that can at least 
be explored, if not wholly explained, have focused primarily on ψ, 
although in ways that tend to confuse it with φ. Except in the case 
of PROLOG, which borrows its φ straight from a subset of first-
order logic, and in my own reconstructions of the LISP, men-
tioned earlier,15 I have never seen a semantical account of a pro-
gramming language that gave independent accounts of φ and ψ. 
There are complexities, furthermore, in knowing just what the 
proper treatment of general languages should be. In a separate 
paper16 I argue that the notion program is inherently defined as a 
set of expressions whose (φ-) semantic domain includes data 
structures (and set-theoretic entities built up over them). In other 
words, in a computational process that deals with finance, say, the 
general data structures will likely designate individuals and money 
and relationships among them, but the terms in that part of the 
process called a program will not designate these people and their 
money, but will instead designate the data structures that designate 
people and money (plus of course relationships and functions over 

                                                             
 14 Israel (1980). 
 15 For a discussion of PROLOG see Oocksin & Mellish (1981); the LISPs are 

described in Smith (1981). 
 16 Smith (forthcoming). 
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those data structures). Even on a declarative view like mine, in 
other words, the appropriate semantic domain for programs is 
built up over data structures—a situation strikingly like the stan-
dard semantical accounts that take abstract records or locations 
or whatever as elements of the otherwise mathematical domain 
for programming language semantics. It may be that this fact that 
all base terms in programs are meta-syntactic that has spawned the 
confusion between operations and reference in the computational 
setting. 

Although the details of a general story remain to be worked out, 
the LISP case mentioned earlier is instructive, by way of suggestion 
as to how a more complete computational theory of language se-
mantics might go. 

In particular, because of the context relativity and non-local ef-
fects that can emerge from processing a LISP expression, ψ is not 
specifiable in a strict compositional way. When taken to include 
the broadest possible notion that maps entire configurations of 
the field of symbols and of the processor itself onto other configu-
rations and states—ψ is of course recursively specifiable (the 
same fact, in essence, as saying that LISP is a deterministic formal 
calculus). A pure characterisation of ψ without a concomitant ac-
count of φ, however, is unmotivated—as empty as a specification 
of a derivability relationship would be for a calculus for which no 
semantics had been given. Of more interest is the ability to spec-
ify what I call a general significance function Σ, which recur-
sively specifies ψ and φ together (this is what I was able to do for 
LISP). In particular, given any expression S1, any configuration of 
the rest of the symbols, and any state of the processor, the func-
tion Σ will specify the configuration and state that would result 
(i.e., it will specify the use of S1), and also the relationship to the 
world that the whole signifies. For example, given a LISP expres-
sion of the form (+ 1 (PROG (SETQ A 2) A)), Σ would specify that 
the whole expression designated the number three, that it would 
return the numeral ‘3’, and that the machine would be left in a 
state in which the binding of the variable A was changed to the 
numeral ‘2’. A modest result; what is important is merely (i) that 
both declarative import and procedural significance must be re-
constructed in order to tell the full story about LISP; and (ii) that 
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they must be formulated together. 

Rather than pursue this view in detail. it is helpful to set out sev-
eral points that emerge from analyses developed within this 
framework: 

1. In most programming languages, θ can be specified 
compositionally and independently of φ or ψ—this 
amounts to a formal statement of Fodor’s modularity thesis 
for language.17 In the case of formal systems, θ is often 
context-free and compositional, but not always (reader 
macros can render it opaque, or at least intensional, and 
some languages such as ALGOL are apparently context-
sensitive). It is noteworthy. however. that there have been 
computational languages for which θ could not be 
specified independently of ψ—a fact that is often stated as 
the fact that the programming language “cannot be parsed 
except at runtime” (TECO and the first versions of 
SMALLTALK had this character). 

2. Since LISP is computational, it follows that a full account of 
its ψ can be specified independent of φ; this is in essence 
the formality condition. It is important to bring out, how-
ever. that a local version of ψ will typically not be composi-
tional in a modem computational formalism, even though 
such locality holds in purely extensional context-free side-
effect free languages such as the λ-calculus. 

3. It is widely agreed that ψ does not uniquely determine φ 
this is the “psychology narrowly construed” and the con-
comitant methodological solipsism of Putnam and Fodor 
and others18). However this fact is compatible with our 
foundational claim that computational systems are distin-
guished in virtue of having some version of φ as part of 
their characterisation. A very similar point can be made for 
logic: although any given logic can (presumably) be given a 
mathematically-specified model theory, that theory does 

                                                             
 17 Fodor (forthcoming). 
 18 The term “methodological solipsism” is from Putnam (1975); see also 

Fodor (1980). 
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not typically tie down what is often called the “standard 
model or interpretation”—the interpretation that we use. 
This fact does not release us, however, from positing as a 
candidate logic only a formalism that humans can inter-
pret. 

4. The declarative interpretation function φ cannot be wholly 
determined independent of ψ, except in purely declarative 
languages (such as the λ-calculus and logic and so forth). 
This is to say that without some account of the effect on 
the processor of one fragment of a whole linguistic struc-
ture, it may be impossible to say what that processor will 
take another fragment as designating. The use of SETQ in 
LISP is an example; natural language instances will be ex-
plored below. 

This point needs a word of explanation. It is of course 
possible to specify φ in mathematical terms without any 
explicit mention of a ψ-like function; the approach I use 
in LISP defines both ψ and φ in terms of the overarching 
function Σ mentioned above, and I could of course sim-
ply define φ without defining ψ at all. Rather, my point is 
that any successful definition of φ will effectively have to 
do the work of ψ, more or less explicitly, either by defining 
some identifiable relationship, or else by embedding that 
relationship within the meta-theoretic machinery. I am 
arguing, in other words, only that the subject I intend ψ  
to cover must be treated in some fashion or other. 

What is perhaps surprising about all of this machinery is that it 
must be brought to bear on a purely procedural language—all 
three relationships (θ, φ. and ψ) figure crucially in an account of 
even as simple a language as LISP. I are not suggesting that LISP is 
like natural languages. To point out just one crucial difference. 
there is no way in LISP or in any other programming language (ex-
cept PROLOG) to say anything at all—whereas the ability to say 
things is clearly a foundational aspect of any human language. 
The problem in the procedural languages is one of what we may 
call assertional force; although it is possible to construct a sen-
tence-like expression with a clear declarative semantics (such as 
some equivalent of “X=3”), one cannot use it in such a way as to ac-
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tually mean it—so as to have it carry any assertional weight. That 
is, though it is trivial to set some variable X to 3. or to ask whether 
X is 3. there is no way to state that X is 3. It should be admitted, 
however, that computational languages bearing assertional force 
are under considerable current investigation. This general interest 
is probably one of the reasons for PROLOG’s emergent popularity; 
other computational systems with an explicit declarative charac-
ter include for example specification languages, data base models, 
constraint languages, and knowledge representation languages in 
Artificial Intelligence (AI). We can only assume that the appro-
priate semantics for all of these formalisms will align even more 
closely with an illuminating semantics for natural language. 

What does all of this have to do with natural language, and with 
computational linguistics? The essential point is this: if this char-
acterisation of formal systems is tenable, and if the techniques of 
standard programming language semantics can be fit into this 
mould. then it may be possible to combine those approaches with 
the techniques of programming language semantics and of logic 
and model theories, to construct complex and interacting ac-
counts of ψ and of φ. To take just one example, the techniques 
that are used to construct mathematical accounts of environ-
ments and continuations might be brought to bear on the issue of 
dealing with the complex circumstances involving discourse mod-
els, theories of focus in dealing with anaphora, and so on; both 
cases involve an attempt to construct a recursively specifiable ac-
count of non-local interactions among disparate fragments of a 
composite text. But the contributions can proceed in the other di-
rection as well: even from a very simple application of this frame-
work to this circumstance of LISP, for example. we have been able 
to show how an accepted computational notion fails to cohere 
with our attributed linguistically based understanding, involving 
us in a major reconstruction of LISP’s foundations. The similari-
ties are striking. 

My claim, in sum, is that similar phenomena occur in pro-
gramming languages and natural languages, and that each disci-
pline could benefit from the semantical techniques developed in 
the other. Some examples of these similar phenomena will help to 
motivate this view. The first is the issue with the appropriate use 
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of noun phrases: as well as employing a noun phrase in a standard 
extensional (referential) position, natural language semantics has 
concerned itself with more difficult cases such as intensional con-
texts (as in the underlined designator in “I didn’t know that The 
Big Apple was an island,” where the co-designating term ‘New 
York’ cannot be substituted without changing the meaning), the 
so-called attributive/referential distinction of Donellan19 (the dif-
ference, roughly, between using a noun phrase like “the man with 
a martini” to inform you that someone is drinking a martini, as 
opposed to a situation where one uses the hearer’s belief or 
assumption that someone is drinking a martini to refer to him), 
and so on. Another example different from either of these is 
provided by the underlined term in “For the next 20 years let’s 
restrict the President’s salary to $20,000,” on the reading in which 
after Reagan steps down he is allowed to earn as much as he 
pleases, but his successor comes under the constraint. The 
analogous computational cases include for example the use of an 
expression like (the formal analog of) “make the sixth array element 
be 10” (i.e., A(6) ::= 10), where we mean not that the current 
sixth element should be 10 (the current sixth array element might 
at the moment be 9, and 9 cannot be 10), but rather that we 
would like the description “the sixth array element” to refer to 10 
(so-called “L-values,” analogous to MacLISP’s SETF construct). Or, 
to take a different case, suppose we say “set X to the sixth array 
element” (i.e., x ::= A(6)), where we mean not that X should be set 
to the current sixth array clement, but that it should always be 
equal to that element (stated computationally this might be 
phrased as saying that X should “track” A(6); stated linguistically 
we might say that X should mean “the sixth array element”). 
Although this is not a standard type of assignment, the new 
constraint languages provide exactly such facilities, and macros 
(classic computational intensional operators) can be used in more 
traditional languages for such purposes. Or, for a final example, 
consider the standard declaration: INTEGER X, in which the term ‘X’ 
refers neither to the variable itself (variables are variables, not 
numbers), nor to its current designation, but rather to whatever 
will satisfy the description “the value of X” at any point in the course of 
a computation. All in all, we cannot ignore the attempt on the                                                              

 19 Dannenan (1966). 



 9 · Linguistic & Computational Semantics 
 
 

 423 

we cannot ignore the attempt on the computationalists’ part to 
provide complex mechanisms so strikingly similar to the complex 
ways we use noun phrases in English. 

A very different sort of linguistic phenomenon that occurs in 
both programming languages and in natural language is what we 
might call “premature exits”: cases where the processing of a local 
fragment aborts the standard interpretation of an encompassing 
discourse. If for example I say to you “I was walking down the 
street that leads to the house that Mary’s aunt used to ... oh, forget it; 
I was taking a walk, and lo and behold…”, then the fragment “for-
get it” must be understood as being used to discard the analysis of 
some amount of the previous clause. The grammatical structure 
of the subsequent phrase determines how much has been dis-
carded, of course; the sentence would still be comprehensible if 
the phrase “an old house I like” followed the “forget it.” We are 
not accustomed to semantical theories that deal with phenomena 
like this, of course, but it is clear that any serious attempt to 
model real language understanding will have to face them. My 
present point is merely that continuations20 enable computational 
formalisms to deal exactly with the computational analogs of this: 
so-called escape operators such as MacLISP’s THROW and CATCH and 
QUIT. 

In addition, a full semantics of language will want to deal with 
such sentences as “If by ‘‘flustrated’’ you mean what I think, then she 
was certainly flustrated.” The proper treatment of the first clause 
in this sentence will presumably involve lots of ψ-sorts of consid-
erations: its contribution to the remainder of the sentence has 
more to do with the mental states of speaker and hearer than 
with the world being described by the presumed conversation. 
Once again, the overarching computational hypothesis suggests 
that the way these psychological effects must be modelled is in 
terms of alterations in the state of an internal process running 
over a field of computational structures, 

As well as these specific examples, a couple of more general mor-
als can be drawn, important in that they speak directly to styles of 
practice that we see in the literature. The first concerns the sug-

                                                             
 20 See note 10 (■■), above. 
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gestion, apparently of some currency, that we reject the notion of 
logical form, and “do semantics directly” in a computational 
model On my account this is a mistake, pure and simple: to buy 
into the computational framework is to believe that the ingredi-
ents in any computational process are inherently linguistic, in 
need of interpretation. Thus they too will need semantics; the in-
ternalisation of English into a computer (θ) is a translation rela-
tionship (in the sense of preserving φ, presumably)—even if it is 
wildly contextual, and even if the internal language is very differ-
ent in structure from the structure of English. It has sometimes 
been informally suggested, in an analogous vein, that Montague 
semantics cannot be taken seriously computationally, because the 
models that Montague proposes are “too big”—how could you 
possibly carry these infinite functions around in your head, we are 
asked to wonder. But of course this argument commits a 
use/mention mistake: the only valid computational reading of 
Montague would mean that mentalese (S) would consist of desig-
nators of the functions Montague proposes, and those designators 
can of course be a few short formulae, 

It is another consequence of the view I am presenting that any 
semanticist who proposes some kind of “mental structure” in his 
or her account of language is committed to providing an interpre-
tation of that structure. Consider for example a proposal that 
posits a notion of “focus” for a discourse fragment. Such a focus 
might be viewed as a (possibly abstract) entity in the world, or as 
a element of computational structure playing such-and-such role 
in the behavioural model of language understanding. It might 
seem that these are alternative accounts: what I am arguing is that 
an interpretation of the latter must give it a designation (φ); thus 
there would be a computational structure (being biased, I will call 
it the focus-designator), and a designation (which I will call the fo-
cus-itself). The complete account of focus would have to specify 
both of these (either directly, or else by relying on the generic de-
clarative semantics to mediate between them), and also tell a story 
about how the focus-designator plays a causal role (ψ) in engen-
dering the proper behaviour in the computational model of lan-
guage understanding. 

There is one final problem to be considered: what it is to de-
sign an internal formalism S (the task, we may presume, of any-
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one designing a knowledge representation language). Since, on 
my view, we must have a semantics, we have the option either of 
having the semantics informally described (or, even worse, tacitly 
assumed), or else we ean present an explicit account, either by de-
fining such a story ourselves or by borrowing from someone else. 
If the LISP case can be taken as suggestive, a purely declarative 
model theory will be inadequate to handle the sorts of computa-
tional interactions that programming languages have required 
(and there is no a priori reason to assume that successful compu-
tational models for natural language will be found that are simpler 
than the programming languages the community has found nec-
essary for the modest sorts of tasks computers are presently able 
to perform). However it is also reasonable to expect that no direct 
analog to programming language semantics will suffice, since they 
have to date been so concerned with purely procedural (behav-
ioural) consequence. It seems at least reasonable to suppose that a 
general interpretation function, of the Σ sort mentioned earlier, 
may be required. 

Consider for example the KLONE language presented by 
Brachman et al.21 Although no semantics for KLONE has been 
presented, either procedural or declarative, its proponents have 
worked both in investigating the θ-semantics (how to translate 
English into KLONE), and in developing an informal account of 
the procedural aspects. Curiously, recent directions in that pro-
ject would suggest that its authors expect to be able to provide a 
“declarative-only” account of KLONE semantics (i.e., expect to be 
able to present an account of φ independent of ψ), in spite of the 
foregoing remarks. My only comment is to remark that independ-
ence of procedural consequence is not a pre-requisite to an ade-
quate semantics; the two can be recursively specifiable together; 
thus this apparent position is stronger than formally necessary—
which makes it perhaps of considerable interest. 

In sum, I claim that any semantical account of either natural lan-
guage or computational language must specify θ, ψ, and φ; if any 
are left out, the account is not complete. I have argued, further-
more, that there is any fundamental distinction to be drawn be-

                                                             
 21 Brachman (1979). 
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tween so-called procedural languages (of which LISP is the para-
digmatic example in AI) and other more declarative languages 
(encodings of logic, or representation languages). I deny as well, 
contrary to at least some popular belief, the view that a mathe-
matically well-specified semantics for a candidate “mentalese” 
must be satisfied by giving an independently specified declarative 
semantics (as would be possible for an encoding of logic, for ex-
ample). The designers of KRL,22 for example, for principled rea-
sons, denied the possibility of giving a semantics independent of 
the procedures in which the KRL structures participated; my own 
simple account of LISP has at least suggested that such an ap-
proach could be pursued on a mathematically sound footing. 
Note however, in spite of my endorsement of what might be 
called a procedural semantics, that this in no way frees one from 
giving a declarative semantics as well; procedural semantics and de-
clarative semantics are two pieces of a total story; they are not al-
ternatives. 
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10 — The Correspondence Continuum†  

  Abstract 
It is argued that current techniques for analysing the semantics of 
knowledge representation systems in Artificial Intelligence (AI) 
are too rigid to account for the complexities of representational 
practice, and unable to explain intricate relations among represen-
tation, specification, implementation, communication, modeling, and 
computation. Doing justice to such phenomena challenges such 
stapes of traditional analysis as clear use/mention distinctions, 
strict metalanguage hierarchies, distinct “syntactic” and “seman-
tic” accounts—even logic’s notion of model-theory itself. 

By way of alternative, the paper advocates the development of 
a general theory of correspondence, able to support an indefi-
nite continuum of circumstantially dependent representation re-
lations, ranging from fine-grained syntactic distinctions at the 
level of language and implementation, through functional data 
types, abstract models, and indirect classification, all the way to 
the represented situation in the real world. The overall structure 
and some general properties of such a correspondence theory are 
described, and its consequences for semantic analysis surveyed. 

                                                             
†(A summary of) an earlier version of this paper was presented at the Sixth 
Canadian Conference on Artificial Intelligence, Montreal, Quebec, Canada, 
May 21–23, 1986,. While the paper did not appear in the Proceedings 
(having been submitted far too late), some copies were distributed at the 
meeting, and it was subsequently released as Report No. CSLI-87-71, Cen-
ter for the Study of Language and Information, Stanford, California, in 
Jan. 1987. 

Thanks to Jon Barwise, Jim des Rivieres, and John Lamping for com-
ments on early (1986) draft. The research was supported by Xerox Cor-
poration, and by a System Development Foundation award to the Center 
for the Study of Language and Information at Stanford University. 



430 Indiscrete Affairs · I 

 1 Introduction 
Certain genitive phrases of the form ‘a of b’ are ambiguous. On 
the subjective reading of ‘love of children’, for example, it is the 
children who do the loving, as in (1). On the objective reading, in 
contrast, children are recipients of the affection, as in (2). 

1. Though bitter from years of being ridiculed by adults, the 
old man was grateful for the love of children. 

2. Though increasingly impatient with his peers, the old man 
never lost his love of children. 

The problem arises when the head noun phrase a (‘love’) signifies 
an asymmetric two-place relation, since it is then unclear which 
argument place is filled by the b term following ‘of’. As shown in 
these examples, the distinction is generally clear-cut, with the in-
tended reading selected by context (this is why it a question of 
ambiguity, not vagueness). 

The phrase “the representation of knowledge” is of this am-
biguous type. Oddly enough, though, it is not clear which reading 
is intended. Is knowledge being represented (objective), or is 
knowledge doing the representing (subjective)? Both interpreta-
tions seem reasonable. For example, suppose we build a medical 
artificial intelligence (AI) system called DOC using FKRL, our “fa-
vourite knowledge representation language.” On the objective 
reading, the ingredient structures would be viewed as representing 
DOC’s knowledge, presumably implying that a semantics for FKRL 
should map FKRL structures onto knowledge (or perhaps onto a 
set-theoretic model of it, such as a possible-world structure). On 
the subjective reading, in contrast, DOC’s knowledge, embodied in 
FKRL structures, would itself be taken as representational. In this 
case semantic analysis would map the representational structures 
onto the states of affairs in the world that DOC knows about—
states of affairs involving drugs, diseases, and diagnoses. 

To add to the confusion, it is not even clear exactly what the 
difference between the two readings would come to, in the knowl-
edge representation case. It seems that a possible world structure 
modelling belief might be the same as a structure modelling the 
states of affairs that the belief is about. And yet beliefs and 
worldly states of affairs are not the same: the former, for example, 
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ample, are psychological, the latter not (at least in general). Thus, 
whereas an erudite doctor might be said to possess great knowl-
edge, it would be senseless to say that she possesses great states of 
affairs. 

Some of the confusion has a simple source: both ‘representa-
tion’ and ‘knowledge’ designate asymmetric, relational notions. 
Furthermore, the two relations are of the same general type; they 
both characterise phenomena that are about something—
phenomena that refer to the world, that have meaning or content. 
For example, to say that a series of marks on a page is a represen-
tation of Winston Churchill is to say that there is some relation 
between those marks and the late British Prime Minister. Simi-
larly, to say that your lawyer’s knowledge is faulty is to comment 
on the relation between what is going on inside the lawyer’s head 
and what is going on outside. Because they are both based on an 
underlying (asymmetric) relation of content, representation and 
knowledge are considered to be semantic or intentional notions 
(other intentional notions include language, belief, model, theory, 
specification). But to say that is not to say very much, at least not 
yet. It certainly does not explain how representation and knowl-
edge differ. Nor does it clarify our starting question of how, in the 
knowledge representation case, they are supposed to relate. 

This paper will try to sort this all out. Specifically, taking seman-
tics as the general enterprise of describing intentional phenom-
ena, I will address the question of what it is to give a semantic 
analysis of a knowledge representation system. I.e., whereas most 
semantical analyses focus on particular types of semantic entities 
or structures—possible world structures, partial situations, etc.—
my concern will be with the overall framework in terms of which 
such analyses are conducted. 

There are several reasons this is an urgent task. The first we 
have already discussed: as implied by the confusion in the name, 
there are several interacting intentional notions involved, which 
should be sorted out. Second, it is increasingly thought necessary 
to give semantical accounts of proposed representation systems, 
in order to convey rigour and coherence onto what would other-
wise be viewed as ad hoc symbol mongering. In 1974 Pat Hayes, 
long a champion of this view, called AI’s reluctance to provide se-
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mantical accounts for representation schemes “a regrettable 
source of confusion and misunderstanding”,1 and went on in 
1977 to write as follows: 

“One of the first task which faces a theory of representation is 
to give some account of what a representation or representa-
tional language means. Without such an account, compari-
sons between representations or languages can only be very 
superficial. Logical model theory provides such an analysis.2 

In writing these words Hayes was defending logic against what he 
took to be the a-semantical orientation of the proceduralist tradi-
tion. In this he seems to have succeeded: similar sentiments have 
since gained widespread allegiance. We should certainly under-
stand anything so popular. 

On the other hand, this very success leads to the third reason 
for the present investigation. I believe that current theoretical 
tools, particularly the traditional model-theory that Hayes cites 
and most everyone uses, are inadequate to the knowledge repre-
sentation task, and need substantial revamping. Perhaps ironi-
cally, many of the problems I will canvass are foreshadowed in 
Hayes’ original papers—the relation between so-called proposi-
tional and analogue representation, to take just one example, 
which has yet to be adequately reconstructed. Logical model the-
ory, which does not address analogue questions, has if anything 
gained momentum as the knowledge representer’s semantical 
technique of choice. 

Fourth, and finally, many of the lessons learned in the knowl-
edge representation case will hold for all computational systems, 
and will even impinge on general semantical analysis; so there is a 
certain universality to the inquiry. 

 2 A Model of Knowledge Representation 
I will adopt a two-factor model of knowledge representation, as 
pictured in figure 1 (on the next page). An agent, computational or 
human, is taken to comprise a set of internal structures, states, or 
aspects, that have some sort of content, and at the same time play 

                                                             
1Hayes, 1974 p. 64. 
2Hayes 1977, pp. 559. 
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a role in engendering the agent’s overall behaviour. In order to fo-
cus on their internal nature, I will call these structures impres-
sions, to distinguish them from expressions, assumed to be ele-
ments of an external language. Think of impressions as data 
structures, as elements of a knowledge representation language, 
or as partial mental states—not much will depend here on details. 
The essential point about impressions is that they have two par-
tially independent, though coordinated, properties. 

First is what I will call functional role (or ‘role’, for short)—
indicated as a in the diagram. Impressions must arise, somehow, 

in virtue of the history 
and coupling of the agent 
to its environment, and 
must give rise to the sys-
tem’s future activity or 
behaviour. Furthermore, 
as well as having these 
backwards- and for-
wards-looking aspects, 
impressions must be 
causally efficacious in the 
present—must bump up 
against each other, or be 
manipulated by some 

sort of internal agency, so as to constitute the whole of which 
they are the parts. So a given impression, such as one expressing 
the fact that a robot does not have much time left until it needs a 
recharge, might arise from the integration of information gleaned 
from internal sensor readings, engender inference involving time 
and expected electrical use, and lead the robot to scramble around 
the hall in search of an electrical outlet. 

Functional role is not enough, however. In order to count as 
representations, as opposed merely to being causal ingredients 
like the cam shaft in a car, impressions must also stand in a con-
tent relation to the states of affairs in the world in which the 
agent is embedded. I will call this second factor representational 
import (or just ‘import’, where the meaning is clear)—indicated 
in the diagram as b. 

Representational import is not an alternative to functional 

 
 

Figure 1 — A two-factor model of knowledge representation 
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role, or a particular kind: it is something additional. Thus 
whereas the level of sap in a maple tree arises from a complex his-
tory involving the weather, structure of the trunk, etc., and gives 
rise to complex future behaviour, such as amount of sugar pro-
duced, density of new foliage, etc., that is about all there is to say 
about it. In spite of being correlated with facts in its environment, 
sap does not have any representational import partly because the 
correlation is too strong (sap cannot be wrong), and partly be-
cause no concepts are employed (sap does not represent the world 
as being one way as opposed to another; it is merely locked into it as 
a totality). In contrast, for an impression to represent spring’s be-
ing on the way, there would have to be an additional uniformity 
relating its structure to the structure of that fact—a uniformity 
that would be missed in an isolated account of functional role.3 

For example, suppose I have the impression that water con-
ducts electricity. All kinds of backwards-looking functional roles 
could have led to this: my own hapless experience trying to heat 
the bath water with an electric iron; stories I have been told; 
books I have read; deductions from knowledge of the ionization 
potential of molecules held together by hydrogen bonds. Simi-
larly, at least within wide limits, there is no predicting what for-
ward-looking role this impression might give rise to: things I 
might say, or situations I may strenuously avoid, such as climbing 
onto high-tension wires during rainstorms. The point is that, in 
spite of this richness of role, including inferential role, there re-
mains a striking and relatively simple uniformity connecting the 

                                                             
3Saying just what distinguishes representational from purely functional 
ingredients is a difficult philosophical problem. My own emphasis on the 
two criteria cited here—a certain “disconnection” between representation 
and what is represented, and the claim that a representation must repre-
sent the world as being a certain way—is discussed in Smith [[forthcoming 
(a), chapter 4]], and in Smith [[forthcoming (b)]]. The issue has been ad-
dressed by many writers in the philosophy of psychology, such as Fodor, 
Searle, and Stich, especially in assessing the relation between proposed 
functional and representational theories of mind. «Refs?» Computational 
readers will note, however, that many of these philosophers get at repre-
sentation by analogy to computation, whereas my own view is approxi-
mately the opposite: that we must get at computation by first understand-
ing representation. There is more overlap in subject matter than concur-
rence in views. 
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impression and the fact it represents—the most penetrating regu-
larity in terms of which to explain my behaviour. In brief, it is the 
connection between the impression itself and the fact that water 
conducts electricity. This is the regularity of content or representa-
tional import. 

The two factors must be coordinated in a special way: the 
states of affairs that the impression represents (its import) and 
the behaviour that it gives rise to (its role) must be such that the 
agent can be truthfully said to know the fact, which involves being 
able to act in accord with it, etc. The trick, in spelling this out, is 
to tie the two roles together into an integral whole without 
thereby undermining the integrity of the distinction between 
them—a project that requires combining traditional semantical 
techniques with the AI and philosophical literature on knowledge 
as action, pragmatic reasoning, and even causal theories of refer-
ence. I will not attempt that integration here, but will merely call 
the coordinated combination of factors the full significance of 
an impression. 

In (Smith 1982a & 1985), I labelled this two factor orientation 
to representational significance the Knowledge Representation 
Hypothesis. In the philosophy of mind an analogous view has 
been labelled a dual-component semantics for psychology.4 Tech-
nical variations have appeared under various descriptions; what is 
perhaps most striking is its familiarity in even the familiar realm 
of formal logic. In a traditional proof-theoretic framework—say, 
if the agent was an implementation of a natural deduction theo-
rem-prover for first-order logic—one might view representational 
import as the semantics of an expression, and functional role as its 
proof-theoretic consequence. This last characterisation, however, 
misleadingly suggests that the full significance of a representation 
system must satisfy the following two constraints: 

1. That the two factors be essentially independent (in which 
case I will call the representational system declarative); and 

2. That functional role arise solely from syntactic properties 
of the representational structures. 

Adherence to a general two-factor analysis, however, in no way 
                                                             
4Field (1977, 1978); Loar (1982); Block (1985). 



436 Indiscrete Affairs · I 

commits one to this particularly strong way of dividing things 
up.5 3-Lisp, for example,6 a simple programming language de-
signed within a two-factor framework, explicitly violated both as-
sumptions: import and role were both essentially semantic;7 it 
was also shown that they were theoretically explicable only in in-
timate conjunction.8 Other analyses, such as that suggested by 
Barwise and Perry,9 propose alternative ways of tying content and 
behaviour together. In fact it is partly because there are so many 
ways of getting at roughly the same intuition that I have pre-
sented it here somewhat abstractly. 

The two-factor nature of knowledge representation is the most 
important aspect for semantical analysis to clarify. In order to 
make sense of current semantical techniques, however, we need 
another distinction, which cross-cuts it. 

Especially in the philosophical literature, semanticists some-
times distinguish the meaning of a structure from its content or 
interpretation (not, at least not in any straightforward way, to be 
confused with the computer science notion of interpretation; see 
section 5, below, and Smith (1984)). Very roughly, the former is 
what all instances or uses of a given structure type have in com-
mon; the latter, what a particular use or instance of that type re-

                                                             
5David Israel has challenged the view, almost universally held in AI, that 
the notions of proof, deduction, inference, etc., even in mathematical logic, 
should be conceived in syntactic terms. «Refs» This syntactic orientation 
is not even universally accepted within what is called formal logic, since it 
rests on only one of many possible readings of the term ‘formal’ (see Smith 
[[forthcoming (a)]]. 

6Smith (1982a, 1984). 
7Reasons why the functional (procedural) parts count as semantic are 
spelled out in Smith [[forthcoming (a)]]. 

8First factor derivability (£) and second factor satisfaction are traditionally 
tied together through entailment (|=) and proofs of soundness and com-
pleteness, but these particular notions are coherent only as a kind of global 
constraint on what are otherwise locally independent factors. The kind of 
“intimate conjunction” employed in 3-Lisp, and being imagined here for 
more general models of reasoning and computation, is one of much more 
local interdependence. As pointed out in Smith (1982b), computational 
practice already encompasses a wide range of such local interactions; see 
also Smith (1987). 

9Barwise and Perry (1983). 
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fers to, or gets at, in all its specificity. Typically, facts about the 
context or setting provide the additional information that gets 
from meaning to interpretation. So for example the first person 
pronoun ‘I’, under this analysis, has the meaning of referring to 
whoever uses it: when Bono says ‘I’ he refers to himself; if you do, 
you refer to yourself. This is why two people can scream at each 
other “I’m right; you’re wrong!”—they both use the same sen-
tence, and the meaning is constant; it is the respective interpreta-
tions or contents that are contradictory. So we might model the 
meaning of ‘I’ as the following function of speakers, times, and lo-
cations as follows: 

[[‘I’]]=ls,t,l · s 

In a given situation of use (speaker so at time to in location po) the 
interpretation would thus be so. 

It is tempting to identify meaning as the semantics of types, in-
terpretation as the semantics of tokens—but the second of these 
is misleading. John Perry, for example, has imagined a case of two 
deaf mutes, so poor they must share a single tattered card saying 
I’m a poor deaf mute; won’t you give me some money.10 Standing to-
gether at the street corner, they alternately hand the card to pass-
ers by. Each time the card is used, the words ‘I’ and ‘me’ change 
their reference: one token, constant meaning, changing interpre-
tation. Similarly, consider an analogous computational example: a 
machine with a single distinguished internal structure used to 
mean ‘now’. The meaning is constant, and the particular structure 
may persist, but the interpretation changes with each passing 
nanosecond. Uses, or utterances, are what have interpretations; 
not concrete instances or tokens. 

The meaning/interpretation vocabulary is not common in the 
AI or computer science literature, but the circumstantial depend-
ence with which it deals is ubiquitous. Even the simple inclusion 
of explicit environment and memory arguments in denotational 
analyses of programming languages11 manifests a sensitivity to the 
importance to interpretation of contextual factors. In Smith 
(1986) I layout a whole variety of ways in which the content of 

                                                             
10«Ref» 
11See for example Gordon (1979). 
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computational structures, including impressions, can depend on 
facts of circumstance or context: internal facts (what program is 
running, how other internal structures are arranged, etc.), exter-
nal facts (where the computer is located, whom it is conversing 
with, etc.), and even some facts that seem to cross the boundary 
(what time it is). The importance of these kinds of circumstantial 
dependence will be assumed in what follows. 

Furthermore, both aspects of significance—functional role and 
representational import—can be cir-
cumstantially dependent. What 
¬FLIES(x) means, when attached to 
the BIRD node in a default reasoning 
system, and what inferences it leads a 
system to draw, can both depend on 
the presence or absence of other in-
termediating impressions. I will use 

functional meaning and representational meaning to get at 
the respective factors of an impression’s significance abstracted 
away from details and circumstances of particular instantiation or 
use. Similarly, functional content and representational content 
will refer, respectively, to the actions a use of an impression actu-
ally engenders, and to the situation it actually represents. 

Given these distinctions, my overall question is this: what 
would a semantical analysis be of the full significance of impressions? 
In the broadest terms, it will clearly have to distinguish import 
and role, meaning and content, and show how they all come to-
gether into a coordinated whole. But we need details. I will pro-
ceed in steps, concentrating first on representational import. 
Later I will return to the question of how to tie it together with 
functional role. 

 3 The Present State 
Virtually all the theoretical techniques in our current semantical 
arsenal were developed to deal with representational import. In 
particular, present practice proceeds roughly as suggested in fig-
ure 2. First, a source domain is identified as the set of elements 
for which a semantical analysis is to be given. Traditionally, this is 
called the syntactic domain; in the knowledge representation 
case it is the set of impressions comprising the agent (I will talk 

 
 

Figure 2 — The standard semantical model 
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more about the difference in a moment). Second, a semantic 
domain is similarly identified, roughly taken to be what the ele-
ments of the representational domain, expressions or impres-
sions, are about (more about ‘aboutness’, too, in a bit). Third, the 
semantic relation between domains, usually called the interpreta-
tion function, is then described extensionally, in the sense that 
particular elements of the syntactic domain are mapped, piece-
wise, onto the corresponding particular elements of the semantic 
domain. It may be, in the theorist’s actual presentation of the se-
mantic relation to the reader or audience or a colleague or what-
ever, that considerable information about the structure of this re-
lation will be manifested, but strictly speaking this additional 
structure is not part of what is provided (or perhaps, to borrow 
from the Tractatus, we could say that it is shown but not said). 
Just as for functions and relations more generally, piecewise cor-
respondence is assumed to be sufficient, at least for theoretic pur-
poses. 

So far, however, I have not said enough to distinguish the ex-
tensional analysis of a semantic relation from the extensional 
analysis of any old relation at all. But in practice more assump-
tions are adopted. I will label as model-theoretic those semanti-
cal analyses that accept (which I do not!) the following additional 
claims: 

1. The elements of the representational domain are assumed 
to be linguistic. Debates rage over what language is, but at 
least the following seems agreed: complex linguistic ele-
ments are taken to be linear sequences of some sort 
(strings, utterances, whatever), with an inductively speci-
fied recursive structure founded on an initial base set of 
atomic elements called a vocabulary, and assembled ac-
cording to rules of composition specified in a grammar. 
Furthermore, the interpretation relation is usually defined 
compositionally, so that meanings (not contents!) are as-
signed both to the vocabulary items and to the recursive 
structures engendered by the grammatical rules, in such a 
way that the meaning of a complex whole arises in a sys-
tematic way from the meanings of its parts. A particularly 
strong version of compositionality requires that the mean-
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ing of a whole be definable, often by function composition, 
in terms of the meanings of the parts, but other possibili-
ties, such as that the whole’s meaning be characterised, or 
even just constrained, by systems of regularities among the 
parts, are growing in popularity. We need not take a posi-
tion here on details; I will assume that these are variants on 
model-theoretic approaches. 

2. In a case where the elements of syntactic domain S corre-
spond to elements of semantic domain D1, and the ele-
ments of D1 are themselves linguistic, bearing their own 
interpretation relation to another semantic domain D2, 
then the elements of the original domain S are called meta-
linguistic. Furthermore, the semantic relation is taken to 
be non-transitive, thereby embodying the idea of a strict 
use/mention distinction, and engendering the familiar hi-
erarchy of metalanguages. This distinction is motivated by 
such obvious facts as that the six-character quoted expres-
sion “ ‘Nile’ ” designates a short word, which in turn desig-
nates a long river, but from those two facts it does not fol-
low—nor is it true—that the original six-character expres-
sion “ ‘Nile’ ” itself designates the river. 

3. The interpretation relation, as suggested in figure 2, is 
typically taken to be a function, implying that the import or 
content of an expression is not ambiguous. But ambiguity 
is a relative term: a linguistic element may look ambiguous 
if the circumstantial dependence of content has not been 
fully articulated, and may therefore be resolved by the 
meaning/interpretation distinction. We have already seen 
how the functional assumption is generalised to handle 
such complexities: whatever information disambiguates a 
given use of an otherwise ambiguous expression is included 
as a parameter of meaning; content is then obtained from 
the meaning by fixing that parameter. For example, the in-
terpretation of the indexical expression ‘I’, discussed above, 
was parameterised on speakers (formally, for reasons to be 
explained in a moment, it was parameterized on speakers, 
times, and locations—though only the speaker affected the 
resulting interpretation). Similarly, if ‘grue’ means blue if 
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used before 
some time t0, 
and ‘green’ 
afterwards,12 
then its in-
terpretation 

would be 
parameter-

ized on time 
of use, lead-
ing to its be-

ing assigned roughly the following meaning: 

[[‘grue’]]=ls,t,l · if t < t0 then BLUE else GREEN 

Thus the true situation is more accurately pictured by fig-
ure 3, with dependence on circumstantial or contextual 
factors folded into the interpretation. As mentioned ear-
lier, the discussion in Smith (1986) was intended to show 
how facts about both internal and external context can af-
fect interpretation in this way.13 

4. It is not necessary—not even usual—to require that the 
semantic domain D be the real domain that the expres-
sions are about. Rather, D is required to be a set-theoretic 
structure, viewed as a model of the real semantic domain. 

                                                             
12See Goodman (1983). 
13Functional parameterization deals with circumstantial dependence, but 
in a specific and limited way. In particular, by assuming that the linguistic 
element, plus circumstantial facts, together determine the interpretation, 
it implies that this is the direction of “information flow”—that under-
standing proceeds from knowledge of language, plus knowledge of circum-
stance, to knowledge of content. In practice, however, the flow can easily 
run in the other direction: someone hearing an utterance may know about 
the situation being described, and use that information to determine the 
structure of the linguistic element, or of such circumstantial factors as dis-
course structure. For these and other reasons a genuinely relational theory 
of meaning and content would be preferable (see Barwise and Perry 
(1983)); I use the functional analysis here only because of its familiarity, 
and because my current argument is not particularly sensitive to the dis-
tinction. 

 
 

Figure 3 — Parameterised interpretation 
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This last assumption serves a variety of useful functions: it means 
that semantical analysis remains “purely” mathematical, rather 
than having to spell out complete metaphysical assumptions 
about the true nature of the world. So for example a belief or 
proposition might be modelled as a function from possible worlds 
to truth-values, without the theorist needing to believe that that 
is what beliefs really are (but of course they are not functions in 
fact: it is entirely reasonable to ask “What are your friend’s be-
liefs?”, and absurd to ask “What are your friend’s functions from 
possible worlds to truth-values?”). Similarly, in the semantical 

analysis of a language 
used to describe Tur-
ing machines, the se-
mantical domain is 
usually taken to be sets 
of quadruples, not ac-
tual devices complete 
with tapes, read/write 
heads, finite state con-
trollers, and so forth. 
The quadruples are 
viewed as a model of the 
Turing machine, and—
this is the crucial point 
modelling is assumed to 
be “free,” in the sense 

that the theorist is granted license to engage in unconstrained 
modelling without having to account for it explicitly in his or her 
theory. To put it another way, modelling is invisible through the 
standard semanticist’s glasses.14 

Sometimes, of course, when the linguistic or representational 
elements are genuinely about mathematical objects—theories of 
arithmetic, for example, or representations of the factorial func-
tion—the true interpretation (called the ‘intended interpreta-
tion’) may be one of the model structures. In general, however, 

                                                             
14Sometimes, as for example in Montague semantics, the syntactic domain 
is modelled as well, but I will not worry about that here—it is merely an 
extension of the same points being made. 

 
 

Figure 4 — Parameterised model-theoretic interpretation 
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and almost universally in the knowledge representation case in ar-
tificial intelligence, we are interested in representations of more 
general states of affairs in the world, such as levels of digitalis in 
heart patients. So the picture of semantics should be updated as 
in figure 4. 

Finally, in discussions to follow, we will encounter complex 
situations that include both modelling and iterated representa-
tion of the sort discussed in the second assumption. So it is im-
portant to summarise how the standard picture would look in 
such cases. Since modelling is typically ignored, such a situation 
would traditionally be described as a strict series of non-transitive 
denotation relations, each analysed piecewise. Our comments 
about modelling might suggest that the true situation is more 
complex, consisting of a series of non-transitive denotation 
relations, followed by an indefinite amount of promiscuous 
modelling. But in fact, since there may be promiscuous (i.e., in-
visible) modelling at each stage of the language hierarchy, as for 
example when a language is encoded in arithmetic (as is common 
in recursive function theory, for example), what we really have is 
this: a strictly non-transitive sequence, each step consisting of a 
denotation relation followed by an indefinite amount of 
promiscuous modelling. This situation is pictured in figure 5.15 

                                                             
15At least in this paper, I do not intend these remarks to challenge the ap-
propriateness of these techniques for the intellectual project for which 
they were developed: the metamathematical inquiry into the foundations 
of mathematics. My current complaint is only about its adequacy for use 
in AI, knowledge representation, and any other situation in which the true 
state of affairs being represented is one in the real and messy world of eve-
ryday life. 
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 4 Impressions 
The first step, in analysing the appropriateness, for the represen-
tational problems presented in section 2, of the semantical tech-

niques described in 
section 3, is to de-
cide how we are go-
ing to treat impres-
sions. Because I spe-
cifically introduced 
the term to cover 
any internal aspect, 
state (or partial 
state), or structure, 
we want a fairly gen-
eral answer. It turns 

out to be a surprisingly complex subject. If we can clear it up first, 
therefore, subsequent semantical analysis will be that much more 
tractable. 

The most important point is this: as semanticists—whether our 
home field is in philosophy, artificial intelligence, logic, psychol-
ogy, computer science, or artificial intelligence—we do not yet 
have any developed theoretical terminology whose primary function is 
to describe impressions. In particular, impressions are not necessar-
ily linguistic objects, since the notion of language arises from the 
structure of communication and consensual interaction, not 
causal ingredients. Nor does mathematics provide any directly 
applicable notions: mathematical structures are abstractions—
Platonic ideals, not fragments or constituents of activity. For ex-
ample, in discussing two-factor semantical analysis in section 2, I 
talked about impressions being “causally efficacious”; these are 
not terms in the standard mathematical repertoire, nor, at least in 
general, are pure mathematical objects thought to possess causal 
powers. I have introduced the term ‘impression’ as a small step 
towards repairing this deficiency (as I did with ‘structural field’ in 
the 3-Lisp case), but of course it is simply a general, covering 
term. What we lack is a theory of types of impressions, types of 
important relations among impressions, analyses of how impres-
sions can simultaneously cause and represent, and so forth. It is 
not that we are entirely without terms for such things: data struc-

 
 

Figure 5 — Model-theoretic analysis of iterated representation 
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tures, data bases, knowledge bases, data types, functions (in the ‘pro-
cedure’ sense), and code are all types of impression—as are more 
specific AI constructs such as semantic nets, inheritance graphs, and 
taxonomic lattices. Rather, what we need is a general theory, in 
terms of which these diverse kinds could be characterised. 

Lacking a general theory, what do we theorists do instead? Dif-
ferent things. Perhaps the most common practice, especially in AI 
and the philosophy of mind, is to treat impressions metaphori-
cally—in particular, as analogous to language. Thus in the cogni-
tive case we have talk about “language of thought”, “mentalese”, 
“syntactic” theories of mind, etc.—as for example championed by 
Fodor, Stich, and others.16 Artificial intellience typically follows 
the same path, talking about “expressions”, knowledge represen-
tation “languages”, etc.—as does anyone who views impressions 
as “formulae.” In philosophy this stance is commonly referred to 
as the representational theory of mind—a somewhat unfortu-
nate epithet, not because the term ‘representation’ is inherently so 
narrow,17 but because this usage tends, without explicit admis-
sion, severely to constrain the notion of representation to its lin-
guistic or even syntactic shadow. Instead I will call it a linguistic 
theory of impressions. Two facts about this theory are impor-
tant for present purposes: (i) that we recognise its hypothetical 
nature—the fact that it represents a substantial claim; and (ii) 
that so long as this language remains metaphorical, we be careful 
to monitor connotations not necessarily warranted in the new 
domain.18 For example, in 3-Lisp I called certain number-
designating impressions numerals, but the metaphorical nature of 
the terminology misled me as well as others, causing me to attrib-

                                                             
16See Fodor (1975), Stich (1985). 
17See «whatever Rehabilitating Representation becomes». 
18Boyd (1979) argues persuasively that metaphorical scientific language can 
play a role, especially initially, in enabling a community to establish in-
creasingly substantial reference to a new domain. On such an account, the 
use of linguistic terminology to discuss impressions might, over the years, 
gradually lose its metaphorical overtones, and take on full-fledged referen-
tial connection to this new domain. But as Boyd himself points out, in or-
der for this process to take hold, the metaphor must start out being at 
least partially correct. My concern in this particular case, as the rest of this 
section tries to suggest, is that many of the connotations of the use of lin-
guistic language to describe impressions are in fact unwarranted.. 
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ute semantical properties to impressions motivated more by lin-
guistic connotation than by genuine functional need (for example, 
my adoption of a strict use/mention hierarchy, distinguishing the 
number three, the impression-numeral ‘3’, and the expression-
numeral “3”). 

Those bred in the knowledge representation tradition may 
find the linguistic approach to impressions obvious, but it is im-
portant to recognize that it is not universally accepted. It is well 
known that philosophical debates rage about whether representa-
tion is the best notion in terms of which to characterise human 
mental states. What is perhaps more surprising is the fact that a 
number of alternative views are advocated even within computa-
tional circles. First, many people have realised, in opposition to 
the linguistic claim in its narrowest form, that there is no need for 
internal structures to be anything like identical to written ones. 
The mildest position of this sort is John McCarthy’s notion of 
“abstract syntax”, which effectively amounts merely to a way to 
free impressions from gratuitous details of notation.19 I made a 
stronger move in the same direction in developing 3-Lisp, using 
the term “structural field” for the totality of impressions, even 
though I then described individual impression types using termi-
nology that I now feel was excessively derivative from linguistic 
analysis. My move was stronger than McCarthy’s not only be-
cause the granularity of distinction in the 3-Lisp field was less 
than is usual in even abstract linguistic cases, but also because the 
mapping between expressions and impressions (as well as that be-
tween impressions that real world or tax-domain) was taken to be 
contextually sensitive. (Partly for reasons of circularity and struc-
ture-sharing, the external notation was neither isomorphic to in-
ternal impressions, nor complete. Furthermore, in certain com-
plex cases like Lisp’s closures, the impression structure was far 
more complex than linguistic notation could readily express.) 

Other positions on impressions have been proposed. The view 
embodied in the design of 3-Lisp—that viewing impressions as 
syntactic or linguistic is non-ideal because it commits the theorist 
to too fine-grained a set of internal distinctions—was not mine 
alone; it is increasingly supported in various quarters of AI. Two 

                                                             
19«Ref» 
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suggested alternatives are of particular importance. Levesque 
(1984) retains allegiance to knowledge representation as a cover-
ing notion, but argues for a functional analysis of machine states, 
with explicit reference to the notion of an abstract data type, as 
opposed to a view of them as comprising “collections of symbolic 
structures.”20 Apparently more radically, Rosenschein (1985) 
criticises the entire representational stance, which he character-
ises as viewing “the state of the machine as encoding symbolic 
data objects”; Rosenschein argues instead for the notion of a situ-
ated automaton, with intentional properties (which he calls 
“knowledge”) defined in terms of “objective correlations between 
machine states and world states”.21 

Supporting these anti-syntactical proposals, moreover, is the 
attitude towards impressions adopted in current theoretical com-
puter science. Spelling that approach out is difficult, however, be-
cause of a facade of potentially distracting theoretical techniques 
that are standardly employed, which obscure (from the present 
vantage point) exactly what is going on. So I will digress from the 
subject of impressions, for a moment, to examine what computer 
sciences calls the denotational semantics of programming lan-
guages, and then return to the present topic once we have that 
firmly in hand.  

 5 Programs, Processes, and Indirect Classification 
The abstract data type movement in programming language de-

                                                             
20«Ref» 
21History is often repeated, we are told, but here it is being repeated in re-
verse direction. The gradual shift from functionalism to representational-
ism in the philosophy of mind is apparently being played out backwards in 
AI, which started with a very strong representationalist stance, and is 
steadily moving away from it, towards what are explicitly admitted to be 
purely functional accounts (see Levesque (1984), Newell (1982), etc.). My 
own view is that both traditions, in opposite order, suffer from the lack of 
a full fledged theory of representation. Based on the idea that the only rig-
orous concept of representation is a narrow, purely syntactic version, they 
oscillate between its gratuitous detail and consequent semantic implausi-
bility, on the one hand, and contextually insensitive and menacingly be-
haviourist pure functionalism, on the other. I believe both are inadequate, 
and conclude that we should free representation from its syntactic stric-
tures, rather than rejecting the notion entirely. 
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sign, and the denotational approach to programming language 
semantics, are best understood as attempts to characterise the 
structure of computational processes in other than linguistic 
terms. They are motivated by the following obvious fact: when we 
develop computational processes, we cannot build processes di-
rectly. Instead, we cause them to come into existence by writing 
programs. In their discourse, AI programmers often gloss the dis-
tinction between the program and the process, viewing programs 
as functional ingredients that are either inside processes (a move 
in which programs are effectively taken to be impressions—partly 
motivated by the widespread use of interpreted, interactive lan-
guages like Lisp), or sit in the background causing them to exist, 
etc. Such assumptions are betrayed in such informal parlance as 
“The program is still running”, “The program reads in a number and 
then prints out the answer”, etc. 

Nonetheless, as every programmer knows full well, programs—
textual objects that are printed out on paper or on the screen, that 
are edited with EMACS and other editors, etc.—do not do any-
thing; they are inert. Rather, what happens is that these passive 
structures are used by interpreters and compilers (about which 
more in a minute) to engender behaviour with appropriate prop-
erties. 
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The situation is depicted in figure 6. As just stated, the AI and 
knowledge representation community typically views programs, 
along with elements of knowledge representation languages, as 
constituents of or elements within computational processes—i.e., 
as impressions. I will call this the ingrediential view, as suggested 
in figure 6b. By far the more standard computer science concep-
tion, in contrast, is what I will call the specificational view, pic-
tured in 6a: programs taken as specifications or descriptions of 
computations, albeit as special descriptions that can be viewed as 
prescriptions by the machine or interpreter. Different from both is 
a third, conversational, view, in which programs constitute the 
dialog or discourse that the programmer has with the machine—
a view that I will examine in later, in section 6. 

 
 

Figure 6 — Three Perspectives on Programs 
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The hugely important point, which will greatly affect our seman-
tic analysis, is the following: traditional computer science takes “se-
mantics” to be the job of mapping programs onto processes—not, as 
external observers, philosophers, linguists, etc., might expect, to 
be that of mapping the resulting processes onto the world. It is 
only under this C.S. conception, furthermore, that “interpreters” 
are properly named. 

Concerned as I am in this paper, with knowledge representa-
tion, my task is different: exactly to describe that relation with 
which computer science does not concern itself—between those 
(resulting) processes and the worlds in which they are embedded. It 
follows that, in the traditional terminology, the semantic domains 
of traditional programming language analyses should be the 
knowledge representer’s so-called syntactic domains. Confusion 
over this point amounts to the commission of a use/mention er-
ror—exactly the sort of thing that careful semantical analysis is so 
much at pains to eliminate.22 

It may seem odd to look for impressions in the semantic do-
main of a semantic analysis of a programming language. Denota-
tional semanticists, after all, typically deal in semantic domains 
consisting of abstract mathematical structures—functions, sets, 
numbers, partial orders, and the like—which do not seem very 
much like causally efficacious impressions. But this apparent dis-
crepancy is explained by the fact that traditional denotational se-
mantics is model-theoretic. As we have already seen, the model is 
not the true domain of interpretation, but some other structure, 
typically abstract, set in correspondence with it. As suggested ear-
lier, this technique enables theorists at least partially to avoid ex-
actly the metaphysical questions we are interested in: questions 
about the true nature of impressions themselves.23 

                                                             
22Although I will eventually challenge the idea of a rigid use/mention dis-
tinction, that does not mean that many so-called “use-mention confu-
sions,” such as this, are not serious.. 

23Some readers will object that computer science analyses treat computa-
tional processes only in terms of surface behaviour—input/output rela-
tions without positing any internal structure at all, let alone impressions. 
But this is not so clear, not only because I have defined impression in a 
rather general way, but also because this view assumes a purely “exten-
sional” reading of the semantical analyses themselves. As has been argued 
by Fodor and others in the mental case, some sort of representational in-
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Not all questions are avoided by employing model-theoretic 
strategies, of course, since the structure of the model is intended 
in some way to correspond to the structure of the impressions. 
The question is how the correspondence goes (i.e., what is the re-
lation between a set-theoretic structure and an FKRL impression?). 
To get at the answer, note that modelling is an instance of the 
rather general practice of describing a set of complex phenomena 
only by setting them in relation to another, presumably more fa-
miliar, set of structures. Barwise and Perry call this “indirect 
classification”.24 An observer establishes (perhaps implicitly) a 
relation between the domain in question and some other domain, 
and then describes particular phenomena in the first domain only 
with reference to some corresponding phenomena in the second. 

An obvious case, important to our present subject matter, is 
the folk classification of people’s thoughts and beliefs: we describe 
what a person P believes by describing the situation that would be 
the case if what P believes were true. When you ask me to de-
scribe my thought, there is a perspective from which I am literally 
incapable of answering, since in English we have neither vocabu-
lary nor intuitions about the direct structure of thoughts—i.e., 
about what is inside our minds, which is where most people 
would say thoughts lie. Rather, I am liable to say something like 
the following: “I was thinking that Palo Alto is too far from Fin-
land.” That is, I describe my thought or thought process indi-
rectly, by adverting to a fact (Palo Alto’s being too far from Fin-
land) that would be the case if my thought were true. The exam-
ples we looked at in discussing model-theoretic semantics were 
just like this: the general practice is to establish an association be-
tween something and something else, and then to get at the some-
thing else by referring to the something. So for example we set up 
a correspondence between Turing machine states and quadru-
ples, which lets us describe a particular state by referring to a par-

                                                                                                                                                  
gredients will often be posited by theory merely in order to state the 
proper behavioural regularities. The abstract data types of denotational 
analysis can be viewed purely as theoretic entities, without classificatory 
import, but an argument would have to be made that they do not repre-
sent impression structure; the mere fact that they re not claimed to do so is 
not sufficient. 

24Barwise and Perry (1983).  
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ticular quadruple. 
These examples illustrate an important general property of all 

indirect classification: what is specific about a given entity in the 
primary domain is set in correspondence with what is specific 
about the corresponding entity in the classificatory domain. Thus 
a theoretical computer need not encode, in the domain of quad-
ruples, the fact that Turing machines have tapes, or that the third 
element of the quadruple corresponds to the mark under the 
read/write head, or that the numbers 0 and 1 are used to classify 
a mark or a blank, or anything else that is true for all the relevant 
cases. All that is required is that a particular quadruple contain 
enough information to determine what particular state, transition, 
etc., that it is being used to classify. 

What distinguishes the denotational approach to program-
ming language semantics from arbitrary indirect classification, 
and leads to potential confusion, is the practice of identifying the 
classificatory entity with what is thereby classified. Such identifi-
cation is not necessary; one could classify Turing machine #23 
with quadruple #1437 without going on to claim that Turing ma-
chine #23 is quadruple #1437 (or even, more strongly, that to be a 
Turing machine is to be a quadruple—which of course is in fact 
false). The identification is considered to be acceptable when the 
two structures are thought isomorphic, but isomorphism is always 
relative to an assumed metric of equivalence. In the computational 
cases we are concerned with, where a second semantical factor 
(functional role) lurks in the background, in need of explanation, 
we cannot afford to identify for one purpose, two things that may 
differ in respects that matter for other purposes. In particular, 
two structures that look to be isomorphic from the point of view 
of representational import may differ, crucially, in terms of func-
tional role. For example, as we have already pointed out, no ab-
stract mathematical structure is even a candidate for the kind of 
efficacious causality we will need in order to connect impressions 
with action. Distinct but isomorphic mathematical structures 
may be used to classify embodied mechanisms with very different 
causal powers. So we need to proceed extremely cautiously. 

We will encounter further issues about modelling in the next sec-
tion, but for now let me return to programming languages. 
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In spite of its being contrary to the dominant view in AI and 
cognitive science, in what follows I will informally adopt the 
specificational view of programs, since it provides the most free-
dom, is least biased with respect to impression structure, and is 
most compatible with current computational theory. Thus I will 

assume: first, that pro-
grams are inert linguis-
tic entities, built up of 
expressions; second, 
that, in contrast, proc-
esses are active, mani-
fest behaviour, com-
posed in part of caus-
ally-effective impres-
sions; and third—
which is where the 
specificational perspec-
tive takes hold—that 
denotational semantics 

in computer science is an analysis of the program-process relation 
that indirectly classifies computational processes in terms of abstract 
mathematical models. The situation is pictured in figure 7. 

In terms of this picture, I can now explain the theoretical dis-
traction I alluded to earlier, in introducing this section. It arises 
from the combination of two problems: (i) failing to distinguish 
between the specificational and ingrediential views of programs; 
and (ii) being seduced by model-theoretic properties of the model 
(its abstract, mathematical character) into thinking it must model 
content. The result is to lead one to identify the model Mc of the 
computational process C with the model Mw of the state of affairs 
W that the process is genuinely about—as shown in figure 8. 

 
 

Figure 7 — Model·theoretic analysis of program semantics 
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The fact that the programming language tradition calls its 
analyses semantical, in other words, coupled with the fact that 
they it tends to use abstract domains for purposes of indirect clas-
sification, is liable to mislead AI researchers into thinking that the 
semantic domains of programming languages model the content of 
the computational processes that the programs engender. But this is 
false, at least in general. There is simply no assumption, in the stan-

dard semantical analy-
sis of programming 
languages, that compu-
tational processes are 
themselves semantic or 
intentional entities. 
That is, no further 
semantic relation is 
required, acknowl-
edged, or described. 
All that is explained is 
the relation between 
program and engen-
dered computational 
process. 

In the AI case, 
however, and particu-
larly when dealing 
with knowledge rep-
resentation systems, 
we assume that the 
ingredients inside the 

processes we are interested in, which we are calling impressions, 
are themselves intentional (this was the essence of our adopting a 
representational, as opposed to a merely functional, stance in sec-
tion 2). Even if we were to adopt a model-theoretic approach in 
our semantical task, therefore, we would be interested in the rela-
tion between impressions in C (or in the model Mc) and the 
model Mw. 

I have already said that there is no a priori reason to assume 
that these two models Mc and Mw will be the same. But a 
stronger thing can be said: if one assumes that Mc is an adequate 

 
 

Figure 8 — Models vs. Interpretations of Processes 
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model of process C, and that Mw is an adequate model of what C 
is about, then 

 To identify Mc and Mw is to assume that the representational 
import relation of knowledge representation systems is one of 
isomorphism. 

Far from treating impressions as a language, this would be to treat 
them as a simulacrum of the world. Or to put the same point an-
other way: to adopt, as a model of a knowledge representation 
system’s semantics, a denotational analysis of the programming 
language used to specify it, is either to assume that the primary 
representation relation, between process and world, is one of 
isomorphism, or else—even worse—to ignore that relation com-
pletely (thereby maintaining a solipsistic stance towards compu-
tations themselves). Either result is unhappy: simultaneously false 
and terrifically misleading. 

It helps to look at some examples, starting very simply. 
In purely mathematical cases, as mentioned, Mc and Mw may 

truly coincide. For example, suppose we write a program to calcu-
late the factorial function. We may presume this literally means 
the following: that we write a program to specify a process that is 
about numbers and the factorial relation. In this case W is a 
structured domain of numbers and functions. Moreover, a deno-
tational semanticist in computer science would almost surely use 
the same structures (numbers and the factorial function) as an 
abstract mathematical model (Mc) in terms of which to classify 
the process. Not only can Mc and Mw be identified, in other 
words; in this situation Mc, Mw, and Ware identical. 

As is perfectly evident, however, this identity relies on some 
very special properties of the example. Suppose we set out to de-
signing a robot to pull off bank heists, in contrast, and represent 
(in FKRL) the commonsensical fact that anything to the right of 
the robot is neither to the left of it nor straight in front. In order to 
motivate an appropriate Mc, we need to understand the relation 
between FKRL programs (now viewed as specifications) and FKRL 

impressions. So imagine the notation for FKRL programs is remi-
niscent of logical notation, and that we could “write down” some-
thing like the following “in FKRL”—which is to say, we could write 
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the following FKRL expression E to serve as the external notation 
for the desired FKRL impression: 

;x [ RIGHT(x) ⇒ (¬LEFT(x) ∧ ¬FRONT(x)) ] 

Suppose, furthermore, that this FKRL expression is more specific 
than the impression that it will generate in two ways. First, there 
is to be no fact of the matter, in the resulting impression, about 
what particular variable was used in the program; the expression 
might equally well have used y or z. Second, although matters of 
lexical notation force one of the conjuncts to be first (¬LEFT(x) in 
this case), we will assume that impressions are internally realised 
as unordered sets. Thus the following expression would have 
generated an indistinguishable impression: 

;x [ RIGHT(w) ⇒ (¬FRONT(w) ∧ ¬LEFT(w)) ] 
xxGiven these assumptions, we can then take on the task of pro-
viding a semantical analysis of FKRL programs—which is to say, 
an analysis of the relation between the FKRL expressive specifica-
tions and the resulting FKRL impressions—using the model-
theoretic approach of indirect classification. It is unlikely that we 
would do no more than constrain the models of this impression 
to those that satisfy the logical implication, since we can presume 
that more fine-grained details of the impression’s structure will 
play a functional role in licensing inference (such as the fact that 
the negation signs have not been pulled to the front, as they have 
in the semantically equivalent ¬'x [RIGHT(w) ∧ (FRONT(w) ■■ 

LEFT(w)) ]). So we might classify it using something like a term 
model, with the set of all equivalent expressions (including all 
those expressively differing only in the names bound variables 
and/or the ordered of conjuncts). Or if we were warranted in tak-
ing a more abstract approach, we might develop our analysis in 
terms of an interpretation function that mapped RIGHT, FRONT, 
and LEFT onto three distinct unary predicates, and classified the 
impression in terms of the set of all models satisfying the given 
implication. 

To relate this to figure 8, I will use E for the quantified expres-

                                                             
×«Check this paragraph for correctness and intelligibility … seems awk-
ward, and a bit incoherent re specifications and expressions?» 
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sion, I for the specified impression, C1 for the first classification, 
C1 for the second, and W for the impression’s interpretation—as 
suggested in figure 9.25 It should be obvious, first, that C1 and C2 
are both more abstract than E, in the information-theoretic sense 
of being less rich. Second, C2 is in turn more abstract than C2, 
since this model makes fewer distinctions (identifying all seman-
tically equivalent expressions). Finally, both C1 and C2 have addi-
tional properties that are, as we might say, “semantically inert”: 
properties that in this application neither themselves are, nor do 
they model, nor do they classify any properties of I, E, or W (for 
example C1 and C2 are both sets, even though none of E, I, nor W 
is a set). 

Given all of this, we are finally ready to ask the question to which 
this has been lead-
ing: is either of C1 
or C2 a candidate 
for being a model 
of W—i.e., a can-
didate for serving 
as a model-
theoretic stand-in 
for the representa-
tional import of I? 
And the answer, to 
bring it all home, is 
no. 

The fundamen-
tal problem is that 
“being to the right 
of” is not a one-

place relation: one thing is “to the right” of another thing, in the 
world, only relative to the position and orientation of the first. Thus 
C2 will not do, as a model of the representational content of I, 
since it does not contain enough information to determine, for 
example, whether impression I is true. If we wanted to model W, 

                                                             
25The impression is depicted as inside the robot’s head because the real 
interpretation function is being understood as holding between the robot’s 
mind and the policeman in front of it.) 

 
 

Figure 9: Indirect semantic classification of FKRL programs 
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then various additional circumstantial factors—including the po-
sition and orientation of the robot—would have to be brought in 
explicitly. In dealing with W we need to deal with actual position 
in the world, to put this another way (“in the world” is where 
ones encounters police). 

There is no formal problem with adding circumstantial pa-
rameters to an interpretation function, and thereby distinguishing 
meaning and content. We saw how to do that in section 3. 
Rather, the point of the exercise is to see what it is that these cir-
cumstances affect: the semantic relation between process (I) and 
world (W), in particular, not the relation between program (E) and 
process (I). 

xxIt is not accidental that we are considering a context-
dependent case, since context dependence (a virtually ubiquitous 
semantical phenomenon, in my view) brings into focus the abso-
lute importance of locating all relevant semantical phenomena 
and relations in their proper place. xxIt is far more likely that the 
machine’s behaviour will revolve around regularities framed in 
terms of what’s in front of it, to its right, or to its left, not in terms 
of what is in a given position. If the robot’s external circumstances 
were mistakenly introduced in the E ⇒ C2 relation, the resulting 
C2 would fail as a model of I. For example, it would be of no help 
in explaining matters if I somehow broke and caused the robot 
always to ignore things on its left, since “on its left” would not be 
a notion in this modified C2 . 

In general, of course, nothing prohibits a theorist’s classifying 
something by its content (as we did in the factorial case). Exactly 
such a strategy, in fact, is arguably what underlies our standard 
(indeed, at the moment, only) way of describing the propositional 
attitudes constitutive of folk psychology (‘knows that’, ‘believes 
that’, ‘hopes that’, ‘fears that’, etc.).26 The point is only that we 

                                                             
×«This paragraph may need complete rewriting (certainly it needs to be 
thought through, carefully, in order to determine whether that is so) …» 

xx«Is this sentence coherent?» 
26Folk psychology faces exactly the same problem we have just surveyed. In 
particular: (i) it classifies people’s mental states by content; (ii) the purpose 
of these classifications is to explain how people behave and what they do; 
and (iii) the content of people’s mental states is determined in part by their 
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must not assume that all indirect classification is of this type. 
More seriously, simple indirect classification by semantical con-
tent will in general fail as a strategy for semantically analysing the 
impressions of circumstantially dependent agents. 

 6 Impressions, Expressions, and Complications 
I said in section 4 that no there is no generally agreed, direct way 
of describing impressions. So far we have seen two quite different 
alternatives: a metaphorical approach, using the language of lin-
guistic expressions (section 4), and an indirect approach, classify-
ing them in terms of abstract mathematical structures (section 5). 

Before leaving the subject, we must 
recognise a third. 

It is common in informal AI prac-
tice, and standard in what is called 
‘operational’ semantics in the pro-
gramming language community, to 
describe the impressions and behav-
iour of a given computational process 
in terms of the corresponding impres-
sions or behaviour of a lower-level ma-

chine on which the process is implemented. This relation is depicted 
in figure 10. For example, if we were to adopt this approach to 
analyse the semantics of FKRL impressions we might do so by pre-
senting the Lisp code that has been developed to serve as the im-
plementation of FKRL impressions. 

From a theoretical point of view this approach is hardly satis-
fying, since it just causes the problem to recur at a lower level—
raising questions about how to describe the implementing ma-
chine. In practice, however, it is widely accepted because it is of-
ten possible either (i) to refer either to a familiar underlying ma-
chine,27 or (ii) to model the input/output behaviour of the result-

                                                                                                                                                  
circumstances. These facts have led some writers, such as Stich (1985) to 
conclude that folk psychology will never be scientifically reconstructable, 
but in my view this seems to be an unwarranted pessimism; the problem, 
rather, is to see how folk psychology compensates for the external circum-
stantial dependence. 

27As usual, and as the example about Lisp code suggests, practice is in fact 
one level more complex than this analysis suggests. One gives the opera-

 
 

Figure 10: The Implementation Relation 
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ing machine in terms of ordinary mathematical functions. The re-
lation between traditional denotational and operational semantics 
of programming languages, therefore, is primarily one of abstrac-
tion: by using coarse-grained functions as classificatory devices, 
the so-called “denotational” account gets at less detail than does 
the operational account. But the fact that they are theoretically 
distinct ways of getting at the same phenomenon is betrayed by 
the fact that it is standard practice to prove the two types of account 
equivalent. In particular, they are two different theoretical ap-
proaches to analysing the nature of the computational process itself; 
neither takes up the question to which we have been addressed: 
not of analysing the computational process qua process, as it 
were, but of analysing that process’s semantic import!28 

For our purposes, the importance of this third approach lies in 
its introduction of implementation as yet another intentional rela-
tion for semantical analysis to contend with. As with representation 

                                                                                                                                                  
tional semantics of a programming language L, viewed specificationally, by 
translating expressions types of L into complex expressions types of pro-
grams, written in an implementing language L' that implements L. The 
language-process relation for L'  is what is usually assumed. 

28There was some misunderstanding, when 3-Lisp was introduced (Smith 
(1982, 1984)) about the two semantical factors in terms of which it was 
analysed and designed (‘f’ and ‘c’>, they were called, but they corresponded 
directly to first and second factors in the framework being presented 
here). Unfamiliar with the two-factor framework, many computer scien-
tists assumed they were merely new names for operational and denota-
tional accounts, respectively. This was false, but in retrospect the confu-
sion can be attributed to three things: (i) the fact that 3-Lisp was designed 
on an “ingredient” view of programs, whereas, as described in the text, 
programming language analysis is typically carried on within the specifica-
tional tradition; (ii) 3-Lisp’s represented “world” was constrained to being 
one of pure mathematical abstractions and internal structures (since it was 
presented as a computational model of introspection), so that the domain 
that 3-Lisp impressions represented was the same one that would nor-
mally be used for both operational and denotational semantics—i.e., the 
domain of impressions and of the obvious mathematical models of them; 
and (iii) because of this restricted domain, the interpretations of 3-Lisp 
impressions were not dependent on external circumstances, so that the 
clear difference between model and interpretation, noted at the end of sec-
tion 5, did not apply. 

These three reasons conspired together; it has only been in the last few 
years that the various intricacies of their relationship have been clarified. 
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and belief, implementation is a directed, asymmetric, intentional 
notion: to say of X that it is an implementation is to imply the ex-
istence of a Y such that X is an implementation of Y. Further-
more, the implementation boundary is opaque to other semanti-
cal relations—i.e., it cannot be viewed as invisible modelling, or 
easily composed. For example, if we implement FKRL impressions 
in Prolog, and if the representational import of Prolog impres-
sions can truthfully be given as standard first order model-
theoretic semantics,29 then it would not follow that the represen-
tational import of FKRL was the representational import of 
Prolog. At best the interpretation of Prolog impressions—the 
elements of Prolog’s semantic domain—would be FKRL impres-
sions themselves. 

It is almost time to summarise the various distinctions we have 
made, and assemble a coherent overall picture. Before doing that, 
however, we must tie up two loose ends. 

First, in the previous section we distinguished the representa-
tional content of impressions from the entities that theorists use 
to classify them indirectly, identifying a modelling relation be-
tween the two. But we have not yet taken this observation to its 
obvious conclusion: modelling, like representation, specification, 
knowledge, implementation, etc., is itself a semantic, intentional, 
notion. Like many other things we have seen, a model is not a 

                                                             
29I doubt this, for reasons that can easily be explained using terminology 
we have already introduced. As classically understood, standard first order 
logic is both declarative and syntactic, in the sense of section 2. Real-life 
Prolog programs, however, violate the assumed independence of factors: 
their role affects their import. Lacking techniques for spelling this out (ie., 
techniques for providing explicit two-factor analyses), most computer sci-
entists who give semantics for Prolog programs in fact provide model-
theoretic analyses of functional role, using term models and such, in the 
sense explained in section 5. Logicians, expecting analyses of representa-
tional import, quite reasonably find these reconstructions odd. Further-
more, to the extent that it is functional role, not representational import, 
that is retained, Prolog’s claim to clear semantics is thereby undermined. 

Note that a model-theoretic analysis of functional role (first factor), on 
the ingredient view of programs, is liable at least partially to coincide with 
a mathematical model of representational content (second factor) of the 
programs used (on the specificational model) to describe them. The sub-
ject matter is rife with such potential semantical confusions. 
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model all on its own; models are models of something. A balsa 
airplane, for example, might be a model of a real airplane no 
longer around, or of one being designed. Similarly, the sets of 
quadruples we have talked of are models of a Turing machine; the 
numbers 0 and 1 are often used as models of Truth and Falsity. 
Thus we need, ideally, to give a semantical analysis of the model-
ling relation, if techniques of modelling or indirect classification 
are ever used. I.e., in the terms of figure 9, we need semantic 
analyses of the C1 ⇒ I (or C2 ⇒ I) and Mw ⇒ W relations, as 
well as of E ⇒ I and I ⇒ W. 

Second, all the computational processes we have looked at so 
far are limited in the following obvious way: we have imagined 

them acting in the world 
(driving around, computing 
factorial), but we have not 
provided them with any 
communicative abilities. 
They cannot talk. In order 
to be realistic, therefore, we 
should complicate our pic-
tures yet one more time, as 
indicated in figure 11. In 
order to contain the com-
plexity, I have omitted all 
models and indirect classi-
fication from the diagram, 
showing only the genuine 
intentional relations that 
actually obtain in a given 
case. I will use the general 

term notation for the relation between expressions and impres-
sions that they give rise to or express, and the more specific in-
ternalisation and externalisation to get at each direction of in-
formation flow. The analog, in the human case, is the relation be-
tween the sentences we speak and hear, and the impressions in 
our minds (mentalese or whatever) to which they correspond. To 
the extent that impressions are viewed linguistically, internalisa-
tion might be analysed as a species of translation, but it is impor-
tant not to bias terminology in advance. 

 
 

Figure 11: Programs that specify communicating agents 
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Issues of notation tie back to an issue we left unresolved above. 
Very often, the languages computer systems “speak”—query lan-
guages for data bases, editing commands for word processors, 
manipulation protocols for spread sheets—are visibly distinct 
from the programming languages used to create them. Many AI 
programming languages, however, such as Lisp, Smalltalk, Logo, 
and recent versions of Prolog, are primarily interactive, suggesting 
the third model of programming suggested in figure 6 (c), above. 
Furthermore, the increasing incidence of “user-friendly” comput-
ers suggests that this interactive model of computer language will 
only spread In addition, since it is the correct model for natural 
language, people will be biased towards an interactive stance to 
the extent that people understand computer languages by analogy 
to their native linguistic skills. Thus we have a genuinely triple 
ambiguity in the term ‘program,’ which only raises the chances of 
semantic confusion. Ironically, confusion between the specifica-
tional and interactive models of programming, coupled with the 
fact that the program⇒process relation is mediated by what is 
called an interpreter, has lead many computationalists to think of 
internalisation as the fundamental semantic relation—thereby 
embracing exactly the view that Lewis deridingly calls “markerese 
semantics.”30 On the other hand, AI practice suggests what Lewis’s 
analysis does not: that internalisation is a substantial intentional 
relation in its own right. If nothing else, more adequate vocabu-
lary might facilitate better interdisciplinary communication. 

We are ready, then, to summarise four major themes in the inves-
tigation so far. 

1. We distinguished functional role and representational im-
port, and set ourselves the long-range goal of an integrated 
account of full significance, consisting of partially inde-
pendent but coordinated accounts of each semantical fac-
tor. 

2. We claimed that since we do not yet have adequate vo-
cabulary for talking directly about impressions, we typi-
cally avail ourselves of any one of three alternative ap-

                                                             
30Lewis (1972). 
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proaches: 
a. Using metaphorical terminology, such as the language of 

linguistic expressions; 
b. Using indirect classification, typically in terms of abstract 

mathematical structures; and 
c. Abstracting over implementations, which makes the prob-

lem recur. 

Differences among these alternatives, and differences in 
the fields in which they are popular, have obscured our 
ability to agree on underlying impression structure itself. 

3. Setting aside considerations of functional role, we identi-
fied the following important relations, each at least a can-
didate for its own semantic analysis: 
a. The specification relation, between a program and the 

process or impressions it engenders; 
b. Internalisation and externalisation relations,xx between 

expressions used by a system to communicate with its 
users, and the impressions they give rise to or express; 

c. The implementation relation, between impressions at 
one level of description, and other lower-level impres-
sions in terms of which they are implemented; and 

d. The primary representation relation, between impres-
sions (process) and the states of affairs in the world 
with which the agent is concerned. 

All four of these can be called genuine, in the sense that 
they are all a necessary part of the life of the representa-
tional agent in question—they have not been posited solely 
for purposes of theoretical analysis. Other relations be-
tween the same structures could be added, of which the 
most important is probably the relation between commu-
nicative expressions (language) and the world—the sub-
ject, in the human case, of natural language semantics. I 

                                                             
×«Check: I think I am confusing about the words ‘notation,’ ‘externalisa-
tion,’ ‘internalisation,’ etc. — including in the diagrams. Make it all consis-
tent.»  
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will adopt these four relations, however, as primary, be-
cause they are all candidates for full two-factor accounts. 
Put another way, they are all of a causal nature, in a way 
that the direct relation between language and the world is 
not. Note also that impressions participate in all four rela-
tions (which puts extra pressure on our ability to describe 
them in their own right), being the semantic domain in the 
first three, the so-called “syntactic” domain only in the last. 

4. In addition to identifying these genuine semantical rela-
tions, we uncovered numerous relations of modelling or in-
direct classification, cross-cutting all of the above three. To 
distinguish them from the genuine relations, I will call 
them theoretic, since they are introduced for the purposes 
of us, qua theorists, rather than for the agent itself. None-
theless, if we as theorists employ them, they too must be 
semantically understood. If we were to use model-
theoretic techniques to understand the four genuine rela-
tions listed above, we would bring to eight the total num-
ber of interacting correspondence relations. The complex-
ity can get a little daunting. It is no wonder that it is some-
times hard to tell, when presented with a “semantic analy-
sis,” just what it means. 

All these results contribute to the general series of challenges I am 
mounting against straightforward model-theoretic semantics. 

1. The first specific challenge was implicit in our two-factor 
analysis itself, and its concomitant rejection of the inde-
pendence of functional role and representational content. 

2. The second arose when we removed the constriction that 
impressions be syntactic or linguistic in nature, and em-
braced instead a much wider range of representational pos-
sibilities. 

3. The third challenge stems from the multitude of genuine 
intentional relations just cited—specification, internalisa-
tion, implementation, representation, etc.—more than one of 
which will require its own two-factor analysis. 

4. The fourth derives from the fact that standard theoretical 
techniques of indirect classification and modelling intro-
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duce, at the level of theory, a whole spectrum of additional 
correspondence relations, at least distractingly similar to 
semantic relations, if not semantic relations in their own 
right. If we do not understand them they will pollute our 
attempts to clarify the semantic relations we are primarily 
interested in. 

Nor are we done raising challenges. In the next section I will turn 
to a fifth, coming to a sixth at the end of the paper. 

 7 The Correspondence Continuum 
I said in section 3 that the model-theoretic tradition characteristi-
cally assumes a non-transitive denotation relation, motivated by 
clear linguistic cases: an English description of a French descrip-
tion of dessert, for example—such as “the four words neige, la, a, 
and oeuf, in reverse order”—is a description of language, not a de-
scription of something to eat. At the same time, we saw tradi-
tional analyses freely compose modelling relations, as for example 
when a number encoding a description of a Turing machine is 
identified with the Turing machine in question. This free compo-
sition goes hand in hand with modeling’s traditional invisibility. 

Unfortunately, however, these two cases—non-transitive de-
notation, and transitive modelling—do not cover the whole spec-
trum of semantic relations. In the general case, intentional rela-
tions combine in much more complex ways. We will look at three 
examples. 

First, suppose I remark on a photograph you have taken of one 
of my favourite sailing ships, and you then present me with a copy 
made by photographing the original. It would be pedantic for me 
to maintain, on grounds of use/mention hygiene, that the copy is 
not a photo of the ship, but rather a photo of a photo of a ship. 
For most purposes, the relation between the copy and the original 
print is sufficiently close that I can harmlessly compose the two 
correspondence relations (copy-original and original-ship), yield-
ing a result (copy-ship) essentially identical to the second. But not 
for all purposes: if, on close inspection, I claim that there is a tear 
in the ship’s sails, you might appropriately reply that no, the tear, 
rather, is in the original photograph that the copy was made 
from. Or I might be interested in the quality of your photo-
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graphic technique, and use the copy as a representation of your 
original work. The appropriateness of the ability to compose, or 
to “look through” a copy to what is represented, can depend on 
the purpose to which a semantic relation is put. 

Second, imagine connecting an FKRL system to a visual recogni-
tion system, consisting of a TV 
camera, special-purpose line-
finding hardware, a figure-
recognition module, etc. In 
such a case one might be 
tempted to say that the con-
figuration of pulses on the 
cameras represented in the 
intensity of incoming light, 
and that the resulting FKRL 
impression represented the 
object under view. Yet al-
though the former objects play 
a causal role in supporting the 
latter, it is not clear how the 
two representation relations fit 
together—the second seems to 
“leap completely over” the first. 
In spite of systematic corre-

spondences among the constituent structures, the representation 
relations seem curiously independent. It is as if the structural cor-
respondences compose, but the representation relations do not.xx 

Third, in designing 3-Lisp, I distinguished impressions called 
numerals from canonical impressions denoting them (identified as 
a species of handles), in spite of the fact that the denotation rela-
tion was an exact isomorphism. I did so because, trained in avoid-
ing use/mention confusions, and viewing impressions as analo-
gous to language, I thought representation relations could not 
compose. Various colleagues suggested that this strictness bor-
dered on pedantry, and recommended that I simply identify the 
two impressions. Others even suggested that I identify both of 
them with the number designated, since as far as they could see 

                                                             
xx«That paragraph may need substantial help … » 

 
 

Figure 12: 3-Lisp’s plethora of representation relations 
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the impression-number relation was also one of isomorphism.31 
But my allegiance to semantic strictness was strong: as shown in 
figure 12, I refused to say that the two-character expression writ-
ten ‘23’ (without the quote marks) represented the number 
twenty-three; rather, when speaking carefully, I said that it no-
tated an impression that designated that number. Similarly, I was 
forced to say that the three-character expression ‘ '23 ‘ (i.e., a sin-
gle quote mark prefacing the two-digit numeral) notated a handle 
impression that designated a numeral impression that designated 
a number. By the same token, the five-character expression 
‘ “'23” ’ notated a handle that designated an expression that no-
tated the numeral impression that designated the number. And 

so on. 
While 3-Lisp was cer-

tainly semantically clean, in 
retrospect some of its rigid-
ity seems gratuitous, even if 
I remain opposed to any 
identification of strings with 
impressions, or of impres-
sions with numbers. It is 
overwhelmingly convenient 
to be able to point to a fig-
ure on a computer screen 
and say, simply, that it 
represents a number. More 
seriously, it is not obvious 
that one might not even be 
correct in doing so. And yet 
at the same time there are 
occasions when it is crucial 
to distinguish among ex-
pressions, impressions, and 
numbers. 

All of these examples il-
lustrate my fifth challenge to traditional model theory: neither 

                                                             
31In point of fact only one factor of the full significance was an isomor-
phism. 

 
 

Figure 13: Semantic Soup: The Correspondence Continuum 
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strict non-transitivity, nor indiscriminate identification, is always ap-
propriate.x In each cited case, as so often happens, theoretical 
technique is not up to the demands of practice. The true situation 
is more accurately pictured in figure 13. The idea is this: a given 
intentional structure—language, process, impression, model—is 
set in correspondence with one or more other structures, each of 
which is in turn set in correspondence with still others, at some 
point reaching (we hope) the states of affairs in the world that the 
original structures were genuinely about. 

It is this structure that I call the correspondence contin-
uum—a “semantic soup” in which to locate transitive and non-
transitive linguistic relations, relations of modelling and encoding, 
implementation and realisation, the rest. Several points are im-
portant. 

First, I will not presume, in the general case, anything about 
composition, relative structure, circumstantial dependence, or any 
other traditional issue: such questions will have to be answered 
individually, based on particular facts about specific cases. Some-
times, and for some purposes, these representation relations will 
happily compose; other times not. Sometimes some properties 
(such as ambiguity!) will be preserved even across a whole string 
of such correspondence relations, even though other properties 
(such as one-to-one correspondence of objects) are lost. In the 
next section I will begin to sketch out an analysis of correspon-
dence relations that will show how this might go. 

Second, one should not think of this as necessarily a single di-
mension; the diagram is meant to be able to accommodate the 
multiple dimensions of representation (notation, representation, 
specification, etc.). As we have just seen in 3-Lisp’s case, and as 
we saw so often in the last section, part of the task, in analysing 
the semantics of computational processes, is to tie together differ-
ent correspondence relations that are neither totally independent, 
nor arranged in a simple linear order. 

The general picture given in figure 13 is intended as a replace-

                                                             
x«Say, somewhere—perhaps here, or anyway point to it here, even if the 
main point is made elsewhere—that these are the sorts of thought that 
have led to the design of the fan calculus.» 
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ment for the simplistic diagram of figure 2, even for the most ba-
sic intentional relations. In the remainder of the paper I will try to 
address a few of the numerous questions it raises. 

Here is one, for starters. Which, if any, of these correspon-
dence relations should be counted as genuinely semantic, inten-
tional, representational? Surely not all. For example, to take an-
other visual example, at the very moment I write this there is a se-
ries of correspondences of some sort between activity in my visual 
cortex, the signal on my optic nerve, the pattern of intensity on 
my retina, the structure of the light waves entering my eye, the 
surface shape on which the sunlight falls, and the cat sitting near 
me on the window-seat. And yet it is the cat that I see, not any of 
these intermediary structures. A causal analysis of perception, 
that is, would require a cascade of correspondences, but in this 
case only the full composition, but not any of the ingredients, would 
count as a genuine representation (though it does not follow that 
these intervening structures are thereby any less important). 
Similarly, even if I indirectly classify impressions with functions 
from possible worlds to states of affairs, and then map those 
mathematical structures onto genuine situations in the world, the 
agent itself will attend only to the situations in question, entirely 
unaffected my abstract classifying structures. 

Both of these cases, and many of the phenomena cited in the 
previous section, suggest that the number of important corre-
spondence relations greatly outstrips the number that are of a 
genuinely semantic or intentional nature. Such arguments lead to 
a simple and obvious conclusion: critical correspondence of non-
identicals is a far more general phenomenon than representation or 
interpretation.32 First, it permeates theory, in terms of indirect 
classification and modelling. Second, it permeates practice, as 
manifested in such notions as implementation, encoding, realisa-
tion, presentation, specification, internalisation, and externalisa-
tion, as well in as our initial concerns of representation and 
knowledge. Third, although not all these correspondence rela-
tions should be counted as fully intentional, there is no chance 

                                                             
32This implies, of course, that there must be much more to representation 
than correspondence. Hence footnote 1 «check»; correspondence on its 
own requires neither disconnection nor registration. 
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that we will understand semantics unless we are first clear on how 
they all fit together. So my recommendation is that we peel corre-
spondence away from more difficult semantic issues, and make it 
a subject matter in its own right.33 

Let us look, then, at what a theory of correspondence might be 
like, before returning to semantics and to knowledge representa-
tion. 

 8 A Sketch of a Theory of Correspondence 
In broad outline, I will adopt a 
quite simple approach to the 
structure of correspondence. 
First, I will identify two do-
mains, presumed to consist of a 
pre-determined collection of 
situations, objects, properties, 
and relations. Call them domain 
and co-domain (though this is 

not category theory), and say that an element of the domain cor-

                                                             
33Strictly speaking I do not believe this, for two reasons. First, my meta-
physical predilection is to attribute the notions of object, property, and 
relation to a collaborative interaction between mind and world, so that the 
world alone need not be held responsible for objects’ boundaries and kinds 
(naive realism), nor need they be viewed as pure constructs of cognition 
(variants of solipsism or idealism). Second, I am at least prepared seriously 
to entertain the hypothesis that minds, fundamentally, are embodied rep-
resentational processes. In conjunction these two views raise the following 
“chicken and egg” problem: if minds are required in order to know how 
the world is structured, and if minds are representational, then representa-
tion must seemingly be studied before correspondence, in order to estab-
lish the categories in terms of which the correspondences will be articu-
lated. On the other hand, for reasons spelled out in the text, I think the 
chances of getting representation right without a prior theory of corre-
spondence are rather limited. 

These considerations interact with another distinction. Which person 
is being held responsible for the categorisation of the domains in question: 
the agent under study, or the theorist? I assess the interaction among 
these issues in Smith [[forthcoming (b)]]; the net result is simply the rather 
predictable conclusion that the two notions (correspondence and repre-
sentation) must be viewed as something of an indissoluble pair. This con-
clusion, however, does not in any way challenge the view being expressed 
here: that they are not the same. 

 
 

Figure 14: The General Structure of Correspondence 
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responds to an element of the co-domain. Furthermore, without 
introducing any assumption of symmetry, I will speak most gen-
erally of correspondence relations, rather than functions, and 
make room for circumstantial parameterization in the usual way. 
The situation is pictured in figure 14. (The resemblance to figures 
2 and 3 is obvious; we can now see those figures were right for 
correspondence, but wrong—because too simple—for the com-
plex general story about semantics). 

Given these two domains, specific correspondence relations are 
defined between states of affairs in each domain—not between 
the domains themselves, nor between objects, properties, or situa-
tions on their own, but between things being a certain way in one 
domain, and things being a certain way in the other. Thus, the 
light’s being red corresponds (or so we hope) to cars’ stopping. 
Similarly, we might say that the sequential concatenation of the 
numeral ‘2’, the sign ‘+’, and the numeral ‘3’ corresponds to the 
addition function’s being applied to the numbers two and three, 
which in turn corresponds to the number five.34 Even in cases 
where there is a simple correspondence of objects, as when the 
numeral ‘3’ stands for the number three, it is really the object’s be-
ing that and not some other numeral that corresponds to the num-
ber’s being that and not some other number. The numeral may have 
all sorts of other properties—such as consisting of one curved and 
one straight line—which do not correspond to anything in the 
co-domain at all. 

There are several reasons to require an explicit specification of 
domains, and to lay responsibility for the correspondence relation 
on states of affairs (rather than on objects per se). In general, ob-
jects exemplify infinitely many properties, and participate in infi-
nitely many relations—in this sense the world is overwhelmingly 
rich. Even questions of object identity do not escape this richness, 
as precise attempts to define numerals quickly reveal (does the 
expression “124+124” contain one, two, three, or six numerals?). 
It is therefore necessary, in characterising a particular correspon-
dence relation, to identify in advance the particular set of objects, 

                                                             
34Note that this phrasing suggests iterated correspondence: expressions to 
function applications, and from there to values. The connection between 
iterated correspondence and so-called “intensional” analyses of functions 
and relations is discussed at the end of this section. 
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properties, and relations in each domain that are constitutive of 
the significant states of affairs—what I will call a prior registra-
tion35 of the domains—and then to identify, with reference to 
that registration, how states of affairs in the domain correspond 
to states of affairs in the co-domain. This is partly because states 
of affairs, at least as I am using the notion,36 are individuated by 
the relations and properties they instantiate (a number’s being the 
sum of two plus two, and the same number’s being the positive 
square root of sixteen, are different states of affairs, on this view). 
But it also seems true to common sense, as the red light example 
suggests.37 

(As well as adopting these two theoretical assumptions, there 
is another which I will explicitly set aside. Many writers, includ-
ing theorists as far back as Peirce, have expressed the deep intui-
tion that representation is a three-place, not a two-place, relation, 
involving not only representation and represented, but also inter-
preter, observer, or, in Peirce’s case, interpretant. Thus a text, and 
probably even a simple map, is taken not to be a representation 
on its own, but to represent only for some other agent or purpose 
(or both). I sympathise in the representational case, but we are 
talking here about a simpler notion of correspondence, where the 
question is much less clear. For example, one could view a binary 
correspondence relation between X and Y as a relation that an in-
terpreter posits or reacts to, in taking X to represent Y. Thus 
your map may not represent New York unless you or some other 
person takes it to do so, but that act of taking it to represent New 
York involves attributing or establishing a binary correspondence 
relation of a certain type—of a type, furthermore, that might be 
characterised in terms of the theory I am proposing. In addition, 
given my general recognition of the importance of circumstantial 

                                                             
35«Point towards O3 and registration; is this the first place I use the 
term?» 

36My intention is to employ the term in a way compatible with its technical 
use in Situation Theory [Barwise, 1986a], although nothing in the text 
requires that particular analysis. 

37The theoretical stance of taking registration as prior to correspondence, 
and correspondence as at least partially independent from representation, 
is not one I am ultimately satisfied with; see footnote 18 «check», and 
Smith [[forthcoming (b)]]. It seems well motivated, though, at least as a 
way of getting to the next stage in semantical clarity. 
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dependence, it is not obvious that the role of interpreter has been 
excluded. But however this goes—and even if one were to argue 
convincingly that even correspondence should be analysed as tri-
partite—my present purpose is to define a project, not to report 
on its conclusion. Such questions should ultimately be answered 
by theory, not prejudged. And I would hazard that the distinc-
tions to be made, here, in terms of correspondence treated as bi-
nary would carry over, though perhaps be thereby complicated, in 
a three-element version.)38 

I will call the relevant states of affairs in the domain and co-
domain the source and target, respectively. So the source ex-
pression “72°10’ E, 44°20’ N” might correspond to a bucolic target in 
northeast Vermont. In general, correspondence relations will be 
defined in terms of source and target types, in such a way that in-
stances of the source type would correspond to instances of the 
target type in some determinate fashion. For example, the map-
ping from sets of quadruples to Turing machines would be estab-
lished so that a particular quadruple’s having certain elements 
would correspond to the controller of the corresponding Turing 
machine’s satisfying a particular transition function (though what 
Turing machine that transition function was a transition function 
of might be assumed, for the whole set of quadruples, and thus 
not explicated “corresponded to” by anything). This approach 
makes sense of the intuition about modelling suggested in section 
5: that what is specific (or particular) about one state of affairs—
the source—determines what is specific (or particular) about an-
other—the target. 

In setting out an initial analysis of this sort,39 I call a particular 
correspondence relation iconic if each object, property, and rela-
tion in the source corresponds, respectively, to some object, prop-
erty, and relation in the target. I.e., the abstract type (object, 

                                                             
38In cases where a third agent—an interpreter—is present, a possible solu-
tion is presented to the problems raised in footnotes 18 «check» and 21 
«check»: the agent can’ register both representation and represented. But 
there are two problems with this. First, of course, we have to ask how 
agents register, which brings the problem back to roost. Second, it is a 
strong and possibly false claim that interpreters register signs and language 
they use (as opposed to mention). 

39«See Smith (forthcoming(c))—check!» 
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property, or relation) of the source is the same as the abstract 
type of its target. A particularly important case of iconicity occurs 
when a source object, property, or relation corresponds to itself in 
the target: I will say in such a case that the target structure is ab-
sorbed in the source. For example, left-to-right adjacency is ab-
sorbed in the grammar rule “EXP ⇒ OP(EXP,EXP)” for a simple term 
language for arithmetic. Similarly, to suppose that the necessity of 
set membership, in a model-theoretic analysis of modality, mod-
els necessity in the world is to assume, counter-factually, that ne-
cessity is absorbed. In contrast, a target property or relation is 
said to be reified if it is corresponded to by an object in the 
source (reification is not defined on objects). Thus for example 
the syntax of predicate calculus reifies properties, because it rep-
resents them with (instances of) predicate letters, which at least 
in standard syntactical analyses are registered as objects. 

A correspondence relation is called polar when an existentially 
positive source (something’s being the case) corresponds to an ex-
istentially negative target (something’s not being the case), or vice 
versa. Hotel lobbies provide an example, where a key’s being pre-
sent in the mail slot at the registration desk indicates the fact that 
the client is gone. A relation is called typological if it can be de-
fined without reference to distinguished individual objects in the 
domain or co-domain. Thus the standard Cartesian relation of 
ordered pairs of real numbers to points on a plane fails to be ty-
pological on four counts: origin, orientation of x-axis, unit length, 
and something to distinguish left and right orientation, such as a 
distinguished normal to the plane. Finally, when either or both 
domains are analysed mereologically—in terms of notions of part 
and whole—either or both ends of the correspondence can be de-
fined compositionally, in the sense that what corresponds to (or 
is corresponded to by) a whole is systematically constituted out of 
what corresponds to (or, again, is corresponded to by) its parts. If 
the part/whole relation is itself absorbed, a very strong version of 
compositional correspondence obtains, where parts of a source 
correspond to parts of that source’s target. 

Many other such relations can be defined, ranging from this 
simple sort up through more complex cases having to do with 
sentences, quantification, use, circumstantial dependence, etc. 
The intent here is not solely to develop a theoretical typology 



476 Indiscrete Affairs · I 

(though that is often useful, especially early in theoretical devel-
opment), but eventually to identify an algebraic basis of corre-
spondence in terms of which to analyse arbitrary relations. Given 
such an algebra, for example, and an analysis of two relations C1 
and C2 in terms of the orthogonal set of basic features, it should 
be possible to predict the exact structure of the composed relation 
C1 º C2• Thus we would expect the composition of two iconic re-
lations to be iconic, iconic relations to be both left and right iden-
tities (with respect to this algebra), and so on and so forth. Note, 
however, that the appropriateness conditions for composition are 
very strong: C1 º C2 makes sense only if the targets of C1 are of 
exactly the same type as the sources of C2. Traditional isomor-
phism will not do, since isomorphism is just another correspon-
dence relation C3; the combination would have to be analysed as 
C1 º C3 º C2• 

As the isomorphism example suggests, a correspondence the-
ory of this sort would provide theorists (I primarily have semanti-
cists and computer scientists in mind, but of course the account 
would be general) with an extraordinarily fine-grained pair of 
glasses with which to analyse arbitrary structured relationship be-
tween domains. Every conceivable coding, representation, model-
ling, implementation, and isomorphism relation would be made 
blatantly visible. Whereas category theory can be viewed as highly 
abstract, in other words, correspondence theory would be exactly 
the opposite: unremittingly concrete.x This does not mean that ab-
stract objects could not be studied within such a framework, of 
course; only that no further abstraction by the theory would be 
permitted unless explicitly accounted for (beyond that provided 
by the initial registration of the domains). Thus, whereas a 
model-theoretic analysis of the interpretation of the English word 
‘cat’ might map it onto a mathematical set, a correspondence-
theory based semantic account could not do so (or if it did, it 
would be wrong). There is no problem in providing a correspon-
dence-theoretic analysis of the relation between the word ‘cat’ and 
the set-theoretic structure used by model theory to classify it, but 
that, as the correspondence theory would make explicit, is quite a 

                                                             
x«Say more about this divergence with category theory—and also point 
towards the criterion of concreteness in O3.» 
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different thing. 
It is a consequence of this fine granularity that many standard 

mathematical techniques, such as that of identifying structures 
“up to isomorphism,” would be inapplicable. But this result is to 
be expected: since the whole point is to avoid gratuitous model-
ling, and to explain arbitrarily fine-grained distinctions, the the-
ory cannot indulge in any loss of detail. 

As well as focusing on the detailed structure of specific corre-
spondences between states of affairs, an adequate theory would 
have to address general questions about particular relations, such 
as whether every source in the domain corresponds to exactly one 
target, whether every target has a source corresponding to it, etc. 
It would be natural, that is, to define correspondence versions of 
such standard notions of totality, completeness, and ambiguity. 
But this starts to feel a little odd, because of its familiarity. Are we 
just reinventing traditional mathematical accounts of functions 
and relations? How do our categories of correspondence relate to 
such standard notions as isomorphism, homomorphism, injec-
tion? 

The answer appears to be the following. It has often been 
pointed out that standard so-called extensional analyses of func-
tions and relations, in terms of piece-wise pairings, ignore the 
structure of the connection between the domain and co-domain, 
even though that structure is often important in practice—such 
as when the function is to be computed, or the relation recognised, 
or when the connection is causal, defined in terms of the constitu-
ent properties. Extensional mathematical analyses abstract away 
from such concerns; when we describe functions in natural or 
formal languages, however, or embody them in machines, we 
typically betray a great deal of additional information. Thus the 
standard term designating the factorial function 

if n =0 then 1 else n–factorial(n–l) 

implicitly suggests a way of computing factorial, even though that 
information is lost in the standard extensional analysis, which 
would merely map the foregoing expression onto the infinite set 
of ordered pairs {<0,1>, <1,1>, <2,2>, <3,6>, …}. 

In the general case the information conveyed by a functional 
description can be sorted into three kinds, as suggested in figure 
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15: information about (i) the structure of the domain, (ii) the 
structure of the co-domain, and (iii) the structure of the relation 
between the two (the first two clearly merge when, as is often the 
case for simple functions, the domain and co-domain are the 
same). 

Recognising the importance of this other information, various 
people have attempted to develop what are called intensional 
analyses of functions, relations, etc. The idea, or so it is claimed, 
is to make this extra information explicit. But from our point of 
view there is something curious about the way in which this is 
traditionally done. Because these efforts have arisen in the context 
of computation, recursive function theory, and a general concern 

with procedures, the ap-
proach is in fact not one of 
making these three kinds of 
information explicit, but 
rather of making explicit the 
structure of an algorithm for 
computing the function (or 
relation). Thus Moschovakis 
(1984) has proposed treating 

an algorithm as a first class mathematical entity in its own right, 
and a variety of writers have at least argued for dealing directly 
with procedures, such as those recommending procedural treat-
ments of semantics.40 

There is nothing wrong with explicating the notion of an algo-
rithm, of course. But there is no reason to suppose that, even if 
successful, this project will make explicit the three kinds of in-
formation cited above. For example, no matter how explicit I am 
in giving you directions for driving across Boston, the structure of 
the city will at best be borne implicitly in the resulting descrip-
tions of routes. Imagine trying to reconstruct a Boston city map 
by sorting through every route traveled by a long-time cab driver, 
gradually culling information about the town from such se-
quences as “Drive two blocks up Trapelo Rd, turn right on 
Grove,” or heroic attempts explain how to get from Jamaica Plain 
to Logan airport without using a tunnel. Making the algorithm 

                                                             
40E.g., see Woods (1981). 

 
Figure 15: The three structures of correspondence 
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specific will not even make explicit the structure of the relation it 
computes, let alone the structure of the related domains. 

In contrast, a correspondence theory can be viewed as almost a 
dual project: it would provide an informationally rich account of 
the structure of the relation between structured domains, though 
it would remain silent (unless that project were explicitly taken 
up) on any question of computing this relation. It would get at the 
three relevant structures (of domain, co-domain, and correspon-
dence) directly, rather than taking them to be indirectly mani-
fested by specific ways of going from a given domain element to 
its corresponding co-domain element. 

As for which project has a better claim on being an “inten-
sional” analysis of functions and relations, I cannot say—nor, pre-
sumably, does it matter. For one thing, the very theory of corre-
spondence I am proposing will among other things obviate the 
worth of such terms as “intensional” and “extensional.” More im-
portant is to recognise the essential difference, and compatibility, 

between the two ac-
counts. As suggested in 
figure 16, the distinction 
between fine-grained (“in-
tensional”) and coarse-
grained (“extensional”, or 
piece-wise) analyses is 
orthogonal to the ques-
tion of effectiveness or 
computation. We can 
thus classify the standard 

set-theoretic model of functions and relations as coarse-grained 
and non-effective, recursive theory as coarse-grained but effective, 
and the theory of algorithms as fine-grained and effective. A theory 
of correspondence then occupies its rightful place as the fourth 
possibility: a fine-grained but non-effective theory of relationship. 

The location of a correspondence theory in this diagram is well 
suited to the semantic purposes for which we have needed it. One 
of the most fundamental facts about most genuine semantic rela-
tions, such as reference, is that they are not computed, in any co-
herent sense of that word. When I say “Bach died in 1750,” and 
thereby refer to a long-dead composer, nothing happens in order 

 
 

Figure 16: Analyses of Relationship 
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to make the reference work; it just is. It is thus entirely to be ex-
pected that semantical examples should push us towards a fine-
grained but non-computational analysis of structured correspon-
dence. 

 9 Semantics Revisited 
The availability of a correspondence theory would change seman-
tical analysis in at least these ways: 

1. As promised, the following traditional notions would be 
replaced: (i) a strict hierarchy of (meta-)languages, (ii) in-
visible but promiscuous modelling, and (iii)) the notion of 
an absolute use/mention distinction. 

2. It would provide the theorist with sufficient equipment to 
analyse such otherwise unanalysed notions as encoding, and 
to discern and thereby avoid problems of gratuitous arti-
facts.x 

3. It should provide, for the first time, adequate vocabulary in 
terms of which to analyse and assess such non-linguistic 
representational structures as images and analogue repre-
sentations. 

4. It would enables us to explain some lurking problems and 
unexplained worries that have plagued traditional ap-
proaches. 

I will look at each of these briefly. 
First, dismantling an absolute use/mention distinction does 

not mean licensing automatic composition of all correspondence 
relations. On the contrary, the intent of the algebraic basis of cor-
respondence sketched in section 8 is to enable us to see what sorts 
of properties will propagate through iterated correspondences, 
and which ones will not. The popular closed-world assumption in 
AI, for example, is in essence an assumption that object identity is 
absorbed; in any given application it should be straightforward to 
verify whether this property is preserved across one or more cor-
respondence relations in question. Similarly, the assumption that 

                                                             
x«I should include an example of what I mean by ‘gratuitous artefacts’—
presumably non-significant properties of models?» 
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words have referents could be justified, even by someone commit-
ted to the logical priority of mental impressions, just in case the 
internalisation and representation relations could be unproblem-
atically combined. Even in written natural language, use vs. men-
tion apparently shades off into matters of degree; thus we have (in 
something like increasing “semantic withdrawal”):41,42,xx 

1. Margaritaville is lively; 
2. Margaritaville is so-called for dubious reasons; 
3. They call it Margaritaville; 
4. When I asked where they lived, they said “Margaritaville”; 
5. “Margaritaville” is a fictional name 
6. I am sorry to have to be the one to tell you, but “Marga-

rita- 
  ville” is hyphenated; 

7. “ ” is smudged. 

Particular analyses of use and mention would depend on the se-
mantic relations employed; once again letting go of the strict 
theoretic distinction paves the way for accommodating a wealth 
of familiar facts. 

As well as undermining use/mention distinctions, the corre-
spondence continuum challenges the clear difference between 
“syntactic” and “semantic” analyses of representational formal-
isms—an especially important consequence given the allegiance 
commanded by this historically entrenched distinction. On the 
face of it, it might seem that we are simply removing an important 
method of discriminating accounts, which would be a negative re-

                                                             
41Acceptance of the last two seems to vary, among people I have informally 
surveyed. 

42Introspection suggests that quotation marks are primarily, if not always, 
used to refer to linguistic types. As a possible counter-example, Geoff 
Nunberg has suggested: “ ‘Fiat lux’ started this whole mess’ “, but at best 
that refers to an utterance of the Latin sentence different from the (en-
closed) one used to refer to it. There does seem to be merit to the view 
that quoted expressions cannot be used to refer to their constituting in-
ternal tokens. 

xx«Point out that the referent of ‘Margaritaville’ differs in all of these 
cases—yet to come up with a semantic analysis that identifies, in advance, 
all of the Δ∆s that the full range of quotation requires would lead to unten-
able pedantry …»  



482 Indiscrete Affairs · I 

sult. The claim, though, is that no simple “syntactic”/”semantic” 
distinction gets at a natural joints in the underlying subject mat-
ter, no matter how profound the ultimate difference, as it were, 
between map and territory. 

For example, many writers have claimed to provide semantical 
analyses using models set-theoretically constructed out of basic 
syntactic elements such as sentences, ground terms, etc. (i.e., so-
called “term models”). A typical AI case is found in Moore and 
Hendrix’s proposal for a semantical model for belief;43 similarly, 
term models are often used in giving semantical analyses of logic-
based programming languages, such as in Goguen and Meseguer’s 
EQLOG.44 Although stamped with the official “semantics” insignia, 
they are often used as abstract models of (i.e., to classify) syntactic 
or computational properties, such as inter-reducibility of terms in 
a rewrite system (a-interconvertibility in the l-calculus, for exam-
ple), effective derivability, etc. 

My point is not to indict this practice, nor to dispute its theo-
retical importance. Rather, the point is this: if one is committed 
to a simple binary “syntactic”/”semantic” distinction, as on the 
traditional view, then such proposals would have to be counted as 
syntactic, and hence as false advertising—since for example the 
semantical interpretation of a formula such as DEAF(BEETHOVEN) 
would have only to do with syntax, nothing to do with the com-
poser himself. On the more complex view we are proposing, 
needless to say, room is provided for such analyses as these. 
Whether they are labeled ‘semantical’ becomes a substantial is-
sue—but the main point is that the theorist would need to make 
plain exactly what kinds of relations are being analysed, what  
kinds of facts or properties or states of affairs (e.g., in models) are 
being used to classify what others; what relations in the overall 
picture are  computational, representational, whatever. The cru-
cial points are just two: (i) the space of possibilities is not con-
stricted in advance, by the nature of the theoretical framework; 
and (ii) a substantial (and presumably intellectually hygienic) 
premium would be put on stringent honesty about what is being 
claimed to be what. 

                                                             
43Moore and Hendrix (1979). 
44Goguen and Meseguer’s (1984). 
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The second main consequence of the new approach arises from 
its fine-grainedness, which thereby facilitates direct views onto 
otherwise invisible relations. These last fall into two kinds: (i) 
subject-matter relations that have heretofore evaded satisfactory 
analysis, like encoding and implementation; and (ii) theoretic re-
lations like modelling, which have affected and sometimes dis-
tracted analysis. With respect to this fine-grainedness of ap-
proach, correspondence theory can be understood, in its relation 
to traditional semantics and model theory, as analogous to the re-
lation between situation theory45 and traditional set theory. In 
both cases, the classical system makes far fewer distinctions than 
at least some analyses demand. Thus situation theory, like other 
property theories, populates the world with properties, relations, 
facts, states of affairs, and the like, thereby embracing a much 
richer ontological foundation than the set theory we are used to. 
My brief against traditional model-theoretic analyses of languages 
and modelling is similar to Barwise and Perry’s against set theory: 
it glosses much of the very detail we need to understand. Moreo-
ver, the enterprises of situation theory and correspondence theory 
are related in much stronger ways than by analogy. Any candidate 
correspondence theory will have to be based on a much richer on-
tological foundation than is espoused in set theory, for at least the 
following reason: in virtue of its explicit rejection of invisible 
modelling, correspondence theory will have to be able, in its own 
right, to cope directly with the full registrations of domain and 
co-domain. 

For example, suppose someone wanted to use the proposed 
correspondence theory to assess the familiar representation rela-
tion between pairs of real numbers and points on a plane. In the 
model-theoretic tradition, the first job would to develop models 
of both phenomena. However, since ordered pairs are an emi-
nently good model both of themselves and of points, the repre-
sentation relation would look to be one of identity. For a 
correspondence theory to see the relation, it would have to license 
both ordered pairs of real numbers and points on a plane as 
legitimate, distinct, entities—as first class citizens, to use the 
computational phrase. Thus a set-theoretic base would simply 
not work. 

                                                             
45Barwise (1986a). 
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Given an adequate ontological foundation, however, and a con-
comitant account of correspondence, one should be able to repair 
some well-recognised lacks in current computer theorising, all of 
the “too coarse-grained” variety. The broad metric of Turing 
equivalence (relied on to demonstrate the “equivalence” of various 
models of computing) is a particularly blatant example—since 
virtually every imagined computer language, modulo standard 
idealizations of indefinite memory and time, turns out to be of 
equivalent power. The problem is that the very notion of Turing 
equivalence itself rests on promiscuous modelling; in showing one 
machine equivalent to another, one does not really show them to 
be the same; rather, what is shown is that one can implement one 
in the other. More seriously, all sorts of rather close correspon-
dence relations—implementation, encoding, modelling, etc.—
have similarly fallen between the cracks of theoretical assessment, 
being “closer,” so to speak, than is typical of the representational 
import of language, but still distinct from identity. The hope is 
that a proper categorisation of correspondence will be a first step 
towards more adequate foundations and more subtle compari-
sons. 

The third semantical consequence has to do with the potential 
integration and unified treatment of a wide variety of apparently 
disparate kinds of representation. Ever since the earliest days of 
Artificial Intelligence debates have raged about the relative merits 
and properties of so-called analogue, pictorial, and/or imagistic 
representations, vis. a vis those that are sentential, propositional or, 
as Sloman calls them, “Fregean.”46 Maps and diagrams are para-
digmatic examples of the former; natural language sentences and 
formulae in first-order logic, of the latter. In spite of a diverse lit-
erature probing these distinctions and explicating cross-cutting 
distinctions buried in them,47 however, no comprehensive frame-
work has emerged in which to reconstruct the underlying in-
sights. It is difficult not to notice that writers on these topics of-
ten refer back to Wittgenstein and Peirce, who wrestled with 

                                                             
46Sloman (1975). 
47A representative series of articles by Dennett, Fodor, Kosslyn & Pomer-
antz, Pylyshyn, and Rey can be found in part two (Imagery) of Block’s 
(1981). See also Sloman (Pylyshyn (1984); Sloman, (1975) and Pylyshyn 
(1984 chapters 7 & 8). 
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these issues before the development of modern semantical tech-
nique. 

This literature conveys an unmistakable picture of complexity 
inherent even in the most paradigmatic examples. For example, 
Sloman (1975) attempts to differentiate analogic and Fregean rep-
resentation by supposing that the former manifests a certain kind 
of correspondence (he neither explains nor constrains it) between 
the part structures of representation and represented. On the face 
of it, this would seem to amount to a structural correspondence 
between relations, of the sort we saw in discussing iconicity, cou-
pled with a mereological registration of both source and target 
domains. The pure characterisation, in other words, seems ex-
actly the sort that a correspondence theory should be able to ex-
plicate. Sloman’s proposal, however, seems much less successful 
as a way of clearly discriminating between analogue and proposi-
tional representation. For example, as many have pointed out,48 it 
does not have the intended bite unless one ties down the notion 
of “part.” For a bar chart to remain analogue, the conception of 
part in the target domain must be taken quite liberally; on the 
other hand, such sentences as “Adrian, Amelia, and Aaron ar-
rived in that order” seem to employ part relations in source (sen-
tence) structure to signify part relations in the target (what is de-
scribed). So the distinction is not so clear. Furthermore, there is 
no doubt that even paradigmatic analogue representations or im-
ages represent only with respect to a correspondence relation,49 so 
the constraint on mereological correspondence would need to be 
spelled out, in exactly the way that the proposed algebra of corre-
spondence types suggests. 

Without delving into specific examples, several general things 
seem clear. For one thing, the persistent intuition that representa-
tions come in a wide variety of kinds seems exactly right. For an-
other, analysing these kinds will require exactly the sort of fine-
grained correspondence theory we are proposing. Finally, it is un-
likely that common examples will sort into any small, mutually 
exclusive, set of nameable classes. Instead, we should license a full 
range of types of correspondence, kinds of circumstantial depend-

                                                             
48See for example the discussion in Pylyshyn (1978). 
49See for example Fodor (1975). 
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ence, and varieties of registration (continuous, discrete, composi-
tional), in terms of which subsequently to characterise pictures, 
maps, graphs, schedules, models, images, and so forth, as well as 
sentences, formulae, and elements of language. The latter group, 
one would guess, will in general be more complex than the for-
mer, and may involve additional kinds of circumstantial depend-
ence, compositional structure, or relational complexities such as 
polarity. But they surely will not be totally distinct.  [[strange 
mark]] 

In section 7 I introduced the phrase “correspondence contin-
uum” to connote the interacting complex of difference correspon-
dence relations we often find connecting representation and rep-
resented. However, I equally intended the words to suggest the 
different kind of continuity arising here: of a full range of varia-
tion of type of representational structure. 

A simple example will illustrate how continuous these types 
can be. Modern architectural blueprints used in building con-
struction contain what, to the uninitiated, can be a bewildering 
range of symbols, ranging from obviously analogue outlines of 
room shapes, through suggestive icons indicating plumbing and 
kitchen fixtures, heaters, etc., through slightly stylised icons for 
electrical outlets, light switches, etc. (with a number of slashes to 
indicate number of individual outlets, an ‘S’ to mark whether they 
are switched, etc.), through general purpose furniture icons with 
simple inscribed names (desk, bed, etc.), through icons with 
manufacturer’s annotations (“Vermont Castings,” “Wolf,” etc.), 
through intermixed sketches, diagrams, and annotations on con-
struction technique, all permeated with arrows, English com-
ments, stamps of approval, scribblings to cancel out parts of the 
specification, and so on and so forth. That there is a rich variety 
of representation seems without doubt; that a theoretical scalpel 
could carve the assemblage into a few neat categories, extraordi-
narily unlikely. 

The moral is unchanged: in variety, detail, and forms of corre-
spondence, current representational practice vastly outstrips cur-
rent semantical technique. Recognising that most extant theoreti-
cal apparatus was developed primarily in service of very particular 
representational systems employed for logic and meta-
mathematics, we should instead embrace what Ken Olson has 
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suggested:50 a return to as various and thick a structure of corre-
spondence relations as Peirce ever imagined. Unlike Peirce, how-
ever, we can avail ourselves of the full battery of rigorous mathe-
matical methods, axiomatic systems, and so forth, that have been 
developed since his time. Given such a project, we might even be 
able to rescue some of the richness of the “semiotic” tradition 
from what has been perceived to be its vagueness and descriptive 
complexity. 

The fourth and final consequence listed at the beginning of 
this section has to do with lurking problems in the traditional ap-
proach. Those problems, however, arise from fundamental meta-
physical questions, and will as such be addressed in the next sec-
tion. 

 10 Theories, Models, and Metaphysics 
Figure 13 painted a continuum of relations, starting on the left 
with the linguistic or representational structure under analysis, 
and progressing in some fashion towards the “real world” on the 
right. I have suggested that a correspondence theory would pro-
vide us with an ability to characterise the relations among the 
structures comprising this whole, but I have not addressed the 
question of how one would locate oneself in the resulting contin-
uum. If, as I have suggested, the practice of calling certain rela-
tions “syntactic” and others “semantic” is not helpful, is there any 
other way to distinguish one analysis from another? Or, to put 
the same question the other way around, can we say anything 
about traditional approaches? How are they located on this as-yet 
rather unstructured map? 

Four things can be said. 
First, if the picture we have been developing is even roughly 

correct, it predicts that we will encounter structures at various 
stages across the continuum—relatively more “linguistic” or “syn-
tactic” ones, closer to the primary representational source on the 
left, others midway across, perhaps having to do with meaning or 
other semantic (or efficient) uniformities, and others relatively 
more directly metaphysical or ontological, closer to the full buzz-
ing confusion on the right. That the distinction becomes a matter 

                                                             
50«Ref Olson—PhD at Stanford?» 
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of degree, rather than a binary decision, makes sense of various 
traditional debates and disagreements. In particular, it is some-
what of a theoretical relief. 

To be specific, many people (I am one) have worried about the 
metaphysical foundations of particular model-theoretic analyses 
of language,51 feeling that the proposed model structures reflect, 
at least in part, the structure of language, not the structure of the 
world the language is about. For example, consider an analysis 
(such as a term model) that posits distinct one, two, and three-
place relations for various different uses of the verb ‘break’ (as in 
“The window broke,” “The hockey puck broke the window,” and 
“I broke the window with a hockey puck”). Or imagine an analy-
sis that distinguishes the Pope’s saying Mass from the fact of the 
Pope’s saying Mass. Or imagine (not hard!) debates about the 
metaphysical reality of possible worlds, with some people saying 
that they are real, others saying that they are merely theoretical 
devices with which to classify language, others claiming that ar-
guments about the reality of semantical constructs miss the point, 
which is after all to prove various mathematical facts about the 
linguistic structures themselves. Or suppose someone were to 
doubt, on metaphysical grounds, the received wisdom that posi-
tive and negative facts are on a par, believing instead that this 
symmetry is a device of language, not a fixture in the world. 

If one were to adopt the traditional binary view, then all such 
questions must be settled one way or the other. I.e., you would 
have to reject an otherwise appealing semantical analysis if the 
semantical structures it proposed were metaphysically unconvinc-
ing. On the kind of view I am suggesting, however, the whole con-
tinuum of possibilities is exactly what one would expect. You could 
accept a term model semantics, for example, but understand it as 
living rather close to the left hand side, and then ask for further 
relations to anchor it in, or relate it to states of affairs, further to 
the right. The structure of the continuum, that is, gives you a way 
of accepting your fellow theorists’ intellectual contributions, even 
while disagreeing with their metaphysical predilections. 

                                                             
51The difficulties are blatant in term models, evident in Kripke style possi-
ble world structures, but still apparent, at least to my mind, in the struc-
ture of the situation-theoretic universe (Barwise (1986a)). 
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Second, there are several ways one might locate a particular 
correspondent structure in a given semantical analysis. For exam-
ple, it was pointed out early on that much of the semantical con-
tribution of linguistic use arises from circumstances of utterance, 
not directly from the structure of the sentence used (as in the “I’m 
right; you’re wrong!” example). One of Barwise and Perry’s chief 
points about language52 is that this property, which they call effi-
ciency,53 is necessary to the proper functioning of communication. 
It is natural, then, to imagine an analysis of language use that 
spelled out this circumstantial dependence. It is also easy to imag-
ine, as a semanticist, wanting to avoid the recalcitrant metaphysi-
cal problems that arise when you try to map specific vocabulary 
items onto the world itself (see below). So the following approach 
might suggest itself: develop a correspondent structure midway 
between utterances and the world, in such a way that the entire 
circumstantial dependence of language, up to questions about the 
metaphysical foundations of vocabulary, has been discharged. 
The resulting structure is liable to be infinite, but of course that is 
not a theoretical problem.54 

This seems a productive way to understand the semantical 
structures posited both by possible world semantics and situation 
theory. Needless to say, there are important differences between 
the two proposals, some of which we can describe: possible world 
semantics models what it calls the interpretation of sentences, 
whereas situation theory (at least in recent variants) tries to deal 
with interpretation directly.x But the point is to reject as too sim-
plistic the question of whether the structures they each propose 
are to be viewed as: (i) the structure of the world, albeit highly ide-
alised; or (ii) the structure of language, albeit decontextualised. In-
stead, they can both be understood as intermediate analyses. 

Third, it is important to dispel a false assumption about how 

                                                             
52«Ref» 
53«Has this been introduced before? If so, refer back; if not, explain?» 
54John Etchemendy once suggested that the situation-theoretic universe 
could be viewed in this way (the world of situations, types, states of affairs, 
etc.—not the language or notation used to describe it): as the world’s only 
non-situated language. 

x«Or so at least they claimed. Note that I part(ed?) company with this 
claim of theirs.»  
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correspondence relations will go, as we move from left to right. 
As many writers have noted, far more distinctions are made in 
the syntax of most formal languages than in the model-theoretic 

structures posited 
as their interpreta-
tions. The most 
extreme example 
is the traditional 
(Fregean) inter-
pretation of all 
sentences as de-
noting one of two 
values: Truth or 

Falsity. But the general situation is much more common: differ-
ent spellings with the same content; different procedures desig-
nating the same function; etc. Similarly, logical proof theory, de-
fined in terms of syntax (towards the left) pays attention to far 
more details than does traditional model theory (though of 
course proof theory does not pay attention to all details, such as 
to when a formula was written, or to whether parentheses or 
brackets were used). All of these examples suggest, in general, 
that correspondence relations will gradually lose information, as 
they move towards the right, as suggested in figure 17. This as-
sumption is for example embedded in approaches that use initial 
and final algebras as interpretations for programming constructs. 

Considerations of circumstantial dependence, however, and 
some metaphysical arguments, suggest that this neat structure 
may be an artifact of formal languages, not a general truth of se-
mantics.55 In the general case, in other words, semantics should 
not be viewed as a way of moving from fine- to coarse-grained lin-
guistic distinctions. This stance is clearly false if circumstance is 
ignored: different uses of the word ‘I’, as we have pointed out so 
often, can refer to indefinitely many different people, as can ‘now’ 
refer to arbitrarily many different times. But more complex phe-
nomena suggest other structures, too. For example, imagine an 
analysis of natural language, along the lines suggested above, that 

                                                             
55Barwise (1986b, p. 331), in fact, defines “formal” languages to be exactly 
those that are not circumstantially dependent in this way. 

 
Figure 17: The “losing information” view of semantics 



 10 · Correspondence Continuum 

 491 

ignores different people’s sense of the reference of some term 
‘guilt’, say, or ‘like’—about which interpersonal agreement is rare. 
If there is a fact of the matter, when a given person says “She likes 
feeling guilty,” as to what aspect or property of the world is 
thereby named, then it follows that the real connection from ut-
terance to world will discriminate more finely than our chosen 
semantical analysis. 

I choose this example because I can imagine that it would be a 
serious mistake to try, in the analysis of language, to compensate 
for such differences by writing them in terms of an explicit pa-
rameter for something like “speaker’s conceptual scheme”—what 
I will call registration scheme—and then to try to connect such 
a thing to our previous conception of a “pre-registered” corre-
spondent domain. For some purposes, that is, we may not want to 
capture all the richness of the representation, nor all the richness 
of the world, nor all the richness of the connection between the 
two. But this fact still does not allow the conclusion that richness 
recedes as one moves to the right. 

Fourth and finally,x there remains the very serious metaphysi-
cal question of how any analysis at all is going to deal with the 
right hand end: the world itself. In fact our continuum seems to 
suggest that one of the great appeals of the model-theoretic se-
mantical approach—for natural language, AI, and other sys-
tems—is that it stops the analysis half-way across the continuum. 
As suggested above, there are those who worry that the resulting 
models are still infected with the structure of the languages they 
purport to analyse, but this has its advantages. Theorists who 
disagree wildly on the actual structure of the world itself (if that 
even means anything coherent) can nonetheless agree on a model-
theoretic structure. More specifically, one would expect propor-
tionally more agreement—among realists, skeptics, idealists, and 
theorists of every conceivable metaphysical stripe—to the extent 
that one’s semantic analysis establishes a correspondence to a 
structure further towards the left. In fact any two people who 
agreed on an analysis all the way towards the right would by defini-
tion be of exactly the same metaphysical persuasion; that is what 
such agreement would mean. 

                                                             
x«OK, here is the real introduction to O3, metaphysics, etc. … » 
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The strongest claim I will make about metaphysical grounding 
will arise in the next and final section, when I return to the se-
mantics of knowledge representation, but a preliminary point can 
be made here. It has to do with semantics as an instance of theo-
retical inquiry. To start with, make the following two relatively 
non-controversial assumptions. 

1. Assume that we human theorists, when we use language, 
are somehow able to refer to the world itself, even if we do 
not yet know how. I.e., assume something like the most 
modest form of realism possible: just that there is a world, 
that we are in it, and that our words somehow enable us to 
get at it. This is all perfectly compatible with everyone’s 
carving it up in radically different ways, as dictated by na-
ture, nurture, or just plain whim. 

2. Assume as well that theories are linguistic vehicles with 
which we communicate our understanding to our fellow 
person. Or assume that theories are linguistic entities 
claimed to be true; for these purposes the difference does 
not matter. 

Once these two assumptions are granted, the following is an im-
mediate conclusion: To the extent that our theories are legitimate 
instances of language, and thus that we who use or understand 
them are able to refer to the world, it follows that, as theorists, we 
do not lack ways of getting to the right hand end of the diagram. 
I, for example, can get there right this minute with the phrase 
“this lukewarm cup of coffee to my right.” The problem, of 
course, is that I do not necessarily know various things: not only 
how it is that I manage to refer to the cup, but also the way in 
which I have thereby referred to it. So the metaphysical problem 
for semantical theorists is not one of referring to the world by us-
ing theoretical language, but rather something closer to the oppo-
site: there is no way of referring to the world except by using lan-
guage. Neurath’s boat once again. 

This much is obvious. What is important about it is that it is 
true all the way across the continuum: we have no way to refer to 
the representational structure on the left, or to any intermediat-
ing correspondent structure, outside of language either. It only 
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feels more problematic towards the right because it is there that 
we encounter a natural tendency to want to escape our own par-
ticular conceptual schemes, especially if we and the representa-
tional structure in question part company. (What he calls “duty” 
she calls ‘guilt.”) 

This may indeed may be a real limitation: the chances of com-
pletely explaining, all the way to the right, the semantical interpre-

tation of a system whose 
conceptual scheme dif-
fers radically from one’s 
own, is probably nil. 
Radical indeterminacy 
of translation, if there is 
such a thing, surely has 
what we might call radi-
cal indeterminacy of se-
mantics as a sub-species. 
But there are more in-
teresting conclusions, as 

suggested in figure 18. 
To the extent that theorist’s language and representation over-

lap on registration scheme, the problems are clearly that much 
less. This is the happier case, of course, but it has this curious 
consequence: as analysis moves towards the right, it will look, to 
an outside observer, as if the representation in question is gradu-
ally being translated into the theorist’s own language—rather on 
the model of deflationary accounts of truth and reference. I.e., we 
might say that the noun ‘chat’ (towards the left) is modelled by 
the objectified CAT relation (middle), which in turn characterises 
the set of real cats (right). I.e., quotation on the left, reification or 
nominalization in the middle, and ordinary use on the right. But 
this is just as it should be; it is predicted by the diagram. There is 
absolutely no reason to conclude, from this observation, that se-
mantics inherently involves translation. 

On the other hand, to the extent that the theorist’s registration 
scheme is his own, it will be so all the way across the diagram. 
Just because the theorist registers the representational structure 
itself in terms of a given set of properties and relations (say, as 
having a particular syntactic form), there is no reason to believe 

 
Figure 18: Semantics of theories of correspon-

dence 
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that the representational system registers itself in this way if in-
deed there is any reason to suppose that it registers itself at all. 
I.e., if, as I am inclined to suppose, registration involves represen-
tation (as well as vice versa), then the subject system will register 
only what is to the right; the rest is registered only for theoretical 
purposes.56 As before, conflict can occur only at the right hand 
end, but only because that is the only thing that both system and 
theorist register. 

In sum, the idea that semantics involves translation is a super-
ficial rendering of the much deeper though perfectly straightfor-
ward fact that semantical analysis, like all theoretical investiga-
tion, is carried on in language, left through middle through 
right.xx 

 11 Knowledge Representation Revisited 
Although we may seem to have strayed a fair distance from 
knowledge representation, its demands have been our constant 
motivation. First, we have seen that the semantical competition 
between ‘representation’ and ‘knowledge’x was merely the tip of a 
rather large iceberg: without even trying to enumerate an exhaus-
tive list, half a dozen other intentional notions were added to the 
semantical roster. Second, with respect to appropriate semantical 
technique, I argued for the prior development of a comprehensive 
theory of correspondence, and sketched some preparatory phi-
losophical foundations. One way to view this proposed theory is 
as a branch of semi-mathematics that would immeasurably aid 
semantics in two ways: by clarifying the semantical project itself, 
and by providing conceptual vocabulary in terms of which to clas-
sify genuinely semantic relations. 

On the other hand, I have tried to say plainly that a theory of 
correspondence would not itself be a theory of semantics, or rep-
resentation, or knowledge; in fact, in spite of all the ground we 
have covered, I have said virtually nothing here about the essence 

                                                             
56The theorist, of course, can either be us, or else the system introspecting 
on itself; see Smith (1986). 
×«Think through the foregoing few paragraphs; do they make any sense?» 
x«Raises the question: should I here, or in the overall introduction, tie this 
back to the “From Symbols to Knowledge” Response to Newell & Simon? 
Probably … » 
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of any such notions. Even section 9, which tries to sketch some of 
the structure in which semantics would proceed, still does noth-
ing to resolve this piece of homework. Nor can I do more here. 
My only intent, by way of a last conclusion, is to make one brief 
foray in this direction, which will tie the whole analysis back to 
the primary distinction made at the outset, between representa-
tional import and functional role. 

The point is simple. I said that functional role and representa-
tional import must be coordinated: the agent must be able to act 
sensibly in terms of what it represents, and (perhaps) represent 
what it can act sensibly towards. This coordination can be viewed 
as a kind of “coming together” of knowledge (second factor) and 
action (first factor). Thus, suppose, knowing the paper is almost 
over, I reject the lukewarm coffee on my right in favour of a plan 
that, which it finally is done, I will try some of the Lagavulin in 
the cupboard. When the time comes, I would like my internal 
impression that represents the Lagavulin to engender the action 
of my crossing the room, pouring out a glass, and raising it to my 
mouth. What is of paramount importance, for our purposes, is 
the following fact: in the terms of the continuum diagram, this 
coming together of representation import and action (which is 
one kind of functional role) must be all the way to the right. I want 
to drink what is in the world, not a model or indirect classification 
of a particularly smoky whiskey, nor a term model of ‘Lagavulin’ 
expressions, nor a set-theoretic assemblage of sentences or im-
pressions containing representations of the property of being 
whiskey. Whatever “stuff itself” is, this much is certain: it is stuff 
itself towards which my actions must be directed. 

This observation, merely a theoretical consequence of the dual 
facts that action takes place in the world, and that functional role 
is a kind of action, is the grounds for our sixth and final challenge 
to the model-theoretic tradition, promised earlier. Because com-
puter systems participate with us in the world—stop our cars, 
launch our weapons, deliver our mail—it is imperative that our 
analyses of the representational import of impressions take us all 
the way to the real world situations towards which the engen-
dered action will be directed. Tooth decay among children will 
not be reduced by a computer’s injecting a mathematical model of 
fluorine into a set of possible worlds. In order to see the coordina-
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tion between functional role and representational import, that is, 
both parts of our two-factor analysis of significance must reach all 
the way to the right. Let’s call an analysis that reaches out that far a 
grounded account. 

So far, then, the only coordination requirement I will put on 
theories of full significance is that they be grounded. At least for 
the moment, that will have to be requirement enough. 
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